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Abstract

With increasing data sizes and more easily available computational methods, neurosciences rely more and more on
predictive modeling with machine learning, eg to extract biomarkers of pathologies. Yet, a successful prediction may
capture a confounding e�ect correlated with the outcome instead of brain features speci�c to the outcome of interest –eg
the pathology. For instance, as patients tend to move more in the scanner than controls, imaging biomarkers of a
pathology may boil down to an expensive measure of head motion. Here we study how to adapt to predictive modeling
settings methods used to control for confounds in statistical analyses. We review how to train predictors that are not
driven by such spurious e�ects. We also show how to measure the unbiased predictive accuracy of these biomarkers, based
on a confounded dataset. For this purpose, cross-validation must be modi�ed to account for the nuisance e�ect. To guide
understanding and practical recommendations, we apply various strategies to assess predictive models in the presence of
confounds on simulated data and population brain imaging settings. Theoretical and empirical studies show that
deconfounding should not be applied to the train and test data jointly but need to decouple modeling the e�ect of
confounds, only on the train data, from removing it. Cross-validation that isolates nuisance e�ects gives an additional piece
of information: confound-free prediction accuracy.
Key words: confound, subsampling, phenotype, predictive models, biomarkers, statistical testing, deconfounding

Introduction

Predictive models, using machine learning, are becoming a
standard tool for scienti�c inference. In cognitive neuro-
science, they can be used for decoding, to conclude on mental
processes given observed brain activity [1, 2, 3]. With the rise
of large-scale brain-imaging cohorts, they can extract imag-
ing biomarkers that predict across subjects phenotypes such as
neuropsychiatric conditions [4, 5, 6] or individual traits [7, 8].
The crucial aspect of these biomarkers is their ability to pre-

dict the outcome of interest, ie generalize to new data [9]. How-

ever, these predictions can be driven by confounding e�ects.
For instance, [10] showed that subjects’ in-scanner motion
severely a�ects the link between brain-imaging signals and
their age: in-scanner motion varies with subjects’ age and it
creates systematic di�erences in brain signals. Given this con-
founding e�ect, MRI biomarkers of brain agingmay be nothing
more than expensive measurements of head motion.
More generally, the data at hand often capture e�ects not of

direct interest to the investigation. In many situations, some
confounds such as head motion cannot be fully avoided. To
make matters worse, large cohorts developed in population
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imaging to answer epidemiological questions [as UK biobank,
11] are observational data: there is no controlled intervention or
balanced case-control group; rather individuals are recruited
from diverse populations with various sampling or selection
biases. To conclude on the practical usage of biomarkers, it is
important to control that their predictions are not fully driven
by such unwanted e�ects. Confounding e�ects can also make
it hard to interpret brain-behavior relationships revealed by
predictive models [12], as confounds can mediate the observed
association or be a latent common cause to observations [13].
A confounding e�ect explains both the brain-imaging data

and the prediction target but is considered as irrelevant. In
experimental settings, eg as in a small cohort, it can be sup-
pressed by balancing the acquisition for confounds, or using
randomized control trials. However, constraints in the data ac-
quisition, eg recruitment of a large cohort, often imply that con-
founds are present in the data, and a suitable analysis is needed
to avoid reaching erroneous conclusions. The statistical litera-
ture on controlling confounding variables is well developed for
classic statistical analysis, such as statistical testing in a linear
model at the heart of the standard mass-univariate brain map-
ping [14, 15]. However, these procedures need to be adapted
to predictive-modelling settings. Indeed, predictive models do
not rely on the same parametric assumptions, namely linearity
of e�ects and Gaussian noise. Often, a predictive analysis does
not build on a generative model of the signal but on optimizing
discrimination. In addition, predictive models draw their pur-
pose and validity from out-of-sample prediction, rather than
in-sample statistical testing [16].
In this paper, we study statistical tools to control for con-

founding e�ects in predictive models. Preliminary version of
the work discussed here we presented at the PRNI conference
[51]. While the core method is the same, its presents limited
insights on the theoretical underpinnings and practical value
of the method proposed. Experiments on simulated data are
absent and experiments on neuroimaging data are limited by
just one data set. In particular, statistical signi�cance is not
established thoroughly, and on only one alternative approach
is considered. In short the conference publication provides lim-
ited insights on the method, while the current work provides a
complete description and points to the code for reuse.
We �rst review how the classic deconfounding procedures

can be used in predictive-modeling settings. We then expose a
complementary approach that is not based on removing con-
founding e�ects, but rather testing whether a given predic-
tive model –eg a biomarker– predicts well when these con-
founds are not present. For this we introduce confound-isolating
cross-validation, sampling test sets in which the e�ect of in-
terest is independent from the confounding e�ect. The bene-
�ts of this approach are that it is non-parametric and that it
directly tests the quantity of interest in a predictive analysis.
We then run an extensive empirical study on three population-
imaging biomarker extraction problems as well as simulations.
We draw practical recommendations to test predictive models
in the presence of confounding e�ects.

Methods: controlling for confounds in predic-
tive models

Formalizing the problem of predictionwith a confound

Assessing predictive models
Predictive models are assessed by their prediction performance
[16]. For this, cross-validation is the standard tool, typically k-
fold cross-validation [17]. It consists in randomly partitioning
the original dataset into k equal size subsets or folds (each de-
noted by a color on Figure 1). One of these k sets is held out for

testing, and the remaining (k–1) folds are used for training the
model. This process is repeated k times, where each time a dif-
ferent group of observations compose the test set. Prediction
accuracy is measured on the test set.
Confounding variables in a prediction task
To formalize prediction in presence of a confound, we consider
a dataset of n observations –eg subjects or time-points– com-
prising brain signals X ∈ Rn×p, an e�ect of interest1 y ∈ Rn

–the biomarker target– and a confounding e�ect z ∈ Rn.
An imaging biomarker then predicts y from X. If y and z

are not independent, the prediction of the target y might be
mediated by the confounding e�ect, z.
Such prediction may be misleading or useless. It can be mis-

leading as it can be interpreted as a link between brain struc-
tures and y –eg �uid intelligence– while such a link only re-
�ects the e�ect of z –eg age. It can be useless because brain
imaging is likely much more costly to acquire than the pheno-
typic variable z, hence it should be used only if it brings more
diagnostic information.
A crucial problem for the validity of the biomarker is to mea-

sure whether it can predict y from X and not solely from z. Pre-
diction accuracy is measured with cross-validation, separating
train and test sets [17]. [18] discuss what cross-validation cap-
tures in the presence of a confounding variable. Though there
can be many possible confounds in brain imaging (see 8), we
focus below on simple settings, assuming that such nuisance
factors have been isolated in one confound variable.
There are two points-of-view to controlling confounds in

predictive models. One is to try and remove the e�ect of the
confounding variables from the data, by deconfounding or re-
balancing the data. The other is to test that the model’s pre-
diction captures more than the confound. Removing the con-
founding signal can test whether predictions are fully driven
by the confound z rather than the brain signal X. However, it
does not provide a good tool to measure the predictive power in
the presence of confounds: it can give a signi�cance test, but
not a measure of e�ect size.
Another point of view on confounding e�ects in predictive

models is that of trying to learn a predictor from a biased pop-
ulation –with the confounding e�ect– that does not re�ect the
population of interest –without the confounding e�ect. The
problem can then be tackled as a domain adaptation problem
[19, 20]. However, [20] have shown that compensating for the
confound does not improve prediction if the target population
is not markedly di�erent from the training population. Our
question is di�erent: we are interested in knowing whether
learning a biomarker on a confounded dataset leads to predic-
tions that are fully driven by the confound.

Deconfounding

Deconfounding in standard analysis
In inferential statistics –as opposed to predictive modeling–
proper modeling of confounds is important to control the in-
terpretation of model parameters, ensuring that they are not
driven by the confounding e�ects. Classical statistic analysis
in brain imaging is based on the general linear model (GLM)
[21, 14], in which confounding e�ects are controlled by addi-
tional regressors to capture the corresponding variance. Such
an approach shows limitations in predictive-modeling settings.
First, it is based on maximum-likelihood estimates of linear

1 In classi�cation settings, y does not take dense values in Rn, yet we
use the most general notation to cover both classi�cation and regression
settings.
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models, while in general predictive models are not explicitly
based on a likelihood and are often not linear. Second, it is de-
signed to control in-sample properties, while predictive mod-
els are designed for out-of-sample prediction. The two-step
approach based on applying a classical GLM to remove the
confounding e�ect, then a predictive model, may lead to pes-
simistic results, eg below-chance prediction [8, 22].
In the context of the GLM, an alternative implementation

relies on removing the e�ect of variables that are correlated
[21]. Given a sample X ∈ Rn×p of n observations (subjects)
with p brain imaging features (eg connectivity matrices), Xi =(Xi1,Xi2, ...,Xip) and confounds z ∈ Rn, the model is:

X = zTW + e, (1)
where W is a vector of weights per voxel, W ∈ Rp. The coe�-
cients Ŵ can be estimated from the data by solving the regres-
sion model:

Ŵ = (zTz)–1zTX (2)
Given these equations, a linear model can be used prior to the
predictive model to remove the e�ect of the confounds z on
the brain signals X. It must be adapted to out-of-sample test-
ing. One solution is to apply deconfounding jointly on the
train and the test set, but it breaks the statistical validity of
cross-validation because it couples the train and the test set
[17]. Hence it can give biased results.
Out-of-sample deconfounding
To adapt the above deconfounding approach to the two phases of
training and testing a predictive model, a useful view is to con-
sider the deconfounding model as a predictive encoding model,
predicting a fraction of the signal X from z. Deconfounding is
then performed by removing this part of the signal –explained
by z– from X:

X̂clean = X – zŴ (3)
Where Ŵ are the coe�cients of the linear deconfounding model
(Equation 1), estimated on the train data with Equation 2 and
then applied to the test [22]. The full out-of-sample decon-
founding procedure is listed in algorithm 1.
A drawback of such deconfounding is that it is strongly para-

metric, i.e. it relies on themodel of confounds used. Equation 2
stands for the classic linear model, assuming linearity between
the confounding variable z and its e�ect on the brain signal X.
The linear model only takes into account second-order statis-
tics (covariance or correlations) and ignores more complex de-
pendencies.
Model-agnostic out-of-sample deconfounding
A common solution to go beyond linear e�ects of confounds is
to use a polynomial expansion of the confounds z in the linear
deconfounding model. Another option is to use a more pow-
erful predictive model in the confound removal. A predictive

Algorithm 1: Out-of-sample deconfounding
Input: Brain signal X ∈ Rn, confound z ∈ Rn, {train}

and {test} indices
1 Ŵconfounds ← (zTtrainztrain)–1zTtrainXtrain

/* Regression of confounds on data */
2 X̂clean,test ← Xtest – ztestŴconfounds

/* Remove confounds in the test set */
Output: Brain signal without confounds X̂clean,test

Algorithm 2: Model-agnostic deconfounding
Input: Brain signal X ∈ Rn, confound z ∈ Rn, {train}

and {test} indices, machine-learning algorithm
g

1 f ← g(ztrain,Xtrain)
/* Fit confound model capturing E[X|z] */

2 X̂clean,test ← Xtest – f(ztest)
/* Remove confounds in the test set */

Output: Brain signal without confounds X̂clean,test

Figure 1. Classic and confound-isolating cross-validation. a) k-fold cross-
validation is the common procedure to evaluate predictive models. It consists
in splitting the data into k equal groups. k-1 folds are used to �t a model and 1
fold is used to validate the model. This process is repeated k times so that each
sample is taken once in the test set. b) In confound-isolating cross-validation
sampling we divide the data in train and test sets, but in a di�erent way. First,
using subsampling, we create a test set on which y and z are independent. The
train test is constructed from the rest of the samples that are not included in
the test set. In this way, the method creates a test set that contains unrelated
target and confound.

model –including a mere linear model– regressing X on z can
be seen as estimating a function f so that f(z) = E[X|z]. There
are many possibilities such as random forests or Gaussian pro-
cesses. The procedure used for out-of-sample deconfounding
can then be adapted as in algorithm 2. While this approach is
very powerful, the danger is to remove also part of the signal
of interest. Indeed, using a more powerful predictive model,
for instance a higher-order polynomial, leads to explaining in
X more data as a function of z; however too powerful models
over�t, which means that they explain variance in X by chance.
In such a situation, the deconfounding procedure may remove
signal of interest, unrelated to the confound.

Comparing predictive power of confounds

A simple evaluation of the impact of z on the prediction of y
is to use predictive models predicting y from z (prediction from
confound) and compare the predictive accuracy to that obtained
with biomarkers based on brain signals. This argument is used
by [6] to control for the e�ect of movement on autism diagnos-
tic.

Creating a test set to isolate the confounding e�ect

Rather than deconfounding, the investigator may ensure that
the predictive model is useful by measuring its accuracy on
a dataset where the confounding e�ect is absent. In a cross-
validation setting, such a situation can be created by using as
a test set a well-chosen subset of the data that isolates the
confounding e�ect. See Figure 1 for a graphical illustration of
the approach. Formally, it requires choosing a subset S of the
data such that yS and zS are independent. The remainder ofthe data is used as a training set, to learn to predict y from
X. If the prediction generalizes to the test set S, the learned
relationship between X and y is not entirely mediated by z. In
particular, the prediction accuracy then measures the gain in
prediction brought by X.
Categorical confound
The confounding e�ect can be “categorical”, for instance the
site e�ect when learning predictive biomarkers on multi-site
acquisitions as in [6]. In such settings, to test that the model
can indeed predict independently from site e�ects, a simple
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solution is to resort to a cross-validation that avoids to have
samples from the same site both in the train and the test sets.
Similarly, in multi-subject prediction with repeated measure-
ments from the same subject, subject-wise cross-validation
can rule out that prediction is driven by subject identi�cation
[23, 18]. More generally, for a categorical confound z, having
distinct values for z in the train and the test set ensures that
the prediction cannot be driven by z.

Continuous confound
When z is a continuous variable, such as age, it is more chal-
lenging to generate test sets on which yS and zS are indepen-dent. We describe here an algorithm to generate such sam-
pling, “confound-isolating cross-validation” subsampling. It
is based on iterative sampling to match a desired distribution:
the goal is to have a test set with independence between y and
z, i.e. p(y, z) = p(y) p(z), where p((y, z)) is the joint probability
function of y and z, and p(y) and p(z) are the marginal proba-
bility distribution.
A related quantity is mutual information, which charac-

terizes the level of dependency between the two variables:
η(y, z) = E

[log( p((y,z))p(y)p(z)
)]. In practice we estimate the

probability density functions with a kernel-density estima-
tor (KDE) using Gaussian kernels. We iteratively create the
test S set by removing subjects; at each iteration, we con-
sider the problem as a distribution matching problem, match-
ing p(yS , zS) and p(yS) p(zS). For this, we use importance
sampling: we draw randomly 4 subjects to discard with a
probability p(yS ,zS )

p(yS ) p(zS ) using inverse sampling method [24, sec2.2]. Algorithm 3 gives the details. A Python implementa-
tion is available on GitHub https://github.com/darya-chyzhyk/
confound_prediction and on PyPI repository https://pypi.org/
project/confound-prediction/ and can be installed with pip in-
stall confound-prediction.
Note that if z and y are too tightly related, the subsampling

procedure above may not have enough degrees of freedom and
may always chose the same subset: the test set would be deter-
ministically de�ned by the sampling procedures, in which case
there would e�ectively be only one fold of cross-validation. In
practice, it is important to check that such a situation does not
occur when analyzing a given dataset.

Empirical study methodology

We now describe the experimental materials underlying our
empirical study of confound-controlling approaches in predic-
tive models.

Algorithm 3: Confound-isolating cross-validation
Input: Target y ∈ Rn, confound z ∈ Rn, size m < n

1 S ← {1 . . .n} /* Initialize */
2 while card(S) > m do
3 py ← KDE(yS) /* Density estimation */
4 pz ← KDE(zS)
5 p(y,z) ← KDE((zS , yS))
6 mi ← p(y,z)((zi,yi))

py(yi)pz(zi) , ∀i ∈ S

7 S ← S – {j} Draw one index j to remove from S with
probability mj using inversion sampling.

8 end
Output: Set of test indices S

Two classic confounded predictions in population
imaging

Motion confounding brain-age prediction
As brain aging is a risk factor of many pathologies, the pre-
diction of brain age from MRI is a promising biomarker [25].
In childhood also, markers of functional brain development
can help to recognize neurodevelopmental disorders [26, 27].
Many recent studies report age prediction, eg from resting-
state functional connectivity [7, 26, 28], from structural imag-
ing [29], or combining multiple imaging modalities [8, 30].
However, older people and children move more in the scanner
than young adults [see �g. 2, 31, 32, 10, 33]. Thus, age-related
changes observed in brain images may be confounded by head
motion [34] and image quality [35].
Indeed, in-scanner motion creates complex MRI artifacts

that are di�cult to remove [34]. In addition, they severely im-
pact measurements of functional connectivity [36].
Here the confounding e�ect is that of movement. To

build a variable summarizing movement for each subject,
we use the movement time-series computed during prepro-
cessing. As suggested in [36], we create the confound z
from the root mean squared displacements for each subject
z =

√
mean

((tix – ti–1x )2 + (tiy – ti–1y )2 + (tiz – ti–1z )2), where tx
is left/right, ty anterior/posterior, and tz - superior/inferiortranslation. The prediction target y is the age in years.
Age confounding �uid-intelligence measures
Various studies have predicted individual cognitive abilities
from brain functional connectivity [37, 38]. In particular, [38]
used machine-learning to predict �uid intelligence from rest
fMRI. Fluid Intelligence quanti�es the ability to solve novel
problems independently from accumulated knowledge, as op-
posed to crystallized intelligence that involves experience and
previous knowledge [39]. It is well known that cognitive abil-
ities change with age [40, 41, 42, 43], in particular that �uid
Intelligence progressively declines in middle age [44], while
crystallized intelligence continues to grow with age. Indeed, in
a cohort with a large age span, the data display a strong relation
between �uid intelligence and age (Figure 2). When extracting
biomarkers of �uid intelligence, the danger is therefore to sim-
ply measure age. We study how to control the impact of the age
confounder when trying to predict the �uid-intelligence score
from rest-fMRI functional connectivity.

Population-imaging rest-fMRI datasets

Datasets
We run experiments on 626 participants from the CamCan
data set and 9302 participants from UKBB. All participants are
healthy subjects with no neurological disorders.
• CamCan Cambridge Centre for Ageing and Neuroscience
data [45] studies age-related changes in cognition and brain
anatomy and function. Speci�cities of this dataset are i) a
population lifespan of 18-88 years, ii) a large pool (626 sub-
jects) of multi-modal MRI data and neurocognitive pheno-
types.

• UKBB The UK Biobank project [46] is a prospective epi-
demiological study to understand the development of dis-
eases of UK population over the years. The data used here
contain 9302 subjects from the �rst release of UK Biobank
ongoing cohort study with available rfMRI scans and exten-
sive health and lifestyle information [47, 48].

Table 1 presents detailed information about the number of sub-

https://github.com/darya-chyzhyk/confound_prediction
https://github.com/darya-chyzhyk/confound_prediction
https://pypi.org/project/confound-prediction/
https://pypi.org/project/confound-prediction/
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jects and scores scales for each data set.
We give detailed information on pre-processing steps for

each dataset in appendix 8, following COBIDAS recommenda-
tions [49].
Prediction from functional connectivity
To build predictive models from resting-state fMRI, we fol-
low the recommendations in [50]. We use the BASC functional
atlas [52] with 64 regions, based on which we extract fMRI
time series from the CamCAN dataset. Next, we normalize, de-
trend and bandpass-�lter between 0.01 and 0.1Hz the signal.
We represent connectivity matrices with tangent parametriza-
tion [53]. Finally, we use a ridge regression with nested cross-
validation to learn predictive biomarkers from the functional-
connectivity matrices. We use Nilearn [54] for the whole pre-
dictive pipeline.

Tabular (non-imaging) data

The considerations on confounds in predictive models are not
speci�c to imaging data. We also study a confounded predic-
tion without brain signals: on the UKBB data, we consider pre-
dicting an individual’s income from socio-demographics and
mental-health assessments. We investigate education as a po-
tential confound: it may re�ect both in mental-health and in
income. There are 8556 individuals with no missing values
on the outcome and confound. We use random forests for pre-
diction, as it is a popular learner that is well suited to non-
Gaussian marginals of these tabular data, and the many cate-
gorical variables.

Simulation studies

To better understand the �ndings on real data, we also present
experiments on simulated data. We simulate a data set X ∼

N (0, 1) with confound z ∼ N (0, 1) to predict continuous variable
y ∼ N (0, 1). We evaluate two samples sizes: n = 100 and n =
1 000. We use p = 100 features in X. We study 3 scenarios:
• No direct link between target and brain where the brain
signal does not provide any direct information to predict y,
but is observed with a confound linked to y:

observed confound zobs = y + z,observed signal xobs = x + zobs.
• Direct link between target and brain where the brain sig-
nal does indeed provide information to predicts y and has
an additional confound linked to y:

observed confound zobs = y + z,observed signal xobs = x + y + zobs.
• Weak confound & direct link between target and brain

observed confound zobs = 0.5 y + z,observed signal xobs = x + y + zobs.

Table 1. Characteristics of the data used. The scores for Fluid In-telligence di�er on the two datasets: CamCan uses the Cattell test,and UKBB a speci�cally-designed touch-screen questionnaire.
Dataset Information CamCan UKBB
Number of subjects 626 9 302

Age 18 – 88 40 – 70
Fluid Intelligence scale Cattell

(11 – 44 scores)
UKBB-designed
(1 – 13 scores)

Experimental paradigm: cross-validation measures

We use cross-validation to assess prediction accuracy. To
generate the test set, with the following approach: (1) With-
out deconfounding, (2) Deconfounding test and train jointly,
(3) Out-of-sampling deconfounding, (4) Confound-isolating
cross-validation, (5) Prediction from confounds. The code
for these various strategy to control for confounds can be
found on GitHub https://github.com/darya-chyzhyk/confound_
prediction and on PyPI repository https://pypi.org/project/
confound-prediction/ and can be installed with pip install
confound-prediction. We use 10 folds, with random splits of 20%
of the data in the test set. For confound-isolating cross-validation,
di�erent seeds in the random number generator lead to di�er-
ent folds. We assess the null distribution of predictions with
permutations (20000 folds on permuted labels y).

Results of the empirical study

Experiments on resting-state fMRI data

Potential confounds
Figure 2 shows the relationships between target variable y and
confounds z. Fluid Intelligence (target) is strongly negatively
correlated with age (confound) on the CamCan data set (second
column of Figure 2). Also, on the CamCan data, Age andMotion
are very correlated (�rst column of Figure 2). On the more
homogeneous and larger UKBB sample (9302 subjects), this
link is weaker.
Confound-isolating cross-validation
Figure 3 displays the evolution of the association between con-
found and target during Confound-isolating cross-validation in
the CamCan data set, predicting Fluid Intelligence with Age
as a confound. In the full dataset, comprising 608 subjects,
the correlation between confound and target is ρ = –0.67. It-
erating the algorithm to remove half of the subjects leads to
ρ = –0.17. The �nal test set contains 1/5 of the subjects and
achieves ρ = –0.07, showing that it indeed decorrelates the ef-
fect of aging or motion. The joint distribution between target
and confound displayed in Figure 3 shows that the initial sta-
tistical dependency between this two variables vanishes after
a few tens of iterations of the algorithm. Quantitative evalua-
tion, measuring both Pearson correlation and mutual informa-
tion (Figure 4) con�rms that the confound-isolating procedure
e�ciently creates a subset of the data without the dependency
as soon as it reduces the data to 300 subjects or less. Figure
8 shows similar success on the other prediction problems that
we study.
In a cross-validation setting, the di�erent test sets should

probe di�erent subjects to maximize testing power. A risk,
when using confound-isolating cross-validation, is that it could
repeatedly generate test sets with the same samples. To mea-
sure the diversity of the test sets, we compute the average frac-
tion of common samples between two tests sets created with
di�erent seeds. The value is in the range from 0 to 1, where 1
means that all test sets contain the same samples and 0 that
test sets have no sample in common; the expected value is15 . We �nd an average intersection of 0.30 for age predictionwith CamCan and 0.27 with UKBB; for Fluid Intelligence pre-

Figure 2. Joint distribution of target and confound. The �rst column presents
the scatter plot of age and motion variable for CamCan (top) and UKBB (bot-
tom). The second column shows the case of �uid intelligence prediction with
age as confound for CamCan. In all cases, the target is clearly associated with
the confound; all corresponding p-values are below 0.00001.

https://nilearn.github.io/
https://github.com/darya-chyzhyk/confound_prediction
https://github.com/darya-chyzhyk/confound_prediction
https://pypi.org/project/confound-prediction/
https://pypi.org/project/confound-prediction/


6 | GigaScience, 2020, Vol. 00, No. 0

Figure 3. Evolution of the test set created by Confound-isolating cross-
validation. The joint distribution of the target (Fluid intelligence) and the
confound (Age) for the CamCan dataset is taken for demonstration. We show
the process of selecting proper samples for the test set. We begin with the
entire dataset, the (Pearson) correlation is –0.67 with p-value = 0 (right sub-
plot). After half of the iterations we have already reached a correlation –0.17
with p-value = 0.009 (middle subplot). The �nal test set is shown on the right
subplot, correlation –0.007 with p-value = 0.02. It presents negligible residual
dependency between targets and confounds.

Figure 4. Evolution of the link between confound and target with the num-
ber of subjects for di�erent subsampling methods on the CamCan dataset with
Age prediction case. Applying Algorithm 3 e�ectively reduces statistical depen-
dences between confound and target (red curve). In our experiments, we stop
the sampling when the test set size is 1/5 of the dataset.

diction with CamCan, we �nd 0.36. This demonstrates that
the test sets do not repeat much, hence that there is no hidden
determinism in the cross-validation scheme of the proposed
method.
Testing for confounded prediction
Figure 5 reports the mean absolute error2 for the di�erent ap-
proaches to control for confounds. The �gure also reports the
p-value of predictive accuracy, from permutations3. The �rst
thing to note is that without controlling for confounding ef-
fects, all models lead to signi�cant prediction. But are these
driven by the confounds? Given that the various approaches
measure predictions on di�erent data, we compare how far
these predictions are above chance, rather than their absolute
value.
Deconfounding test and train sets jointly –removing the linear

e�ect of the confounding variable on the full data– has little
impact on the prediction performance on all datasets. On the
other hand, out-of-sample deconfounding changes signi�cantly
prediction performance in a way that varies across tasks. Pre-
diction accuracy of �uid intelligence on CamCan falls to chance
level. Age prediction on CamCan is little impacted. How-
ever, Age prediction accuracy on UKBB give results worse than
chance. Confound-isolating cross-validation also gives varying
results on di�erent datasets. For �uid-intelligence prediction
on CamCan, it also gives results at chance level. For age predic-
tion on CamCan, it does alter signi�cantly prediction accuracy,
and on UKBB, it leads to a slightly worse prediction, but still
above chance. Finally, Prediction from confounds leads to good
prediction of the target in all datasets.
These results show that in all these datasets, the confounds

z are associated with both the data X and the target y. For �uid
intelligence prediction on CamCan, all the prediction of y from
X is mediated by z. However, for age prediction in CamCan, a
large fraction of the signal X is unrelated to z but predicts y.
Age prediction in UKBB is a more subtle situation: X contains
signals from z and y with shared variance, but there is enough
signal beyond the e�ect of z to achieve a good prediction, as
demonstrated by confound-isolating cross-validation, where the
prediction cannot be driven by z. Yet, out-of-sample decon-
founding removes the shared variance and hence creates pre-
dictions that are worse than chance.

2 Mean absolute error is a goodmetric to compare across di�erent test sets
as it gives an absolute error measure in the unit of y, unlike explained
variance, that depends on the variance of y.

3 Technically, there is one p-value per fold; to report only one number, we
use p-value aggregation [55].

Tabular data

Figure 6 gives the results of analysis on the tabular data. There
is a signi�cant prediction of income from socio-demographic
and mental-health information, without any deconfounding.
However, prediction from confounds shows that quali�cations
also predict well income. To control for quali�cation, decon-
founding removes the signal explained by these in X. However,
it does not make the prediction worse but rather improves it in
the case of out-of-sample deconfounding. Such an improve-
ment can be explained if the deconfounding adds information
about the confound to the signal rather than removing it, as
can happen when the model of the confounds is misspeci�ed.
To limit this problem, we used as a confounds model a random
forest, with algorithm 2 for deconfounding. Finally, confound-
isolating cross-validation shows very variable results, but over-
all that prediction does not work better than chance on bal-
anced datasets, so that quali�cation is not related to income.
Here, deconfounding leads to the conclusion that the pre-

diction of income from social-demographic and mental-health
information is not at all driven by quali�cations while the other
approaches suggest otherwise. The discrepancy is probably due
to the complex non-linear interactions between these informa-
tions. The reality is probably that quali�cations contribute to
the prediction of income, as well as mental health and socio-
demographics information, and that teasing out these contri-
butions is hard.

Simulated data

We now turn to simulated data, for which there is a ground
truth. Figure 7 shows the results of the di�erent methods to
control for confounds on 3 di�erent simulated cases (Figure 9
gives results for the same simulations with 1000 samples).
(a) In the case where there is no direct relationship be-
tween the data and the target, the performance of the pre-
diction model should not be better than chance after con-
trolling for the confound. Both joint deconfounding and
confound-isolating cross-validation clearly reveal that all the
prediction is mediated by the confound. Out-of-sample de-
confounding displays a less clear signal, as there seems to
be a slight prediction even after deconfounding, though it
is not signi�cant.
(b) For a direct link between the data and the target, joint
deconfounding yields a false negative, in the sense that it
fully removes the prediction from the brain signal: it is too
aggressive in removing signal. Other approaches correctly
support a successful prediction.
(c) For a weaker confounding signal, results are similar,
however it is worth noting that the target can no longer be
well predicted from the confound.
Overall, on the simulations, both out-of-sample deconfound-

ing and confound-isolating cross-validation give reliable answers,
while deconfouding the test and train jointly as well as mea-
suring the prediction from confounds cannot be trusted.

Discussion and conclusion

Measuring the accuracy of predictive models, eg for biomarkers
or brain decoding, must account for the presence of confound-
ing e�ects that can contribute to the prediction. Indeed, an
imaging biomarker that solely picks up headmotionmay detect
pathologies with some success, but be overall a waste of scan-
ner time. An accurate prediction of �uid intelligence from brain
functional connectivity might simply be a consequence of in-
directly capturing the subjects’ age. Standard cross-validation
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procedures ignoring the confounds can overestimate prediction
accuracy.

Addressing confounds in predictive modeling

Approaches must be adapted to out-of-sample settings
Deconfounding approaches used in standard GLM-based anal-
ysis must be adapted to out-of-sample data by separating es-
timation of the confounds’ model from removal of the e�ect of
confounds on the data, as detailed in section and algorithm 1.
Importantly, applying deconfounding to the whole data with-
out separating train and test set is not only wrong in theory
–because it breaks independence of train and test data– but
also leads to incorrect conclusions in practice, as clearly visible
from the simulations.
Even done right, deconfounding in predictive settings can

lead to pessimistic evaluations, as stressed by [22] and shown
in our experiments. This is because the signal explained by the
confound is removed from the brain signal before it is passed to
the predictivemodel. The corresponding correction can remove
too much information when there is plenty of shared signal be-
tween the confound and the target –eg aging and Alzheimer’s
disease. Such problem does not arise in a GLM-based standard
analysis because the confounds and the e�ects of interest are
modeled simultaneously, and the consequences of shared signal
are easier to handle.
To give a measure of predictive accuracy that is not pes-

simistic, we also study a di�erent approach: testing the predic-
tive model on a subset of the data crafted such that the e�ect
of interest is independent from the confound. When the con-
founding e�ect is represented as a categorical variable, for in-
stance the e�ect of acquisition site, the approach can be simple
as it amounts to splitting the data so as to have no confounding
category shared between train and test. Creating an adequate
test set for continuous confounds requires a dedicated method,
as with confound-isolating cross-validation (Algorithm 3). It en-
ables a test of the predictive power from brain imaging without
discarding the potentially useful shared signal. In addition, it
is non-parametric and does not rely on a linear confounding
model. Empirical studies, on both brain-imaging data and sim-
ulations, show that both out-of-sample deconfounding and
confound-isolating cross-validation can control correctly for con-
founds. Deconfounding before �tting a predictive model brings
the bene�t of building a predictor free of the confounding ef-
fect. However, it can remove shared variance and lead to pes-
simistic evaluations. Confound-isolating cross-validation brings
the bene�t of measuring the predictive power in the absence of
the confounding e�ect. Such measure is of direct importance
to gauge the practical value of a biomarker.
Which approach to use when: deconfounding versus confound-
isolating cross-validation
Out-sample deconfounding and confound-isolating cross-validation
give valid and complementary information. From a prediction
perspective, when the training population re�ects adequately
the target population, changing the training data to remove the
e�ect of the confounder may not improve prediction accuracy
[20]. For instance, for many pathologies, patients move more
in the scanner than healthy individuals. Should an imaging-

biomarker of the pathology be developed, this e�ect will be
most likely true in the population on which the biomarker is
applied. Hence it is counter-productive to force the biomarker
to discard this information. Rather, confound-isolating cross-
validation should be used to check that the imaging biomarker
does bring in value in addition to capturing motion.
On the other hand, confound-isolating cross-validation is not

a universal remedy: removing a confounding e�ect from the
training data may be useful if the confounder is an artifact of
the data acquisition that does not re�ect the real application.
For instance, if the data are acquired across two imaging sites
with di�erent scanner, but one site recruited a much larger
fraction of patients than the other, the risk is that the predic-
tor learns to use information about the scanner rather than
the pathology. In such a case, the training strategy must be
adapted, for instance by removing the e�ect of the confound,
–deconfounding, section .

Finally, if the goal is to interpret successful prediction as
evidence of a link between brain signals and the predicted out-
come, modifying the training data is more likely to disentangle
the biomarker pattern of interest from the confounding e�ect.
In such a situation, deconfounding should be preferred, to give
a model, with its parameters, that is not driven by the con-
founding signal.
Limitation: with many confounds the problem is harder
Here we have studied the case of one, clearly-identi�ed, con-
found. The case of multiple confounds (eg age, education, gen-
der, ethnicity), is more challenging. In such situations, de-
confounding approaches may remove fully the signal of inter-
est. For confound-isolating cross-validation, reliable estimation
of mutual information will require larger sample sizes than
with a single confound.

Elements to interpret analyses with confounds

De�ning confounds calls for modeling choices
Whether a variable should be considered as a confounding ef-
fect or not is not dictated by the data, but by the question at
hand. The actual notion of confound comes from causal model-
ing, to give a causal interpretation tomodel parameters [13, 56].
Confound variables are then chosen so as to model the di�er-
ence between the measurements at hand and those obtained
with a hypothetical intervention. Such choices are implicitly
based on amodel of which variables are causes or consequences
of the �ctional intervention and the outcome of interest [see 57,
for guidelines in the case of UKBB].
In pure biomarker settings, the focus is not on potential

interventions, but on detecting or predicting an outcome. The
concern is then that the measured accuracy might not re�ect
the actual application settings [23, 18]. Here also, the choice of
variables to control for must be governed by an understanding
of how the data at hand may di�er from the ideal data to re�ect
the target application.
Deconfounding for causal interpretations: the collider-bias danger
Using deconfounding to condition on a putative confound z
help isolating causal links between the data X and the predic-
tion target y, when z is a common cause of X and y. However, z

Figure 5. Comparisons on population-imaging data The left column of each sub-�gure reports the prediction performance by the mean absolute error. It
displays the distribution across validation folds for the actual data (top, orange), and for permuted data distribution (bottom, gray). The right column displays the
distribution of p-values across folds, obtained by permutation, and the text yields the aggregated p-value across folds (see the main text). Five approaches are
benchmarked: Without deconfounding, Deconfounding test and train jointly, Out-of-sample deconfounding, Confound-isolating cross-validation, and Prediction
from confounds. Each sub-�gure shows one prediction setting: (a) CamCan Age prediction, (b) CamCan Fluid Intelligence prediction, (c) UKBB Age prediction. For
UKBB the prediction is worse than chance with out-of-sample deconfounding, suggesting that the deconfounding model removes too much variance.
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may be a consequence of both the target and the data. In such a
situation conditioning on it can create a form of selection bias,
sometimes known as “collider bias” [58, 59]. Conditioning on
the third variable z can than reverse the correlation between
two variables X and y, a phenomenon known as Berkson’s or
Simpson’s statistical paradox [60, 61]. It can be understood
from a simple example: when studying a population of hospi-
tal patients, individuals may have been admitted to the hospi-
tal because they have disease A or B. On this speci�c popula-
tion, the two diseases are anti-correlated. However, conclud-
ing that disease A protects from disease B would be incorrect.
Another example can be found in a cognitive experiment where
both a visible-enough stimuli and a timely motor response are
needed for a successful response. When learning a model de-
coding stimuli visibility from brain response, deconfounding
on successful responses would lead this model to rely onmotor-
cortex activity, while the link between visual stimuli and motor
cortex is not neuroscienti�cally relevant as such. Deconfound-
ing by itself does not su�ce to yield associations with simple
interpretations.
A sampling view on confounds
Confound-isolating cross-validation strives to sample an ideal
sub-population. This is also one of the best strategies to avoid
the presence of confounds in experimental settings: targeting
the recruitment of participants so that the design is balanced,
for instance with matched controls or randomized controlled
trials. But this can only be done at study design, and targeted
acquisitions, with matching and restriction, can make it hard
to collect large samples or tackle many covariates. At anal-
ysis time, researchers have to rely on statistical methods to
adapt the analysis to the presence of confounds. For in-sample
analysis, propensity scores are a classic reweighting technique
used to enable causal conclusions from confounded datasets
[62, 63]. The use of subsampling in confound-isolating cross-
validation can be seen as an extension of these ideas for out-
sample validation of predictive accuracy.

Conclusion: deconfounding and isolating confounds
are complementary

Deconfounding strives to remove confounding e�ects from the
data, after which successful prediction can be interpreted as a
direct link from the remaining brain signals to the outcome of
interest. However, in biomarkers settings, the primary focus
may be on the quality of detection, rather than interpretation,
for instance to improve diagnosis or prognosis. In such set-
tings, an important question is: how much do the brain sig-
nals improve the prediction upon a simpler measure of the
confounding e�ect? Answering this question calls for a cross-
validation procedure isolating this confounding e�ect. The cor-
responding prediction accuracy can then safely be interpreted
as not resulting in any way from the confounding e�ect.
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Appendices

Data preprocessing

CamCan data were preprocessed using Pypreprocess, a collec-
tion of Python scripts for preprocessing fMRI data, that is based
on the SPM12 software and the nipype toolbox [64]. We prepro-
cessed CamCan data only. For UKBB data the preprocessed and
connectivity matrices are available from the data repository.
We apply a commonly used protocol that includes the follow-
ing steps: Motion correction, correction for subject’s head mo-
tion during the acquisition. Estimated six motion parameters
(three translational parameters and three rotational parame-
ters) are used as confounds in the age prediction experiments.
For each subject we expressed the head motion using transla-
tion across all three axes as a square root of the mean of the
sum of square �nite di�erence of each translation axes over the
time:

√
~∆translation2x + ~∆translation2y + ~∆translation2z

3 The rest-
fMRI data are coregistered to the anatomical T1-MRI and then
normalized to MNI template.

Supplementary results on the resting state data sets

Figure 8. Evolution of mutual information and correlation with number of
subjects for di�erent subsamplingmethods on the CamCan dataset with Fluid
Intelligence prediction and UKBB Age prediction. This �gure shows that the
proposedmethod e�ectively reduces statistical dependences between confound
and target (red curve) for both data sets and both predictors.

Supplementary results on simulated data, 1000 sam-
ples

Figure 9. Benchmarking approaches to control confounded predictions on
simulated data with many samples. The left column of each sub-�gure as-
sesses the prediction performance through the mean absolute error (in sig-
nal units). We display the error distribution across validation folds for the
data (top, orange), and for permuted data distribution (bottom, gray). The
right column displays the distribution of p-values across folds, obtained by
permutation, and the text reports the aggregated p-value across folds (see the
main text). Five approaches are benchmarked: Without deconfounding, Decon-
founding test and train jointly, Out-of-sampling deconfounding, Confound-
isolating cross-validation, and Prediction from confounds. There are three
simulation settings: (a) No direct link between target and brain, (b) A direct
link between target and brain and (c) A weak confound and a direct link be-
tween target and brain. Green ticks indicate correct conclusions, red crosses
mark incorrect ones, and warning signs the weak results.

https://github.com/neurospin/pypreprocess
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