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Abstract

Background
With increasing data sizes and more easily available computational methods, neurosciences rely more and more on
predictive modeling with machine learning, eg to extract biomarkers of pathologies. Yet, a successful prediction may
capture a confounding effect correlated with the outcome instead of brain features specific to the outcome of interest –eg
the pathology. For instance, as patients tend to move more in the scanner than controls, imaging biomarkers of a
pathology may mostly reflect head motion, leading to inefficient use of resources and wrong interpretation of the
biomarkers.
Resuts
Here we study how to adapt statistical methods that control for confounds to predictive modeling settings. We review
how to train predictors that are not driven by such spurious effects. We also show how to measure the unbiased
predictive accuracy of these biomarkers, based on a confounded dataset. For this purpose, cross-validation must be
modified to account for the nuisance effect. To guide understanding and practical recommendations, we apply various
strategies to assess predictive models in the presence of confounds on simulated data and population brain imaging
settings. Theoretical and empirical studies show that deconfounding should not be applied to the train and test data
jointly: modeling the effect of confounds, on the train data only, should instead be decoupled from removing confounds.
Conclusions
Cross-validation that isolates nuisance effects gives an additional piece of information: confound-free prediction
accuracy.
Key words: confound, subsampling, phenotype, predictive models, biomarkers, statistical testing, deconfounding

Introduction

Predictive models, using machine learning, are becoming a
standard tool for scientific inference. In cognitive neuro-
science, they can be used for decoding, to make conclusions on
mental processes given observed brain activity [1, 2, 3]. With

the rise of large-scale brain-imaging cohorts, they can extract
imaging biomarkers that predict across subjects phenotypes
such as neuropsychiatric conditions [4, 5, 6] or individual traits
[7, 8].

A crucial aspect of these biomarkers is their ability to predict
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the outcome of interest, ie to generalize to new data [9]. How-
ever, these predictions can be driven by confounding effects.
Such effects affect both the brain-imaging data and the predic-
tion target but are considered as irrelevant. For instance, brain
imaging reflects age quite accurately, and actually carries infor-
mation about age-related diseases [8, 10, 11], yet [12] showed
that subjects’ in-scanner motion varies with subjects’ age and
it creates systematic differences in recorded brain imaging sig-
nals. Given this confounding effect, MRI biomarkers of brain
aging may be nothing more than expensive measurements of
head motion. Other examples may be more subtle: age mat-
ters for diagnosing Alzheimer’s disease, yet an important ques-
tion is whether brain imaging yields an accurate diagnosis of
Alzheimer disease beyond the mere effect of age.

More generally, the data at hand often capture effects not of
direct interest to the investigation. In many situations, some
confounds such as head motion cannot be fully avoided. To
make matters worse, large cohorts developed in population
imaging to answer epidemiological questions [as UK biobank,
13] are observational data: there is no controlled interven-
tion or balanced case-control group; rather, individuals are
recruited from diverse populations with various sampling or
selection biases. To conclude on the practical use of biomark-
ers, it is important to ensure that their predictions are not
fully driven by such unwanted effects. This requires measur-
ing model predictive accuracy after controlling for nuisance
variables. Confounding effects can also make it hard to inter-
pret brain-behavior relationships revealed by predictive mod-
els [14], as confounds can mediate the observed association or
be a latent common cause of observations [15].

In experimental settings, eg as in a small cohort, confound-
ing can be suppressed by balancing the acquisition for con-
founds, or using randomized control trials. However, con-
straints in the data acquisition, eg recruitment of a large co-
hort, often imply that confounds are present in the data, and
appropriate analysis is needed to avoid reaching erroneous con-
clusions. The statistical literature on controlling confound-
ing variables is well developed for classic statistical analysis,
such as statistical testing in a linear model at the heart of
the standard mass-univariate brain mapping [16, 17]. How-
ever, these procedures need to be adapted to high-dimensional
predictive-modeling settings, where the focus is to achieve
high-prediction accuracy based on imaging data. Indeed, pre-
dictive models do not rely on the same parametric assumptions,
namely linearity of effects and Gaussian noise. Often, a predic-
tive analysis does not build on a generative model of the signal
but on optimizing discrimination [18]. In addition, predictive
models draw their purpose and validity from out-of-sample
prediction, rather than in-sample statistical testing [19]. The
question tackled here is thus whether one can assess the pre-
dictive accuracy of brain measurements free of unwanted con-
founds. It is not to identify treatment effects size nor to per-
form other types of causal inference.

In this paper, we study statistical tools to control for con-
founding effects in predictive models. We consider that prac-
titioners should primarily avoid or reduce the impact of con-
founds on their model, but this is not always feasible or maybe
hard to check, hence, we choose to put the emphasis on the
unbiased evaluation of models in the presence of confounds. A
preliminary version of the work discussed here was presented
at the PRNI conference [20]. While the core method is the same,
it presents limited insights on the theoretical underpinnings
and practical value of the method proposed. Experiments on
simulated data are absent and experiments on neuroimaging
data are limited to just one data set. In particular, statistical
significance is not established thoroughly, and only one alter-
native approach is considered. In short the conference publica-
tion provides limited insights on the method, while the current

work provides a complete description and points to the code for
reuse.

We first review how the classic deconfounding procedures
can be used in predictive-modeling settings, i.e. together with
cross-validation. We then expose a complementary approach
that is not based on removing confounding effects, but rather
testing whether a given predictive model –eg a biomarker– pre-
dicts well when these confounds are not present. For this we
introduce the confound-isolating cross-validation method, that
consists in sampling test sets in which the effect of interest
is independent from the confounding effect. The benefits of
this approach are that it is non-parametric and that it directly
tests the quantity of interest in a predictive analysis. We then
run an extensive empirical study on three population-imaging
biomarker extraction problems, a tabular dataset, as well as
simulations. We draw practical recommendations to test pre-
dictive models in the presence of confounding effects.

Methods: controlling for confounds in predic-
tive models

Formalizing the problem of predictionwith a confound

Assessing predictive models
Predictive models are assessed by their prediction accuracy [19].
For this, cross-validation is the standard tool, typically k-fold
cross-validation [21]. It consists in partitioning (potentially
randomly) the original dataset into k equal size subsets or folds
(each denoted by a color in Figure 1). One of these k sets is held
out for testing, and the remaining (k – 1) folds are used for
training the model. This process is repeated k times, where
each time a different group of observations compose the test
set. Prediction accuracy is measured on the test set, then aver-
aged across folds.
Confounding variables in a prediction task
To formalize prediction in presence of a confound, we consider
a dataset of n observations –eg subjects or time-points– com-
prising p – dimensional brain signals X ∈ Rn×p, an effect of in-
terest1 y ∈ Rn –the biomarker target– and a confounding effect
z ∈ Rn.

An imaging biomarker then predicts y from X. If X and z
on the one hand, y and z on the other hand, are not indepen-
dent, the prediction of the target y might be affected or most
accurately done by the confounding effect, z. Such prediction
may be misleading or useless. It can be misleading as it can be
interpreted as a link between brain structures and y –eg fluid
intelligence– while such a link only reflects the effect of z –
eg age. It can be useless because brain imaging is likely much
more costly to acquire than the phenotypic variable z, hence
it should be used only if it brings more diagnostic informa-
tion. Moreover, this can be detrimental to accuracy: if a future
dataset shows an altered relation between the confound and
the features, prediction accuracy may be compromised.

A crucial problem for the validity of the biomarker is to mea-
sure whether it can predict y from X and not solely from z. Pre-
diction accuracy is ideally measured on an independent valida-
tion set, but most often, no large independent validation set
is available and a cross-validation procedure, that iteratively
separates train and test sets [21], is used. In [22] what cross-
validation captures in the presence of a confounding variable
is discussed. Though there can be many possible confounds

1 In classification settings, y does not take continuous values in Rn, yet we
use the most general notation to cover both classification and regression
settings.
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in brain imaging (see section 8), we focus below on simple set-
tings, assuming that the main confounding factor has been iso-
lated in one variable.

There are two points-of-view to controlling confounds in
predictive models. One is to try and remove the effect of the con-
founding variables from the data, by regressing them out (de-
confounding) or resampling the data to cancel spurious correla-
tions (re-balancing). The other is to test that the model’s pre-
diction captures more than the confound. Removing the con-
founding signal can test whether predictions are fully driven
by the confound z rather than the brain signal X. However, it
does not provide a good tool to measure the predictive power
in the presence of confounds: the accuracy is likely biased, as
illustrated later in the simulations.

Another point of view on confounding effects in predictive
modeling consists in trying to learn a predictor from a biased
population –with the confounding effect– that differs from the
population of interest –without the confounding effect. The
problem can then be tackled as a domain adaptation problem
[23, 24]. However, [24] have shown that compensating for the
confound does not improve prediction if the test population is
not markedly different from the training population. Note that
train and test samples are often drawn from the same popula-
tion, either because only one cohort is available or because a
proper stratification scheme is used. Our question is different:
we are interested in assessing whether learning a biomarker on
a confounded dataset leads to predictions that are fully driven
by the confound.

Deconfounding

Deconfounding in standard analysis
In inferential statistics –as opposed to predictive modeling–
proper modeling of confounds is important to control the in-
terpretation of model parameters, ensuring that they are not
driven by the confounding effects. Classical statistic analysis
in brain imaging is based on the general linear model (GLM)
[25, 16], in which confounding effects are controlled by addi-
tional regressors to capture the corresponding variance. Such
an approach shows limitations in predictive-modeling settings.
First, it is based on maximum-likelihood estimates of linear
models, while in general, predictive models are not explicitly
based on a likelihood and are often not linear. Second, it is de-
signed to control in-sample properties, while predictive mod-
els are designed for out-of-sample prediction. The two-step
approach based on applying a classical GLM to remove the
confounding effect, then a predictive model, may lead to pes-
simistic results, eg below-chance prediction [8, 26].

In the context of the GLM, an alternative implementation
relies on removing the effect of variables that are correlated.
[25]. Note that in all this work we assume that the confounder
is associated with X and y without creating three ways inter-
actions between X, y and z. Given a sample X ∈ Rn×p of n
observations (subjects) with p brain imaging features (eg con-
nectivity matrices), Xi = (Xi1,Xi2, ...,Xip) and confounds z ∈ Rn,
the model is:

X = zTw + e, (1)
where w is a vector of weights (one per voxel, w ∈ Rp). ŵ rep-
resents the estimated coefficients, that are obtained typically
through least-squares regression:

ŵ = (zTz)–1zTX (2)
Given these equations, a linear model can be used prior to the
predictive model to remove the effect of the confounds z on

the brain signals X. It must be adapted to out-of-sample test-
ing. One solution is to apply deconfounding jointly on the
train and the test set, but it breaks the statistical validity of
cross-validation because it couples the train and the test set
[21]. Hence it can give biased results.
Out-of-sample deconfounding

To adapt the above deconfounding approach to the two phases of
training and testing a predictive model, a useful view is to con-
sider the deconfounding model as a predictive encoding model,
predicting a fraction of the signal X from z. Deconfounding is
then performed by removing the part of the signal captured by
z from X:

X̂clean = X – zŵ (3)
Where ŵ are the coefficients of the linear deconfounding model
(Equation 1), estimated on the train data with Equation 2 and
then applied to the test [26]. The full out-of-sample decon-
founding procedure is listed in algorithm 1.

A drawback of such deconfounding is that it is strongly para-
metric, i.e. it relies on the model of confounds used. Equation 2
stands for the classic linear model, assuming linearity between
the confounding variable z and the brain signal X. The linear
model only takes into account second-order statistics (covari-
ance or correlations) and ignores more complex dependencies.
Model-agnostic out-of-sample deconfounding

A common solution to go beyond linear effects of confounds is
to use a polynomial expansion of the confounds z in the linear
deconfounding model. Another option is to use a more pow-
erful predictive model in the confound removal. A predictive
model –including a mere linear model– regressing X on z can
be seen as estimating a function f so that f(z) = E[X|z]. There
are many possibilities such as random forests or Gaussian pro-
cesses. The procedure used for out-of-sample deconfounding
can then be adapted as in Algorithm 2. While this approach is
very powerful, the danger is to remove also part of the signal
of interest. Indeed, using a more powerful predictive model,
for instance a higher-order polynomial, leads to explaining in
X more data as a function of z; however too powerful models
overfit, which means that they explain variance in X by chance.
In such a situation, the deconfounding procedure may remove
signal of interest, unrelated to the confound.

Comparing predictive power of confounds

A simple evaluation of the impact of z on the prediction of y
is to use predictive models predicting y from z (prediction from
confound) and compare the predictive accuracy to that obtained
with biomarkers based on brain signals. This argument is used
in [6] to control for the effect of movement on autism diagnos-
tic.

Algorithm 1: Out-of-sample deconfounding
Input: Brain signal X ∈ Rn×p, confound z ∈ Rn, {train}

and {test} indices
1 ŵconfounds ← (zTtrainztrain)–1zTtrainXtrain

/* Regression of confounds on data */
2 X̂clean,test ← Xtest – ztestŵconfounds

/* Remove confounds in the test set */
Output: Brain signal without confounds X̂clean,test
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Algorithm 2: Model-agnostic deconfounding. Note
that f only has one argument, as it is a function that
predicts X from z, while g has two arguments (the in-
put X and the output z), as it represents the learning
algorithm that yields f.
Input: Brain signal X ∈ Rn×p, confound z ∈ Rn, {train}

and {test} indices, machine-learning algorithm
g

1 f ← g(ztrain,Xtrain)
/* Fit confound model capturing E[X|z] */

2 X̂clean,test ← Xtest – f(ztest)
/* Remove confounds in the test set */

Output: Brain signal without confounds X̂clean,test

Figure 1. Classic and confound-isolating cross-validation. a) k-fold cross-
validation is the common procedure to evaluate predictive models. It consists
in splitting the data into k equal groups. k-1 folds are used to fit a model and 1
fold is used to validate the model. This process is repeated k times so that each
sample is taken once in the test set. b) In confound-isolating cross-validation
sampling we divide the data in train and test sets, but in a different way. First,
using subsampling, we create a test set on which y and z are independent. The
train test is constructed from the rest of the samples that are not included in
the test set. In this way, the method creates a test set that contains unrelated
target and confound.

Creating a test set to isolate the confounding effect

Rather than deconfounding, the investigator may ensure that
the predictive model is useful by measuring its accuracy on
a dataset where the confounding effect is absent. In a cross-
validation setting, such a situation can be created by using as a
test set a well-chosen subset of the data that isolates the con-
founding effect. See Figure 1 for a graphical illustration of the
approach. Formally, it requires choosing a subset S of the data
such that yS and zS are independent (the feasibility of this
subset creation is discussed below).

The remainder of the data is used as a training set, to learn
to predict y from X. If the prediction generalizes to the test
set S, the learned relationship between X and y is not entirely
mediated by z. In particular, the prediction accuracy then mea-
sures the gain in prediction brought by X.

Categorical confound

The confounding effect can be “categorical”, for instance the
site effect when learning predictive biomarkers on multi-site
acquisitions as in [6]. In such settings, to test that the model
can indeed predict independently from site effects, a simple
solution is to resort to a cross-validation that avoids having
samples from the same site both in the train and the test sets.
This may imply resampling the data to cancel out associations
between site and target related to data imbalance. Similarly,
in multi-subject prediction with repeated measurements from
the same subject, subject-wise cross-validation can rule out
that prediction is driven by subject identification [27, 22]. More
generally, for a categorical confound z, having distinct values
for z in the train and the test set ensures that the prediction
cannot be driven by z. We note that this procedure is differ-
ent from the stratification strategy used in classical statistics,
but it clearly avoids any bias due to imperfectly corrected as-
sociation between z and the other variables. In the case of
site-related confounds, prediction accuracy will obviously suf-
fer. This can be addressed with techniques such as invariant
risk minimization [28], but we do not further consider this ap-
proach here.

Continuous confound

When z is a continuous variable, such as age, it is more chal-
lenging to generate test sets on which yS and zS are indepen-
dent. We describe here an algorithm to generate such sam-
pling, “confound-isolating cross-validation” subsampling. It
is based on iterative sampling to match a desired distribution:
the goal is to have a test set with independence between y and
z, i.e. p(y, z) = p(y) p(z), where p((y, z)) is the joint probability
function of y and z, and p(y) and p(z) are the marginal proba-
bility distribution.

A related quantity is mutual information, which charac-
terizes the level of dependency between the two variables:
η(y, z) = E

[log( p((y,z))p(y)p(z)
)]. In practice we estimate the proba-

bility density functions with a kernel-density estimator (KDE)
using Gaussian kernels. We iteratively create the test S set by
removing subjects; at each iteration, we consider the problem
as a distribution matching problem, matching p(yS , zS) and
p(yS) p(zS). For this, we use importance sampling: we draw
randomly 4 subjects to discard with a probability p(yS ,zS )

p(yS ) p(zS ) us-
ing inverse sampling method [30, sec 2.2]. Algorithm 3 gives
the details. The choice of 4 samples is tailored to the sample
size considered here: it makes the algorithm faster than using
one sample, yet is low enough not to compromise mutual in-
formation minimization. A Python implementation is available
on GitHub [31] and on PyPI repository [32] and can be installed
with pip install confound-prediction.

Note that if z and y are too strongly related, the subsampling
procedure above does not have enough degrees of freedom and
may always chose the same subset: the test set would be deter-
ministically defined by the sampling procedures, in which case
there would effectively be only one fold of cross-validation. In
practice, it is important to check that such a situation does not
occur when analyzing a given dataset. One way is to compute
the average fraction of common samples between two tests sets
created with different seeds. As this value ranges from 0 to 1,
where 1 means that all test sets contain the same samples and
0 that test sets have no sample in common, it is important to
check that it is low enough.

Empirical study methodology

We now describe the experimental materials underlying our
empirical study of confound-controlling approaches in predic-
tive models.

Simulation studies

To understand the behavior of the different accuracy scores, we
present experiments on simulated data. We simulate a data set

Algorithm 3: Confound-isolating cross-validation
Input: Target y ∈ Rn, confound z ∈ Rn, size m < n

1 S ← {1 . . .n} /* Initialize */
2 while card(S) > m do
3 py ← KDE(yS) /* Density estimation */
4 pz ← KDE(zS)
5 p(y,z) ← KDE((zS , yS))
6 mi ← p(y,z)((zi,yi))

py(yi)pz(zi) , ∀i ∈ S
7 S ← S – {j} Draw one index j to remove from S with

probability mj using inversion sampling [29].
8 end
Output: Set of test indices S

https://github.com/darya-chyzhyk/confound_prediction
https://pypi.org/project/confound-prediction/
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X0 ∼ N (0, 1) with confound z0 ∼ N (0, 1) to predict continuous
variable y ∼ N (0, 1). We evaluate two samples sizes: n = 100
and n = 1 000. We use p = 100 features in X0. We study 3
scenarios:
• No direct link between target and brain where the brain

signal does not provide any direct information to predict y,
but is observed with a confound linked to y:

observed confound z = y + z0,
observed signal X = X0 + z.

• Direct link between target and brain where the brain sig-
nal does indeed provide information to predict y and has an
additional confound linked to y:

observed confound z = y + z0,
observed signal X = X0 + y + z.

• Weak confound & direct link between target and brain
observed confound z = 0.5 y + z0,
observed signal X = X0 + y + z0.

Note that one could consider instead a canonical scheme in
which z would cause x and y. Since our work is not on causal
inference per se, we aim at a statistical procedure that does not
require a prescribed causal relationship between the variables,
which is often unknown.

Two classic confounded predictions in population
imaging

Motion confounding brain-age prediction
As brain aging is a risk factor of many pathologies, the pre-
diction of brain age from MRI is a promising biomarker [11].
In childhood also, markers of functional brain development
can help to recognize neurodevelopmental disorders [33, 34].
Many recent studies report age prediction, eg from resting-
state functional connectivity [7, 33, 35], from structural imag-
ing [36], or combining multiple imaging modalities [8, 10].
However, older people and children move more in the scanner
than young adults [see fig. 2, 37, 38, 12, 39]. Thus, age-related
changes observed in brain images may be confounded by head
motion [40] and image quality [41].

Indeed, in-scanner motion creates complex MRI artifacts
that are difficult to remove [40]. In addition, they severely
impact measurements of functional connectivity [42].

Here the confounding effect is that of head motion dur-
ing the few hundreds of scans of individual acquisitions. To
build a variable summarizing head motion for each subject,
we use the movement time-series computed during prepro-
cessing. As suggested in [42], we create the confound z
from the root mean squared displacements (position differ-
ences across consecutive time points) for each subject z =√

1
I–1
∑I
i=2
((tix – ti–1

x )2 + (tiy – ti–1
y )2 + (tiz – ti–1

z )2), where tx is
left/right, ty anterior/posterior, and tz - superior/inferior
translation and i ∈ [[I]] is the time index. The prediction target
y is the age in years.
Age confounding fluid-intelligence measures
Various studies have predicted individual cognitive abilities
from brain functional connectivity [43, 44]. In particular, [44]
used machine-learning to predict fluid intelligence from rest
fMRI. Fluid Intelligence quantifies the ability to solve novel
problems independently from accumulated knowledge, as op-
posed to crystallized intelligence that involves experience and

previous knowledge [45]. It is well known that cognitive abili-
ties change with age [46, 47, 48, 49], in particular that fluid In-
telligence progressively declines in middle age [50], while crys-
tallized intelligence continues to grow with age. Indeed, in a
cohort with a large age span, the data display a strong relation
between fluid intelligence and age (Figure 2). When extract-
ing biomarkers of fluid intelligence, the danger is therefore to
simply measure age. We study how to control the impact of
age when predicting a fluid-intelligence score from rest-fMRI
functional connectivity.

Population-imaging rest-fMRI datasets

Datasets
We ran experiments on 626 participants from the CamCan
data set and 9 302 participants from UKBB. All participants are
healthy subjects with no neurological disorders.
• CamCan Cambridge Center for Ageing and Neuroscience

data [51] studies age-related changes in cognition and brain
anatomy and function. Characteristics of interest of this
dataset are i) a population lifespan of 18-88 years, ii) a large
pool (626 subjects) of multi-modal MRI data and neurocog-
nitive phenotypes.

• UKBB The UK Biobank project [52] is a prospective epidemi-
ological study to understand the development of diseases of
UK population over the years. The data used here contains
9 302 subjects from the first release of UK Biobank ongoing
cohort study with available resting-state fMRI scans and
extensive health and lifestyle information [53, 54].

Table 1 presents detailed information about the number of sub-
jects and the scale of the scores for each data set.

We give detailed information on pre-processing steps for
each dataset in Appendix 8, following COBIDAS recommenda-
tions [55].
Prediction from functional connectivity
To build predictive models from resting-state fMRI, we fol-
low the recommendations in [56]. We use the BASC functional
atlas [57] with 64 regions, based on which we extract fMRI
time series from the CamCAN dataset. Next, we normalize, de-
trend and bandpass-filter between 0.01 and 0.1Hz the signal.
We represent connectivity matrices with tangent parametriza-
tion [58]. Finally, we use a ridge regression with nested cross-
validation to learn predictive biomarkers from the functional-
connectivity matrices. We use Nilearn [59] for the whole pre-
dictive pipeline.

Tabular (non-imaging) data

The considerations on confounds in predictive models are not
specific to imaging data. We also study a confounded predic-
tion without brain signals: on the UKBB data, we consider pre-
dicting an individual’s income from socio-demographics and
mental-health assessments. We investigate education as a po-
tential confound: it may be reflected both in mental-health

Table 1. Characteristics of the data used. The scores for Fluid In-telligence differ on the two datasets: CamCan uses the Cattell test,and UKBB a specifically-designed touch-screen questionnaire.
Dataset Information CamCan UKBB
Number of subjects 626 9 302

Age 18 – 88 40 – 70
Fluid Intelligence scale Cattell

(11 – 44 scores)
UKBB-designed
(1 – 13 scores)

https://nilearn.github.io/
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and in income. There are 8 556 individuals with no missing
values on the outcome and confound. We use random forests
for prediction, as it is a popular learner that is well suited to the
distribution of these tabular data, that is often non-Gaussian
and consists of categorical variables.

Experimental paradigm: cross-validation measures

We use cross-validation to assess prediction accuracy. We
consider five predictive frameworks: (1) Without deconfound-
ing, (2) Deconfounding test and train sets jointly, (3) Out-
of-sampling deconfounding, (4) Confound-isolating cross-
validation, (5) Prediction from confounds only. The code for
these various strategy to control for confounds can be found
on GitHub [31] and on PyPI repository [32] and can be installed
with pip install confound-prediction.

We use 10 folds, with random splits of 20% of the data in the
test set. For confound-isolating cross-validation, different seeds
in the random number generator lead to different folds. We
assess the null distribution of predictions with permutations
(20 000 folds on permuted labels y).

Results of the empirical study

Simulated data

We first consider simulated data, for which there is a ground
truth. Figure 3 shows the results of the different methods to
control for confounds on 3 different simulated cases (Figure 9
gives results for the same simulations with 1 000 samples).
(a) In the case where there is no direct relationship be-

tween the data and the target, the performance of the pre-
diction model should not be better than chance after con-
trolling for the confound. Both joint deconfounding and
confound-isolating cross-validation clearly reveal that all the
prediction is mediated by the confound. Out-of-sample de-
confounding displays a less clear signal, as there seems to
be a slight prediction even after deconfounding, though it
is not significant.
(b) For a direct link between the data and the target, joint

deconfounding yields a false negative, in the sense that it
fully removes the prediction from the brain signal: it is too
aggressive in removing signal. Other approaches correctly
support a successful prediction.
(c) For a weaker confounding signal, results are similar,
however it is worth noting that the target can no longer be
well predicted from the confound.
Overall, on the simulations, both out-of-sample deconfound-

ing and confound-isolating cross-validation give reliable answers,
while deconfounding the test and train jointly as well as mea-
suring the prediction from confounds cannot be trusted.

Experiments on resting-state fMRI data

Potential confounds
Figure 2 shows the relationships between target variable y and
confounds z. Fluid Intelligence (target) is strongly negatively
correlated with age (confound) on the CamCan dataset (second

Figure 2. Joint distribution of target and confound. The first column presents
the scatter plot of age and motion variable for CamCan (top) and UKBB (bot-
tom). The second column shows the case of fluid intelligence prediction with
age as confound for CamCan. In all cases, the target is clearly associated with
the confound; the corresponding p-values are below 10–5.

column of Figure 2). Also, on the CamCan data, Age and Motion
are very correlated (first column of Figure 2). On the more
homogeneous and larger UKBB sample (9 302 subjects), this
link is weaker.

Table 2. Comparisons on population-imaging data, Camcan Fluid
Intelligence prediction.

Method MAE ±σ MAE ±σ
permuted p-value

CamCan: Age prediction
Without

deconfounding 6.17± 0.43 16.0± 1.24 0
Deconfounding test

and train jointly 6.76± 0.53 16.24± 0.66 0
Out-of-sample
deconfounding 9.3± 0.8 15.79± 1.22 0

Confound-isolating
cross-validation 6.49± 0.46 15.21± 1.37 0
Prediction from

confounds 13.74± 1.5 15.22± 1.74 0
CamCan: Fluid Intelligence prediction

Without
deconfounding 4.1± 0.29 6.05± 0.49 0

Deconfounding test
and train jointly 4.08± 0.22 5.7± 0.34 0
Out-of-sample
deconfounding 5.59± 0.32 6.04± 0.9 0.23

Confound-isolating
cross-validation 4.31± 0.29 4.6± 0.3 0.06
Prediction from

confounds 4.03± 0.6 5.7± 0.95 0
UKBB: Age prediction

Without
deconfounding 4.82± 0.4 6.95± 0.8 0

Deconfounding test
and train jointly 4.95± 0.4 6.92± 0.8 0
Out-of-sample
deconfounding 8.23± 0.33 7.12± 0.34 1

Confound-isolating
cross-validation 5.08± 0.3 7.26± 0.6 0
Prediction from

confounds 6.24± 0.73 6.29± 0.72 1
Tabular data: Income prediction

Without
deconfounding 0.79± 0.014 0.93± 0.016 0

Deconfounding test
and train jointly 0.79± 0.014 0.93± 0.016 0
Out-of-sample
deconfounding 0.77± 0.014 0.93± 0.016 0

Confound-isolating
cross-validation 0.85± 0.13 0.94± 0.18 1
Prediction from

confounds 0.87± 0.016 0.93± 0.016 0

Confound-isolating cross-validation

Figure 4 displays the evolution of the association between con-
found and target during Confound-isolating cross-validation in
the CamCan dataset, predicting Fluid Intelligence with Age as
a confound. In the full dataset, comprising 608 subjects, the
correlation between confound and target is ρ = –0.67. Iter-
ating the algorithm to remove half of the subjects leads to
ρ = –0.17. The final test set contains 1/5 of the initial set
of subjects and achieves ρ = –0.07, showing that it indeed
cancels the dependency between aging and motion. The joint
distribution between target and confound displayed in Figure
4 shows that the initial statistical dependency between these

https://github.com/darya-chyzhyk/confound_prediction
https://pypi.org/project/confound-prediction/
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Figure 3. Comparisons on simulated data. The left column of each sub-figure reports the prediction performance as the mean absolute error for the five approaches
considered: Prediction from the data without deconfounding, prediction after deconfounding test and train jointly, prediction with out-of-sample deconfounding,
prediction with confound-isolating cross-validation, and prediction from confounds. The left column displays the distribution across validation folds for the actual
data (top, orange), and for permuted data distribution (bottom, gray). The right column displays the distribution of p-values across folds, obtained by permutation,
and the text yields the aggregated p-value across folds, testing whether prediction accuracy is better than chance. Test subsets always represent 1/5 of the whole
dataset. There are three simulation settings: (a) No direct link between target and brain, (b) A direct link between target and brain in the presence of a confound
and (c) A weak confound and a direct link between target and brain. Green ticks indicate correct conclusions, red crosses mark incorrect ones, and warning signs
the weak results.

Figure 4. Evolution of the test set created by Confound-isolating cross-
validation. The joint distribution of the target (Fluid intelligence) and the
confound (Age) for the CamCan dataset is taken for demonstration. We show
the process of selecting proper samples for the test set. We begin with the
entire dataset, Pearson correlation is –0.67 with infinitesimal p-value (right
subplot). After half of the iterations we have already reached a correlation
–0.17 with p-value = 0.009 (middle subplot). The final test set is shown on the
right subplot, correlation –0.007 with p-value = 0.02. It presents negligible
residual dependency between targets and confounds.

Figure 5. Evolution of the link between confound and target with the number
of subjects for different subsampling methods on the CamCan dataset, con-
sidering age prediction. Applying Algorithm 3 effectively reduces statistical
dependences between confound and target (red curve). In our experiments,
we stop the sampling when the test set size is 1/5 of the dataset.

two variables vanishes after a few tens of iterations of the al-
gorithm. Quantitative evaluation, measuring both Pearson cor-
relation and mutual information (Figure 5) confirms that the
confound-isolating procedure efficiently creates a subset of the
data without the dependency as soon as it reduces the data to
300 subjects or less. Figure 8 shows similar success on the
other prediction problems that we study.

In a cross-validation setting, the different test sets should
probe different subjects to maximize testing power. A risk,
when using confound-isolating cross-validation, is that it could
repeatedly generate test sets with the same samples. To mea-
sure the diversity of the test sets, we compute the average frac-
tion of common samples between two tests sets created with
different seeds. The value is in the range from 0 to 1, where 1
means that all test sets contain the same samples and 0 that
test sets have no sample in common; the expected value is15 . We find an average intersection of 0.30 for age prediction
with CamCan and 0.27 with UKBB; for Fluid Intelligence pre-
diction with CamCan, we find 0.36. This demonstrates that
the test sets do not repeat much, hence that there is no hidden
determinism in the cross-validation scheme of the proposed
method.
Testing for confounded prediction
Figure 6 and Table 2 report the mean absolute error2 for the
different approaches to control for confounds. The figure also
reports the p-value of predictive accuracy, from permutations3.
The first thing to note is that without controlling for confound-
ing effects, all models lead to significant prediction. But are
these driven by the confounds? Given that the various ap-
proaches measure predictions on different data, we compare
how far these predictions are above chance, rather than their
absolute value.
Deconfounding test and train sets jointly –removing the linear

effect of the confounding variable on the full data– has little

2 Mean absolute error is a good metric to compare across different test sets
as it gives an absolute error measure in the unit of y, unlike explained
variance, that depends on the variance of y.

3 Technically, there is one p-value per fold; to report only one number, we
use p-value aggregation [60].

impact on the prediction performance on all datasets. On the
other hand, out-of-sample deconfounding significantly changes
prediction performance in a way that varies across tasks. Pre-
diction accuracy of fluid intelligence on CamCan falls to chance
level. Age prediction on CamCan is little impacted. However,
Age prediction on UKBB gives results worse than chance, i.e.
worse than a model that learns to predict age on data where
this relationship has been shuffled by permutation (see Figure
6 and Table 2). Confound-isolating cross-validation also gives
varying results on different datasets. For fluid-intelligence
prediction on CamCan, it also gives results at chance level. For
age prediction on CamCan, it does alter significantly prediction
accuracy, and on UKBB, it leads to a slightly worse prediction,
but still above chance. Finally, Prediction from confounds leads
to chance-level or good prediction of the target depending on
the dataset. In particular, it does better than chance for Fluid
intelligence prediction.

These results show that in all these datasets, the confounds
z are associated with both the data X and the target y. For fluid
intelligence prediction on CamCan, all the prediction of y from
X is mediated by z. However, for age prediction in CamCan,
there exists within X some signal that is unrelated to z but pre-
dicts y. Age prediction in UKBB is a more subtle situation: X
contains signals from z and y with shared variance, but there
is enough signal beyond the effect of z to achieve a good pre-
diction, as demonstrated by confound-isolating cross-validation,
where the prediction cannot be driven by z. Yet, out-of-sample
deconfounding removes the shared variance and hence creates
predictions that are worse than chance.

Tabular data

Figure 7 and Table 2 give the results of analysis on the tabular
data. There is a significant prediction of income from socio-
demographic and mental-health information, without any de-
confounding. However, prediction from confounds shows that
qualifications also predict income well. To control for qualifica-
tion, deconfounding removes the signal explained by these in
X. Here, deconfounding does not make the prediction worse;
actually out-of-sample deconfounding improves it. Such an
improvement can be explained if the deconfounding adds in-
formation about the confound to the signal rather than re-
moving it, as can happen when the model of the confounds
is mis-specified. To limit mis-specification issues, a random
forest as the g function in algorithm 2. Finally, confound-
isolating cross-validation shows very variable results, but over-
all that prediction does not work better than chance on bal-
anced datasets, so that qualification is no longer specifically
related to income.

Here, deconfounding leads to the conclusion that the pre-
diction of income from social-demographic and mental-health
information is not at all driven by qualifications while the other
approaches suggest otherwise. The discrepancy is probably
due to the complex non-linear interactions between these vari-
ables. The reality is probably that qualifications contribute to
the prediction of income, as well as mental health and socio-
demographics information, and that teasing out these contri-
butions is hard.



8 | GigaScience, 2020, Vol. 00, No. 0

Discussion and conclusion

Measuring the accuracy of predictive models, eg for biomarkers
or brain decoding, must account for the presence of confound-
ing effects that can contribute to the prediction. Indeed, an
imaging biomarker that solely picks up head motion may detect
pathologies with some success, but be overall a waste of scan-
ner time. An accurate prediction of fluid intelligence from brain
functional connectivity might simply be a consequence of in-
directly capturing the subjects’ age. Standard cross-validation
procedures ignoring the confounds can overestimate prediction
accuracy.

Addressing confounds in predictive modeling

Approaches must be adapted to out-of-sample settings
Deconfounding approaches used in standard GLM-based anal-
ysis must be adapted to out-of-sample data by separating es-
timation of the confounds’ model from removal of the effect of
confounds on the data, as detailed in section and algorithm 1.
Importantly, applying deconfounding to the whole data with-
out separating train and test set is not only wrong in theory
–because it breaks independence of train and test data– but
also leads to incorrect conclusions in practice, as clearly visible
from the simulations.

Even done right, deconfounding in predictive settings can
lead to pessimistic evaluations, as stressed by [26] and shown
in our experiments. This is because the signal explained by
the confound is removed from the brain signal before it is
passed to the predictive model. The corresponding correction
can remove too much information when there a large amount
of shared signal between the confound and the target –eg ag-
ing and Alzheimer’s disease. Such problem does not arise in a
GLM-based standard analysis because the confounds and the
effects of interest are modeled simultaneously, and the conse-
quences of shared signal are easier to handle.

To give a measure of predictive accuracy that is not pes-
simistic, we also study a different approach: testing the pre-
dictive model on a subset of the data crafted such that the
effect of interest is independent from the confound. When
the confounding effect is represented as a categorical variable,
for instance the effect of acquisition site, the approach can
be simple as it amounts to splitting the data so as to ensure
that generalization occurs for a category not observed in the
training set. Creating an adequate test set for continuous con-
founds requires a dedicated method, as with confound-isolating
cross-validation (Algorithm 3). It enables a test of the predic-
tive power from brain imaging without discarding the poten-
tially useful shared signal. In addition, it is non-parametric
and does not rely on a linear confounding model. Empirical
studies, on both brain-imaging data and simulations, show
that both out-of-sample deconfounding and confound-isolating
cross-validation can control correctly for confounds. Decon-
founding before fitting a predictive model brings the benefit of
building a predictor free of the confounding effect. However,
it can remove shared variance and lead to pessimistic evalu-

ations. Confound-isolating cross-validation brings the benefit of
measuring the predictive power in the absence of the confound-
ing effect. Such measure is of direct importance to gauge the
practical value of a biomarker. As an attractive complemen-
tary approach, note that deep learning approaches for learning
confound-free models have been proposed in [61].

To summarize, our main claim is that it is possible to learn
a confounded model yet evaluate it in an unbiased fashion.
What matters in this logic is that the predictive accuracy after
confound-isolating cross-validation remains better than chance,
which amounts to performing an omnibus test of the variables
of the model. The case where confound-isolating cross-validation
would yield a null result certainly means that one should be
cautious in claiming a conditional association between X and y,
as slight variations in the confounding model may render the
association significant or not: indeed the apparent association
between features and target is dominated by the confounder
and thus, not a reliable one. In brief, this has an impact on the
practical significance of claimed associations.
Which approach to use when: deconfounding versus confound-
isolating cross-validation

Out-sample deconfounding and confound-isolating cross-validation
give valid and complementary information. In the worst case,
these approaches can be conservative, but they don’t yield spu-
rious associations. From a prediction perspective, when the
training population reflects adequately the target population,
changing the training data to remove the effect of the con-
founder may not improve prediction accuracy [24]. For in-
stance, for many pathologies, patients move more in the scan-
ner than healthy individuals. Should an imaging-biomarker of
the pathology be developed, this effect will be most likely true
in the population on which the biomarker is applied. Hence it
is counter-productive to force the biomarker to discard this in-
formation. Rather, confound-isolating cross-validation should be
used to check that the imaging biomarker does bring in value
in addition to capturing motion.

On the other hand, confound-isolating cross-validation is not
a universal remedy: removing a confounding effect from the
training data may be useful if the confounder is incidentally
correlated with X or y without any clear causal relationship.
This is the case if the confounder is a feature of the measure-
ment process. For instance, if the data are acquired across two
imaging sites with different scanners, but one site recruited
a much larger fraction of patients than the other, the risk is
that the predictor learns to use information about the scanner
rather than the pathology. In such a case, the training strat-
egy must be adapted, for instance by removing the effect of the
confound.

Finally, if the goal is to interpret successful prediction as
evidence of a link between brain signals and the predicted out-
come, modifying the training data is more likely to disentangle
the biomarker pattern of interest from the confounding effect.
In such a situation, deconfounding should be preferred, to give
a model, with its parameters, that is not driven by the con-
founding signal.

Figure 6. Comparisons on population-imaging data Each sub-figure shows one prediction setting: (a) CamCan Age prediction, (b) CamCan Fluid Intelligence
prediction, (c) UKBB Age prediction. The left column of each sub-figure reports the prediction performance as the mean absolute error for the five approaches
considered: Prediction from the data without deconfounding, prediction after deconfounding test and train jointly, prediction with out-of-sample deconfounding,
prediction with confound-isolating cross-validation, and prediction from confounds. The left column displays the distribution across validation folds for the
actual data (top, orange), and for permuted data distribution (bottom, gray). The right column displays the distribution of p-values across folds, obtained by
permutation, and the text yields the aggregated p-value across folds (see the main text), testing whether prediction accuracy is better than chance. Test subsets
always represent 1/5 of the whole dataset. The figure clearly displays different behaviors across the three problems: without deconfounding, and deconfounding
test and train jointly yield significant, but probably spurious accuracy; out-of-sample deconfounding can be over-conservative (the prediction is worse than chance
on UKBB) suggesting that the deconfounding model removes too much variance; confound-isolating cross validation yields more nuanced results, and prediction
from confounds yields variable results.
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Limitation: with many confounds the problem is harder
Here we have studied the case of one, clearly-identified, con-
found. The case of multiple confounds (eg age, education, gen-
der, ethnicity), is more challenging. In such situations, de-
confounding approaches may remove fully the signal of inter-
est. For confound-isolating cross-validation, reliable estimation
of mutual information will require much larger sample sizes
than with a single confound. In practice, we recommend to
identify the most impactful confound to run confound-isolating
cross-validation.

Another concern could be that such confounding factors are
not well identified. In that case, the proposed approach does
not help, but such a case is very hard to handle with statistical
methods (see e.g. [62]). We thus leave handling of imperfect
confounder knowledge for future research.

Elements to interpret analyses with confounds

Defining confounds calls for modeling choices
Whether a variable should be considered as a confounding ef-
fect or not is not dictated by the data, but by the question at
hand. The actual notion of confound comes from causal model-
ing, to give a causal interpretation to model parameters [15, 63].
Confound variables are then chosen so as to model the differ-
ence between the measurements at hand and those obtained
with a hypothetical intervention. Such choices are implicitly
based on a model of which variables are causes or consequences
of the fictional intervention and the outcome of interest [see 64,
for guidelines in the case of UKBB].

In pure biomarker settings, the focus is not on potential in-
terventions, but on detecting or predicting an outcome. The
concern is then that the measured accuracy might not reflect
the actual application settings [27, 22]. Here also, the choice of
variables to control for must be governed by an understanding
of how the data at hand may differ from ideal data to reflect
the target application. More concretely, Confounds can indeed
relate to any aspect of the setup, e.g. acquisition devices, data
processing routines when these are not homogeneous across
all the dataset, measurement-related covariate such as motion,
individual conditions, such as age, sex or genetics, that is cor-
related with the imaging variable and with the outcome.
Deconfounding for causal interpretations: the collider-bias danger
Using deconfounding to cancel the impact of a putative con-
found z removes any bias incurred by the spurious association
between the data X and the prediction target y, when z is asso-
ciated with both X and y. However, z may be a consequence of
both the target and the data. In such a situation conditioning
on it can create a form of selection bias, sometimes known as
“collider bias” [65, 66]. Conditioning on the third variable z
can then reverse the correlation between two variables X and
y, a phenomenon known as Berkson’s or Simpson’s statistical
paradox [67, 68]. It can be understood from a simple example:
when studying a population of hospital patients, individuals

Figure 7. Comparisons on tabular data: predicting income from socio-
demographics and mental-health, controlling for qualifications. The left col-
umn of the figure reports the prediction performance by the mean absolute
error for the five approaches considered: Prediction from the data without
deconfounding, prediction after deconfounding test and train jointly, predic-
tion with out-of-sample deconfounding, prediction with confound-isolating
cross-validation, and prediction from confounds. The left column displays
the distribution across validation folds for the actual data (top, orange), and
for permuted data distribution (bottom, gray). The right column displays the
distribution of p-values across folds, obtained by permutation, and the text
yields the aggregated p-value across folds (see the main text), testing whether
prediction accuracy is better than chance.

may have been admitted to the hospital because they have dis-
ease A or B. On this specific population, the two diseases are
anti-correlated. However, concluding that disease A protects
from disease B would be incorrect. Another example can be
found in a cognitive experiment where both a visible-enough
stimuli and a timely motor response are needed for a successful
response. When learning a model decoding stimuli visibility
from brain response, deconfounding on successful responses
would lead this model to rely on motor-cortex activity, while
the link between visual stimuli and motor cortex is not neu-
roscientifically relevant as such. Deconfounding by itself does
not suffice to yield associations with clear interpretations.
A sampling view on confounds

Confound-isolating cross-validation strives to sample an ideal
sub-population. This is also one of the best strategies to avoid
the presence of confounds in experimental settings: targeting
the recruitment of participants so that the design is balanced,
for instance with matched controls or randomized controlled
trials. But this can only be done at study design, and targeted
acquisitions, with matching and restriction, can make it hard
to collect large samples or tackle many covariates. At analysis
time, researchers have to rely on statistical methods to adapt
the analysis to the presence of confounds. For in-sample analy-
sis, propensity scores are a classic reweighting technique used
to obtain reliable effect estimates from confounded datasets
[69, 70]. The use of subsampling in confound-isolating cross-
validation can be seen as an extension of these ideas for out-
sample validation of predictive accuracy. The only caveat is
that one has to ensure that sampling does not deterministi-
cally lead to a fixed test set, which would weaken the statisti-
cal guarantees brought by the validation experiment. Here, we
propose to perform this check a posteriori. In the future, more
complex sampling strategies could be designed to ensure some
randomness in the test set.

Conclusion: deconfounding and isolating confounds
are complementary

Deconfounding strives to remove confounding effects from the
data, after which successful prediction can be interpreted as a
direct link from the remaining brain signals to the outcome of
interest. However, in biomarkers settings, the primary focus
may be on the quality of detection, rather than interpretation,
for instance to improve diagnosis or prognosis. In such set-
tings, an important question is: how much do the brain sig-
nals improve the prediction upon a simpler measure of the
confounding effect? Answering this question calls for a cross-
validation procedure isolating this confounding effect. The cor-
responding prediction accuracy can then safely be interpreted
as not resulting in any way from the confounding effect.

Availability of Supporting Source code and Re-
quirements

• Project name: Confound Prediction
• Project home page: https://github.com/darya-chyzhyk/

confound_prediction
• Operating system(s): OS independent
• Programming language: Python
• Other requirements: Python (>= 3.5), Scipy (>=1.1.0), Scikit-

learn (>=0.21.2), Numpy (>=1.14.2), Pytest(>=5.1.1)
• License: BSD 3-Clause License

https://github.com/darya-chyzhyk/confound_prediction
https://github.com/darya-chyzhyk/confound_prediction
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Data Availability

Supporting data and Python implementation to control con-
found effect are available via the GigaScience database GigaDB
[71]
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Appendices

Data preprocessing

CamCan data were preprocessed using Pypreprocess [72], a col-
lection of Python scripts for preprocessing fMRI data, that is
based on the SPM12 software and the nipype toolbox [73]. We
preprocessed CamCan data only. For UKBB data the prepro-
cessed and connectivity matrices are available from the data
repository. We apply a commonly used protocol that includes
the following steps: Motion correction, correction for subject’s
head motion during the acquisition. Estimated six motion pa-
rameters (three translational parameters and three rotational
parameters) are used as confounds in the age prediction exper-
iments. For each subject we expressed the head motion using
translation across all three axes as a square root of the mean
of the sum of square finite difference of each translation axes
over the time:

√
~∆translation2

x + ~∆translation2
y + ~∆translation2

z
3The rest-fMRI data are coregistered to the anatomical T1-MRI

and then normalized to MNI template.

Supplementary results on the resting state data sets

Figure 8. Evolution of mutual information and correlation with the number
of subjects for different subsampling methods on the CamCan dataset with
Fluid Intelligence prediction and UKBB Age prediction. This figure shows
that the proposed method effectively reduces statistical dependencies between
confound and target (red curve) for both data sets and both predictors.

Supplementary results on simulated data, 1000 sam-
ples

Figure 9. Benchmarking approaches to control confounded predictions on
simulated data with many samples. The left column of each sub-figure as-
sesses the prediction performance through the mean absolute error (in sig-
nal units). We display the error distribution across validation folds for the
data (top, orange), and for permuted data distribution (bottom, gray). The
right column displays the distribution of p-values across folds, obtained by
permutation, and the text reports the aggregated p-value across folds (see the
main text). Five approaches are benchmarked: Without deconfounding, Decon-
founding test and train jointly, Out-of-sampling deconfounding, Confound-
isolating cross-validation, and Prediction from confounds. There are three
simulation settings: (a) No direct link between target and brain, (b) A direct
link between target and brain and (c) A weak confound and a direct link be-
tween target and brain. Green ticks indicate correct conclusions, red crosses
mark incorrect ones, and warning signs the weak results.

https://github.com/neurospin/pypreprocess


GigaScience, 2020, 1–12
doi: xx.xxxx/xxxx
Manuscript in Preparation
Paper

PA P ER

How to remove or control confounds in predictive
models, with applications to brain biomarkers
Darya Chyzhyk 1,2,3,∗, Gaël Varoquaux 1,2, Michael Milham 3,4 and
Bertrand Thirion 1,2

1Parietal project-team, INRIA Saclay-île de France, France and 2CEA/Neurospin bât 145, 91191 Gif-Sur-Yvette,
France and 3Center for the Developing Brain, Child Mind Institute, New York, New York 10022, USA and
4Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research,
Orangeburg, New York 10962, USA
*darya.chyzhyk@gmail.com

Abstract

Background
With increasing data sizes and more easily available computational methods, neurosciences rely more and more on
predictive modeling with machine learning, eg to extract biomarkers of pathologies. Yet, a successful prediction may
capture a confounding e�ect correlated with the outcome instead of brain features speci�c to the outcome of interest –eg
the pathology. For instance, as patients tend to move more in the scanner than controls, imaging biomarkers of a pathology
may mostly re�ect head motion, leading to ine�cient use of resources and wrong interpretation of the biomarkers.
Resuts
Here we study how to adapt statistical methods that control for confounds to predictive modeling settings. We review how
to train predictors that are not driven by such spurious e�ects. We also show how to measure the unbiased predictive
accuracy of these biomarkers, based on a confounded dataset. For this purpose, cross-validation must be modi�ed to
account for the nuisance e�ect. To guide understanding and practical recommendations, we apply various strategies to
assess predictive models in the presence of confounds on simulated data and population brain imaging settings.
Theoretical and empirical studies show that deconfounding should not be applied to the train and test data jointly:
modeling the e�ect of confounds, on the train data only, should instead be decoupled from removing confounds.
Conclusions
Cross-validation that isolates nuisance e�ects gives an additional piece of information: confound-free prediction accuracy.
Key words: confound, subsampling, phenotype, predictive models, biomarkers, statistical testing, deconfounding

Introduction

Predictive models, using machine learning, are becoming a
standard tool for scienti�c inference. In cognitive neuro-
science, they can be used for decoding, to make conclusions on
mental processes given observed brain activity [1, 2, 3]. With
the rise of large-scale brain-imaging cohorts, they can extract
imaging biomarkers that predict across subjects phenotypes

such as neuropsychiatric conditions [4, 5, 6] or individual traits
[7, 8].
A crucial aspect of these biomarkers is their ability to predict

the outcome of interest, ie to generalize to new data [9]. How-
ever, these predictions can be driven by confounding e�ects.
Such e�ects a�ect both the brain-imaging data and the predic-
tion target but are considered as irrelevant. For instance, brain
imaging re�ects age quite accurately, and actually carries infor-
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mation about age-related diseases [8, 10, 11], yet [12] showed
that subjects’ in-scanner motion varies with subjects’ age and
it creates systematic di�erences in recorded brain imaging sig-
nals. Given this confounding e�ect, MRI biomarkers of brain
aging may be nothing more than expensive measurements of
head motion. Other examples may be more subtle: age mat-
ters for diagnosing Alzheimer’s disease, yet an important ques-
tion is whether brain imaging yields an accurate diagnosis of
Alzheimer disease beyond the mere e�ect of age.
More generally, the data at hand often capture e�ects not of

direct interest to the investigation. In many situations, some
confounds such as head motion cannot be fully avoided. To
make matters worse, large cohorts developed in population
imaging to answer epidemiological questions [as UK biobank,
13] are observational data: there is no controlled interven-
tion or balanced case-control group; rather, individuals are
recruited from diverse populations with various sampling or
selection biases. To conclude on the practical use of biomark-
ers, it is important to ensure that their predictions are not
fully driven by such unwanted e�ects. This requires measur-
ing model predictive accuracy after controlling for nuisance
variables. Confounding e�ects can also make it hard to inter-
pret brain-behavior relationships revealed by predictive mod-
els [14], as confounds can mediate the observed association or
be a latent common cause of observations [15].
In experimental settings, eg as in a small cohort, confound-

ing can be suppressed by balancing the acquisition for con-
founds, or using randomized control trials. However, con-
straints in the data acquisition, eg recruitment of a large co-
hort, often imply that confounds are present in the data, and
appropriate analysis is needed to avoid reaching erroneous con-
clusions. The statistical literature on controlling confound-
ing variables is well developed for classic statistical analysis,
such as statistical testing in a linear model at the heart of
the standard mass-univariate brain mapping [16, 17]. How-
ever, these procedures need to be adapted to high-dimensional
predictive-modeling settings, where the focus is to achieve
high-prediction accuracy based on imaging data. Indeed, pre-
dictive models do not rely on the same parametric assumptions,
namely linearity of e�ects and Gaussian noise. Often, a predic-
tive analysis does not build on a generative model of the signal
but on optimizing discrimination [18]. In addition, predictive
models draw their purpose and validity from out-of-sample
prediction, rather than in-sample statistical testing [19]. The
question tackled here is thus whether one can assess the pre-
dictive accuracy of brain measurements free of unwanted con-
founds. It is not to identify treatment e�ects size nor to per-
form other types of causal inference.
In this paper, we study statistical tools to control for con-

founding e�ects in predictive models. We consider that prac-
titioners should primarily avoid or reduce the impact of con-
founds on their model, but this is not always feasible or maybe
hard to check, hence, we choose to put the emphasis on the
unbiased evaluation of models in the presence of confounds. A
preliminary version of the work discussed here was presented
at the PRNI conference [20]. While the core method is the same,
it presents limited insights on the theoretical underpinnings
and practical value of the method proposed. Experiments on
simulated data are absent and experiments on neuroimaging
data are limited to just one data set. In particular, statistical
signi�cance is not established thoroughly, and only one alter-
native approach is considered. In short the conference publica-
tion provides limited insights on the method, while the current
work provides a complete description and points to the code for
reuse.
We �rst review how the classic deconfounding procedures

can be used in predictive-modeling settings, i.e. together with
cross-validation. We then expose a complementary approach

that is not based on removing confounding e�ects, but rather
testing whether a given predictive model –eg a biomarker– pre-
dicts well when these confounds are not present. For this we
introduce the confound-isolating cross-validation method, that
consists in sampling test sets in which the e�ect of interest
is independent from the confounding e�ect. The bene�ts of
this approach are that it is non-parametric and that it directly
tests the quantity of interest in a predictive analysis. We then
run an extensive empirical study on three population-imaging
biomarker extraction problems, a tabular dataset, as well as
simulations. We draw practical recommendations to test pre-
dictive models in the presence of confounding e�ects.

Methods: controlling for confounds in predic-
tive models

Formalizing the problem of predictionwith a confound

Assessing predictive models
Predictive models are assessed by their prediction accuracy [19].
For this, cross-validation is the standard tool, typically k-fold
cross-validation [21]. It consists in partitioning (potentially
randomly) the original dataset into k equal size subsets or folds
(each denoted by a color in Figure 1). One of these k sets is held
out for testing, and the remaining (k – 1) folds are used for
training the model. This process is repeated k times, where
each time a di�erent group of observations compose the test
set. Prediction accuracy is measured on the test set, then aver-
aged across folds.
Confounding variables in a prediction task
To formalize prediction in presence of a confound, we consider
a dataset of n observations –eg subjects or time-points– com-
prising p – dimensional brain signals X ∈ Rn×p, an e�ect of in-
terest1 y ∈ Rn –the biomarker target– and a confounding e�ect
z ∈ Rn.
An imaging biomarker then predicts y from X. If X and z

on the one hand, y and z on the other hand, are not indepen-
dent, the prediction of the target y might be a�ected or most
accurately done by the confounding e�ect, z. Such prediction
may be misleading or useless. It can be misleading as it can be
interpreted as a link between brain structures and y –eg �uid
intelligence– while such a link only re�ects the e�ect of z –
eg age. It can be useless because brain imaging is likely much
more costly to acquire than the phenotypic variable z, hence
it should be used only if it brings more diagnostic informa-
tion. Moreover, this can be detrimental to accuracy: if a future
dataset shows an altered relation between the confound and
the features, prediction accuracy may be compromised.
A crucial problem for the validity of the biomarker is to mea-

sure whether it can predict y from X and not solely from z. Pre-
diction accuracy is ideally measured on an independent valida-
tion set, but most often, no large independent validation set
is available and a cross-validation procedure, that iteratively
separates train and test sets [21], is used. In [22] what cross-
validation captures in the presence of a confounding variable
is discussed. Though there can be many possible confounds
in brain imaging (see section 8), we focus below on simple set-
tings, assuming that the main confounding factor has been iso-
lated in one variable.
There are two points-of-view to controlling confounds in

predictivemodels. One is to try and remove the e�ect of the con-

1 In classi�cation settings, y does not take continuous values in Rn, yet we
use the most general notation to cover both classi�cation and regression
settings.
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founding variables from the data, by regressing them out (de-
confounding) or resampling the data to cancel spurious correla-
tions (re-balancing). The other is to test that the model’s pre-
diction captures more than the confound. Removing the con-
founding signal can test whether predictions are fully driven
by the confound z rather than the brain signal X. However, it
does not provide a good tool to measure the predictive power
in the presence of confounds: the accuracy is likely biased, as
illustrated later in the simulations.
Another point of view on confounding e�ects in predictive

modeling consists in trying to learn a predictor from a biased
population –with the confounding e�ect– that di�ers from the
population of interest –without the confounding e�ect. The
problem can then be tackled as a domain adaptation problem
[23, 24]. However, [24] have shown that compensating for the
confound does not improve prediction if the test population is
not markedly di�erent from the training population. Note that
train and test samples are often drawn from the same popula-
tion, either because only one cohort is available or because a
proper strati�cation scheme is used. Our question is di�erent:
we are interested in assessing whether learning a biomarker on
a confounded dataset leads to predictions that are fully driven
by the confound.

Deconfounding

Deconfounding in standard analysis
In inferential statistics –as opposed to predictive modeling–
proper modeling of confounds is important to control the in-
terpretation of model parameters, ensuring that they are not
driven by the confounding e�ects. Classical statistic analysis
in brain imaging is based on the general linear model (GLM)
[25, 16], in which confounding e�ects are controlled by addi-
tional regressors to capture the corresponding variance. Such
an approach shows limitations in predictive-modeling settings.
First, it is based on maximum-likelihood estimates of linear
models, while in general, predictive models are not explicitly
based on a likelihood and are often not linear. Second, it is de-
signed to control in-sample properties, while predictive mod-
els are designed for out-of-sample prediction. The two-step
approach based on applying a classical GLM to remove the
confounding e�ect, then a predictive model, may lead to pes-
simistic results, eg below-chance prediction [8, 26].
In the context of the GLM, an alternative implementation

relies on removing the e�ect of variables that are correlated.
[25]. Note that in all this work we assume that the confounder
is associated with X and y without creating three ways inter-
actions between X, y and z. Given a sample X ∈ Rn×p of n
observations (subjects) with p brain imaging features (eg con-
nectivitymatrices), Xi = (Xi1,Xi2, ...,Xip) and confounds z ∈ Rn,
the model is:

X = zTw + e, (1)
where w is a vector of weights (one per voxel, w ∈ Rp). ŵ rep-
resents the estimated coe�cients, that are obtained typically
through least-squares regression:

ŵ = (zTz)–1zTX (2)
Given these equations, a linear model can be used prior to the
predictive model to remove the e�ect of the confounds z on
the brain signals X. It must be adapted to out-of-sample test-
ing. One solution is to apply deconfounding jointly on the
train and the test set, but it breaks the statistical validity of
cross-validation because it couples the train and the test set
[21]. Hence it can give biased results.

Out-of-sample deconfounding
To adapt the above deconfounding approach to the two phases of
training and testing a predictive model, a useful view is to con-
sider the deconfounding model as a predictive encoding model,
predicting a fraction of the signal X from z. Deconfounding is
then performed by removing the part of the signal captured by
z from X:

X̂clean = X – zŵ (3)
Where ŵ are the coe�cients of the linear deconfounding model
(Equation 1), estimated on the train data with Equation 2 and
then applied to the test [26]. The full out-of-sample decon-
founding procedure is listed in algorithm 1.
A drawback of such deconfounding is that it is strongly para-

metric, i.e. it relies on themodel of confounds used. Equation 2
stands for the classic linear model, assuming linearity between
the confounding variable z and the brain signal X. The linear
model only takes into account second-order statistics (covari-
ance or correlations) and ignores more complex dependencies.
Model-agnostic out-of-sample deconfounding
A common solution to go beyond linear e�ects of confounds is
to use a polynomial expansion of the confounds z in the linear
deconfounding model. Another option is to use a more pow-
erful predictive model in the confound removal. A predictive
model –including a mere linear model– regressing X on z can
be seen as estimating a function f so that f(z) = E[X|z]. There
are many possibilities such as random forests or Gaussian pro-
cesses. The procedure used for out-of-sample deconfounding
can then be adapted as in Algorithm 2. While this approach is
very powerful, the danger is to remove also part of the signal
of interest. Indeed, using a more powerful predictive model,
for instance a higher-order polynomial, leads to explaining in
X more data as a function of z; however too powerful models
over�t, which means that they explain variance in X by chance.
In such a situation, the deconfounding procedure may remove
signal of interest, unrelated to the confound.

Comparing predictive power of confounds

A simple evaluation of the impact of z on the prediction of y
is to use predictive models predicting y from z (prediction from
confound) and compare the predictive accuracy to that obtained
with biomarkers based on brain signals. This argument is used
in [6] to control for the e�ect of movement on autism diagnos-
tic.

Creating a test set to isolate the confounding e�ect

Rather than deconfounding, the investigator may ensure that
the predictive model is useful by measuring its accuracy on
a dataset where the confounding e�ect is absent. In a cross-
validation setting, such a situation can be created by using as a
test set a well-chosen subset of the data that isolates the con-

Algorithm 1: Out-of-sample deconfounding
Input: Brain signal X ∈ Rn×p, confound z ∈ Rn, {train}

and {test} indices
1 ŵconfounds ← (zTtrainztrain)–1zTtrainXtrain

/* Regression of confounds on data */
2 X̂clean,test ← Xtest – ztestŵconfounds

/* Remove confounds in the test set */
Output: Brain signal without confounds X̂clean,test
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Algorithm 2: Model-agnostic deconfounding. Note
that f only has one argument, as it is a function that
predicts X from z, while g has two arguments (the in-
put X and the output z), as it represents the learning
algorithm that yields f.
Input: Brain signal X ∈ Rn×p, confound z ∈ Rn, {train}

and {test} indices, machine-learning algorithm
g

1 f ← g(ztrain,Xtrain)
/* Fit confound model capturing E[X|z] */

2 X̂clean,test ← Xtest – f(ztest)
/* Remove confounds in the test set */

Output: Brain signal without confounds X̂clean,test

Figure 1. Classic and confound-isolating cross-validation. a) k-fold cross-
validation is the common procedure to evaluate predictive models. It consists
in splitting the data into k equal groups. k-1 folds are used to �t a model and 1
fold is used to validate the model. This process is repeated k times so that each
sample is taken once in the test set. b) In confound-isolating cross-validation
sampling we divide the data in train and test sets, but in a di�erent way. First,
using subsampling, we create a test set on which y and z are independent. The
train test is constructed from the rest of the samples that are not included in
the test set. In this way, the method creates a test set that contains unrelated
target and confound.

founding e�ect. See Figure 1 for a graphical illustration of the
approach. Formally, it requires choosing a subset S of the data
such that yS and zS are independent (the feasibility of thissubset creation is discussed below).
The remainder of the data is used as a training set, to learn

to predict y from X. If the prediction generalizes to the test
set S, the learned relationship between X and y is not entirely
mediated by z. In particular, the prediction accuracy then mea-
sures the gain in prediction brought by X.
Categorical confound
The confounding e�ect can be “categorical”, for instance the
site e�ect when learning predictive biomarkers on multi-site
acquisitions as in [6]. In such settings, to test that the model
can indeed predict independently from site e�ects, a simple
solution is to resort to a cross-validation that avoids having
samples from the same site both in the train and the test sets.
This may imply resampling the data to cancel out associations
between site and target related to data imbalance. Similarly,
in multi-subject prediction with repeated measurements from
the same subject, subject-wise cross-validation can rule out
that prediction is driven by subject identi�cation [27, 22]. More
generally, for a categorical confound z, having distinct values
for z in the train and the test set ensures that the prediction
cannot be driven by z. We note that this procedure is di�er-
ent from the strati�cation strategy used in classical statistics,
but it clearly avoids any bias due to imperfectly corrected as-
sociation between z and the other variables. In the case of
site-related confounds, prediction accuracy will obviously suf-
fer. This can be addressed with techniques such as invariant
risk minimization [28], but we do not further consider this ap-
proach here.
Continuous confound
When z is a continuous variable, such as age, it is more chal-
lenging to generate test sets on which yS and zS are indepen-dent. We describe here an algorithm to generate such sam-
pling, “confound-isolating cross-validation” subsampling. It
is based on iterative sampling to match a desired distribution:
the goal is to have a test set with independence between y and

z, i.e. p(y, z) = p(y) p(z), where p((y, z)) is the joint probability
function of y and z, and p(y) and p(z) are the marginal proba-
bility distribution.
A related quantity is mutual information, which charac-

terizes the level of dependency between the two variables:
η(y, z) = E

[log( p((y,z))p(y)p(z)
)]. In practice we estimate the proba-

bility density functions with a kernel-density estimator (KDE)
using Gaussian kernels. We iteratively create the test S set by
removing subjects; at each iteration, we consider the problem
as a distribution matching problem, matching p(yS , zS) and
p(yS) p(zS). For this, we use importance sampling: we draw
randomly 4 subjects to discard with a probability p(yS ,zS )

p(yS ) p(zS ) us-ing inverse sampling method [30, sec 2.2]. Algorithm 3 gives
the details. The choice of 4 samples is tailored to the sample
size considered here: it makes the algorithm faster than using
one sample, yet is low enough not to compromise mutual in-
formation minimization. A Python implementation is available
on GitHub [31] and on PyPI repository [32] and can be installed
with pip install confound-prediction.
Note that if z and y are too strongly related, the subsampling

procedure above does not have enough degrees of freedom and
may always chose the same subset: the test set would be deter-
ministically de�ned by the sampling procedures, in which case
there would e�ectively be only one fold of cross-validation. In
practice, it is important to check that such a situation does not
occur when analyzing a given dataset. One way is to compute
the average fraction of common samples between two tests sets
created with di�erent seeds. As this value ranges from 0 to 1,
where 1 means that all test sets contain the same samples and
0 that test sets have no sample in common, it is important to
check that it is low enough.

Empirical study methodology

We now describe the experimental materials underlying our
empirical study of confound-controlling approaches in predic-
tive models.

Simulation studies

To understand the behavior of the di�erent accuracy scores, we
present experiments on simulated data. We simulate a data set
X0 ∼ N (0, 1) with confound z0 ∼ N (0, 1) to predict continuous
variable y ∼ N (0, 1). We evaluate two samples sizes: n = 100
and n = 1 000. We use p = 100 features in X0. We study 3scenarios:
• No direct link between target and brain where the brain
signal does not provide any direct information to predict y,
but is observed with a confound linked to y:

Algorithm 3: Confound-isolating cross-validation
Input: Target y ∈ Rn, confound z ∈ Rn, size m < n

1 S ← {1 . . .n} /* Initialize */
2 while card(S) > m do
3 py ← KDE(yS) /* Density estimation */
4 pz ← KDE(zS)
5 p(y,z) ← KDE((zS , yS))
6 mi ← p(y,z)((zi,yi))

py(yi)pz(zi) , ∀i ∈ S
7 S ← S – {j} Draw one index j to remove from S with

probability mj using inversion sampling [29].
8 end
Output: Set of test indices S

https://github.com/darya-chyzhyk/confound_prediction
https://pypi.org/project/confound-prediction/
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observed confound z = y + z0,observed signal X = X0 + z.
• Direct link between target and brain where the brain sig-
nal does indeed provide information to predict y and has an
additional confound linked to y:

observed confound z = y + z0,observed signal X = X0 + y + z.
• Weak confound & direct link between target and brain

observed confound z = 0.5 y + z0,observed signal X = X0 + y + z0.
Note that one could consider instead a canonical scheme in
which z would cause x and y. Since our work is not on causal
inference per se, we aim at a statistical procedure that does not
require a prescribed causal relationship between the variables,
which is often unknown.

Two classic confounded predictions in population
imaging

Motion confounding brain-age prediction
As brain aging is a risk factor of many pathologies, the pre-
diction of brain age from MRI is a promising biomarker [11].
In childhood also, markers of functional brain development
can help to recognize neurodevelopmental disorders [33, 34].
Many recent studies report age prediction, eg from resting-
state functional connectivity [7, 33, 35], from structural imag-
ing [36], or combining multiple imaging modalities [8, 10].
However, older people and children move more in the scanner
than young adults [see �g. 2, 37, 38, 12, 39]. Thus, age-related
changes observed in brain images may be confounded by head
motion [40] and image quality [41].
Indeed, in-scanner motion creates complex MRI artifacts

that are di�cult to remove [40]. In addition, they severely
impact measurements of functional connectivity [42].
Here the confounding e�ect is that of head motion dur-

ing the few hundreds of scans of individual acquisitions. To
build a variable summarizing head motion for each subject,
we use the movement time-series computed during prepro-
cessing. As suggested in [42], we create the confound z
from the root mean squared displacements (position di�er-
ences across consecutive time points) for each subject z =√

1
I–1
∑I
i=2
((tix – ti–1x )2 + (tiy – ti–1y )2 + (tiz – ti–1z )2), where tx is

left/right, ty anterior/posterior, and tz - superior/inferior
translation and i ∈ [[I]] is the time index. The prediction target
y is the age in years.
Age confounding �uid-intelligence measures
Various studies have predicted individual cognitive abilities
from brain functional connectivity [43, 44]. In particular, [44]
used machine-learning to predict �uid intelligence from rest
fMRI. Fluid Intelligence quanti�es the ability to solve novel
problems independently from accumulated knowledge, as op-
posed to crystallized intelligence that involves experience and
previous knowledge [45]. It is well known that cognitive abili-
ties change with age [46, 47, 48, 49], in particular that �uid In-
telligence progressively declines in middle age [50], while crys-
tallized intelligence continues to grow with age. Indeed, in a
cohort with a large age span, the data display a strong relation
between �uid intelligence and age (Figure 2). When extract-
ing biomarkers of �uid intelligence, the danger is therefore to
simply measure age. We study how to control the impact of
age when predicting a �uid-intelligence score from rest-fMRI
functional connectivity.

Population-imaging rest-fMRI datasets

Datasets
We ran experiments on 626 participants from the CamCan
data set and 9302 participants from UKBB. All participants are
healthy subjects with no neurological disorders.
• CamCan Cambridge Center for Ageing and Neuroscience
data [51] studies age-related changes in cognition and brain
anatomy and function. Characteristics of interest of this
dataset are i) a population lifespan of 18-88 years, ii) a large
pool (626 subjects) of multi-modal MRI data and neurocog-
nitive phenotypes.

• UKBB The UK Biobank project [52] is a prospective epidemi-
ological study to understand the development of diseases of
UK population over the years. The data used here contains
9302 subjects from the �rst release of UK Biobank ongoing
cohort study with available resting-state fMRI scans and
extensive health and lifestyle information [53, 54].

Table 1 presents detailed information about the number of sub-
jects and the scale of the scores for each data set.
We give detailed information on pre-processing steps for

each dataset in Appendix 8, following COBIDAS recommenda-
tions [55].
Prediction from functional connectivity
To build predictive models from resting-state fMRI, we fol-
low the recommendations in [56]. We use the BASC functional
atlas [57] with 64 regions, based on which we extract fMRI
time series from the CamCAN dataset. Next, we normalize, de-
trend and bandpass-�lter between 0.01 and 0.1Hz the signal.
We represent connectivity matrices with tangent parametriza-
tion [58]. Finally, we use a ridge regression with nested cross-
validation to learn predictive biomarkers from the functional-
connectivity matrices. We use Nilearn [59] for the whole pre-
dictive pipeline.

Tabular (non-imaging) data

The considerations on confounds in predictive models are not
speci�c to imaging data. We also study a confounded predic-
tion without brain signals: on the UKBB data, we consider pre-
dicting an individual’s income from socio-demographics and
mental-health assessments. We investigate education as a po-
tential confound: it may be re�ected both in mental-health
and in income. There are 8556 individuals with no missing
values on the outcome and confound. We use random forests
for prediction, as it is a popular learner that is well suited to the
distribution of these tabular data, that is often non-Gaussian
and consists of categorical variables.

Experimental paradigm: cross-validation measures

We use cross-validation to assess prediction accuracy. We
consider �ve predictive frameworks: (1) Without deconfound-
ing, (2) Deconfounding test and train sets jointly, (3) Out-

Table 1. Characteristics of the data used. The scores for Fluid In-telligence di�er on the two datasets: CamCan uses the Cattell test,and UKBB a speci�cally-designed touch-screen questionnaire.
Dataset Information CamCan UKBB
Number of subjects 626 9 302

Age 18 – 88 40 – 70
Fluid Intelligence scale Cattell

(11 – 44 scores)
UKBB-designed
(1 – 13 scores)

https://nilearn.github.io/
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of-sampling deconfounding, (4) Confound-isolating cross-
validation, (5) Prediction from confounds only. The code for
these various strategy to control for confounds can be found
on GitHub [31] and on PyPI repository [32] and can be installed
with pip install confound-prediction.
We use 10 folds, with random splits of 20% of the data in the

test set. For confound-isolating cross-validation, di�erent seeds
in the random number generator lead to di�erent folds. We
assess the null distribution of predictions with permutations
(20000 folds on permuted labels y).

Results of the empirical study

Simulated data

We �rst consider simulated data, for which there is a ground
truth. Figure 3 shows the results of the di�erent methods to
control for confounds on 3 di�erent simulated cases (Figure 9
gives results for the same simulations with 1000 samples).
(a) In the case where there is no direct relationship be-
tween the data and the target, the performance of the pre-
diction model should not be better than chance after con-
trolling for the confound. Both joint deconfounding and
confound-isolating cross-validation clearly reveal that all the
prediction is mediated by the confound. Out-of-sample de-
confounding displays a less clear signal, as there seems to
be a slight prediction even after deconfounding, though it
is not signi�cant.
(b) For a direct link between the data and the target, joint
deconfounding yields a false negative, in the sense that it
fully removes the prediction from the brain signal: it is too
aggressive in removing signal. Other approaches correctly
support a successful prediction.
(c) For a weaker confounding signal, results are similar,
however it is worth noting that the target can no longer be
well predicted from the confound.
Overall, on the simulations, both out-of-sample deconfound-

ing and confound-isolating cross-validation give reliable answers,
while deconfounding the test and train jointly as well as mea-
suring the prediction from confounds cannot be trusted.

Experiments on resting-state fMRI data

Potential confounds
Figure 2 shows the relationships between target variable y and
confounds z. Fluid Intelligence (target) is strongly negatively
correlated with age (confound) on the CamCan dataset (second
column of Figure 2). Also, on the CamCan data, Age andMotion
are very correlated (�rst column of Figure 2). On the more
homogeneous and larger UKBB sample (9302 subjects), this
link is weaker.
Confound-isolating cross-validation
Figure 4 displays the evolution of the association between con-
found and target during Confound-isolating cross-validation in
the CamCan dataset, predicting Fluid Intelligence with Age as
a confound. In the full dataset, comprising 608 subjects, the
correlation between confound and target is ρ = –0.67. Iter-
ating the algorithm to remove half of the subjects leads to

Figure 2. Joint distribution of target and confound. The �rst column presents
the scatter plot of age and motion variable for CamCan (top) and UKBB (bot-
tom). The second column shows the case of �uid intelligence prediction with
age as confound for CamCan. In all cases, the target is clearly associated with
the confound; the corresponding p-values are below 10–5.

Table 2. Comparisons on population-imaging data, Camcan Fluid
Intelligence prediction.

Method MAE ±σ MAE ±σ
permuted p-value

CamCan: Age prediction
Without

deconfounding 6.17± 0.43 16.0± 1.24 0
Deconfounding test
and train jointly 6.76± 0.53 16.24± 0.66 0
Out-of-sample
deconfounding 9.3± 0.8 15.79± 1.22 0

Confound-isolating
cross-validation 6.49± 0.46 15.21± 1.37 0
Prediction from
confounds 13.74± 1.5 15.22± 1.74 0

CamCan: Fluid Intelligence prediction
Without

deconfounding 4.1± 0.29 6.05± 0.49 0
Deconfounding test
and train jointly 4.08± 0.22 5.7± 0.34 0
Out-of-sample
deconfounding 5.59± 0.32 6.04± 0.9 0.23

Confound-isolating
cross-validation 4.31± 0.29 4.6± 0.3 0.06
Prediction from
confounds 4.03± 0.6 5.7± 0.95 0

UKBB: Age prediction
Without

deconfounding 4.82± 0.4 6.95± 0.8 0
Deconfounding test
and train jointly 4.95± 0.4 6.92± 0.8 0
Out-of-sample
deconfounding 8.23± 0.33 7.12± 0.34 1

Confound-isolating
cross-validation 5.08± 0.3 7.26± 0.6 0
Prediction from
confounds 6.24± 0.73 6.29± 0.72 1

Tabular data: Income prediction
Without

deconfounding 0.79± 0.014 0.93± 0.016 0
Deconfounding test
and train jointly 0.79± 0.014 0.93± 0.016 0
Out-of-sample
deconfounding 0.77± 0.014 0.93± 0.016 0

Confound-isolating
cross-validation 0.85± 0.13 0.94± 0.18 1
Prediction from
confounds 0.87± 0.016 0.93± 0.016 0

ρ = –0.17. The �nal test set contains 1/5 of the initial set
of subjects and achieves ρ = –0.07, showing that it indeed
cancels the dependency between aging and motion. The joint
distribution between target and confound displayed in Figure
4 shows that the initial statistical dependency between these
two variables vanishes after a few tens of iterations of the al-
gorithm. Quantitative evaluation, measuring both Pearson cor-
relation and mutual information (Figure 5) con�rms that the
confound-isolating procedure e�ciently creates a subset of the
data without the dependency as soon as it reduces the data to
300 subjects or less. Figure 8 shows similar success on the
other prediction problems that we study.
In a cross-validation setting, the di�erent test sets should

probe di�erent subjects to maximize testing power. A risk,
when using confound-isolating cross-validation, is that it could
repeatedly generate test sets with the same samples. To mea-
sure the diversity of the test sets, we compute the average frac-
tion of common samples between two tests sets created with
di�erent seeds. The value is in the range from 0 to 1, where 1

https://github.com/darya-chyzhyk/confound_prediction
https://pypi.org/project/confound-prediction/
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Figure 3. Comparisons on simulated data. The left column of each sub-�gure reports the prediction performance as the mean absolute error for the �ve approaches
considered: Prediction from the data without deconfounding, prediction after deconfounding test and train jointly, prediction with out-of-sample deconfounding,
prediction with confound-isolating cross-validation, and prediction from confounds. The left column displays the distribution across validation folds for the actual
data (top, orange), and for permuted data distribution (bottom, gray). The right column displays the distribution of p-values across folds, obtained by permutation,
and the text yields the aggregated p-value across folds, testing whether prediction accuracy is better than chance. Test subsets always represent 1/5 of the whole
dataset. There are three simulation settings: (a) No direct link between target and brain, (b) A direct link between target and brain in the presence of a confound
and (c) A weak confound and a direct link between target and brain. Green ticks indicate correct conclusions, red crosses mark incorrect ones, and warning signs
the weak results.

Figure 4. Evolution of the test set created by Confound-isolating cross-
validation. The joint distribution of the target (Fluid intelligence) and the
confound (Age) for the CamCan dataset is taken for demonstration. We show
the process of selecting proper samples for the test set. We begin with the
entire dataset, Pearson correlation is –0.67 with in�nitesimal p-value (right
subplot). After half of the iterations we have already reached a correlation
–0.17 with p-value = 0.009 (middle subplot). The �nal test set is shown on the
right subplot, correlation –0.007 with p-value = 0.02. It presents negligible
residual dependency between targets and confounds.

Figure 5. Evolution of the link between confound and target with the number
of subjects for di�erent subsampling methods on the CamCan dataset, con-
sidering age prediction. Applying Algorithm 3 e�ectively reduces statistical
dependences between confound and target (red curve). In our experiments,
we stop the sampling when the test set size is 1/5 of the dataset.

means that all test sets contain the same samples and 0 that
test sets have no sample in common; the expected value is15 . We �nd an average intersection of 0.30 for age predictionwith CamCan and 0.27 with UKBB; for Fluid Intelligence pre-
diction with CamCan, we �nd 0.36. This demonstrates that
the test sets do not repeat much, hence that there is no hidden
determinism in the cross-validation scheme of the proposed
method.
Testing for confounded prediction
Figure 6 and Table 2 report the mean absolute error2 for the
di�erent approaches to control for confounds. The �gure also
reports the p-value of predictive accuracy, from permutations3.
The �rst thing to note is that without controlling for confound-
ing e�ects, all models lead to signi�cant prediction. But are
these driven by the confounds? Given that the various ap-
proaches measure predictions on di�erent data, we compare
how far these predictions are above chance, rather than their
absolute value.
Deconfounding test and train sets jointly –removing the linear

e�ect of the confounding variable on the full data– has little
impact on the prediction performance on all datasets. On the
other hand, out-of-sample deconfounding signi�cantly changes
prediction performance in a way that varies across tasks. Pre-
diction accuracy of �uid intelligence on CamCan falls to chance
level. Age prediction on CamCan is little impacted. However,
Age prediction on UKBB gives results worse than chance, i.e.
worse than a model that learns to predict age on data where
this relationship has been shu�ed by permutation (see Figure
6 and Table 2). Confound-isolating cross-validation also gives
varying results on di�erent datasets. For �uid-intelligence
prediction on CamCan, it also gives results at chance level. For
age prediction on CamCan, it does alter signi�cantly prediction
accuracy, and on UKBB, it leads to a slightly worse prediction,
but still above chance. Finally, Prediction from confounds leads

2 Mean absolute error is a good metric to compare across di�erent test sets
as it gives an absolute error measure in the unit of y, unlike explained
variance, that depends on the variance of y.

3 Technically, there is one p-value per fold; to report only one number, we
use p-value aggregation [60].

to chance-level or good prediction of the target depending on
the dataset. In particular, it does better than chance for Fluid
intelligence prediction.
These results show that in all these datasets, the confounds

z are associated with both the data X and the target y. For �uid
intelligence prediction on CamCan, all the prediction of y from
X is mediated by z. However, for age prediction in CamCan,
there exists within X some signal that is unrelated to z but pre-
dicts y. Age prediction in UKBB is a more subtle situation: X
contains signals from z and y with shared variance, but there
is enough signal beyond the e�ect of z to achieve a good pre-
diction, as demonstrated by confound-isolating cross-validation,
where the prediction cannot be driven by z. Yet, out-of-sample
deconfounding removes the shared variance and hence creates
predictions that are worse than chance.

Tabular data

Figure 7 and Table 2 give the results of analysis on the tabular
data. There is a signi�cant prediction of income from socio-
demographic and mental-health information, without any de-
confounding. However, prediction from confounds shows that
quali�cations also predict income well. To control for quali�ca-
tion, deconfounding removes the signal explained by these in
X. Here, deconfounding does not make the prediction worse;
actually out-of-sample deconfounding improves it. Such an
improvement can be explained if the deconfounding adds in-
formation about the confound to the signal rather than re-
moving it, as can happen when the model of the confounds
is mis-speci�ed. To limit mis-speci�cation issues, a random
forest as the g function in algorithm 2. Finally, confound-
isolating cross-validation shows very variable results, but over-
all that prediction does not work better than chance on bal-
anced datasets, so that quali�cation is no longer speci�cally
related to income.
Here, deconfounding leads to the conclusion that the pre-

diction of income from social-demographic and mental-health
information is not at all driven by quali�cations while the other
approaches suggest otherwise. The discrepancy is probably
due to the complex non-linear interactions between these vari-
ables. The reality is probably that quali�cations contribute to
the prediction of income, as well as mental health and socio-
demographics information, and that teasing out these contri-
butions is hard.

Discussion and conclusion

Measuring the accuracy of predictive models, eg for biomarkers
or brain decoding, must account for the presence of confound-
ing e�ects that can contribute to the prediction. Indeed, an
imaging biomarker that solely picks up headmotionmay detect
pathologies with some success, but be overall a waste of scan-
ner time. An accurate prediction of �uid intelligence from brain
functional connectivity might simply be a consequence of in-
directly capturing the subjects’ age. Standard cross-validation
procedures ignoring the confounds can overestimate prediction
accuracy.
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Addressing confounds in predictive modeling

Approaches must be adapted to out-of-sample settings
Deconfounding approaches used in standard GLM-based anal-
ysis must be adapted to out-of-sample data by separating es-
timation of the confounds’ model from removal of the e�ect of
confounds on the data, as detailed in section and algorithm 1.
Importantly, applying deconfounding to the whole data with-
out separating train and test set is not only wrong in theory
–because it breaks independence of train and test data– but
also leads to incorrect conclusions in practice, as clearly visible
from the simulations.
Even done right, deconfounding in predictive settings can

lead to pessimistic evaluations, as stressed by [26] and shown
in our experiments. This is because the signal explained by
the confound is removed from the brain signal before it is
passed to the predictive model. The corresponding correction
can remove too much information when there a large amount
of shared signal between the confound and the target –eg ag-
ing and Alzheimer’s disease. Such problem does not arise in a
GLM-based standard analysis because the confounds and the
e�ects of interest are modeled simultaneously, and the conse-
quences of shared signal are easier to handle.
To give a measure of predictive accuracy that is not pes-

simistic, we also study a di�erent approach: testing the pre-
dictive model on a subset of the data crafted such that the
e�ect of interest is independent from the confound. When
the confounding e�ect is represented as a categorical variable,
for instance the e�ect of acquisition site, the approach can
be simple as it amounts to splitting the data so as to ensure
that generalization occurs for a category not observed in the
training set. Creating an adequate test set for continuous con-
founds requires a dedicated method, as with confound-isolating
cross-validation (Algorithm 3). It enables a test of the predic-
tive power from brain imaging without discarding the poten-
tially useful shared signal. In addition, it is non-parametric
and does not rely on a linear confounding model. Empirical
studies, on both brain-imaging data and simulations, show
that both out-of-sample deconfounding and confound-isolating
cross-validation can control correctly for confounds. Decon-
founding before �tting a predictive model brings the bene�t of
building a predictor free of the confounding e�ect. However,
it can remove shared variance and lead to pessimistic evalu-
ations. Confound-isolating cross-validation brings the bene�t of
measuring the predictive power in the absence of the confound-
ing e�ect. Such measure is of direct importance to gauge the
practical value of a biomarker. As an attractive complemen-
tary approach, note that deep learning approaches for learning
confound-free models have been proposed in [61].
To summarize, our main claim is that it is possible to learn

a confounded model yet evaluate it in an unbiased fashion.
What matters in this logic is that the predictive accuracy after
confound-isolating cross-validation remains better than chance,
which amounts to performing an omnibus test of the variables
of the model. The case where confound-isolating cross-validation
would yield a null result certainly means that one should be

cautious in claiming a conditional association between X and y,
as slight variations in the confounding model may render the
association signi�cant or not: indeed the apparent association
between features and target is dominated by the confounder
and thus, not a reliable one. In brief, this has an impact on the
practical signi�cance of claimed associations.
Which approach to use when: deconfounding versus confound-
isolating cross-validation
Out-sample deconfounding and confound-isolating cross-validation
give valid and complementary information. In the worst case,
these approaches can be conservative, but they don’t yield spu-
rious associations. From a prediction perspective, when the
training population re�ects adequately the target population,
changing the training data to remove the e�ect of the con-
founder may not improve prediction accuracy [24]. For in-
stance, for many pathologies, patients move more in the scan-
ner than healthy individuals. Should an imaging-biomarker of
the pathology be developed, this e�ect will be most likely true
in the population on which the biomarker is applied. Hence it
is counter-productive to force the biomarker to discard this in-
formation. Rather, confound-isolating cross-validation should be
used to check that the imaging biomarker does bring in value
in addition to capturing motion.
On the other hand, confound-isolating cross-validation is not

a universal remedy: removing a confounding e�ect from the
training data may be useful if the confounder is incidentally
correlated with X or y without any clear causal relationship.
This is the case if the confounder is a feature of the measure-
ment process. For instance, if the data are acquired across two
imaging sites with di�erent scanners, but one site recruited
a much larger fraction of patients than the other, the risk is
that the predictor learns to use information about the scanner
rather than the pathology. In such a case, the training strat-
egy must be adapted, for instance by removing the e�ect of the
confound.
Finally, if the goal is to interpret successful prediction as

evidence of a link between brain signals and the predicted out-
come, modifying the training data is more likely to disentangle
the biomarker pattern of interest from the confounding e�ect.
In such a situation, deconfounding should be preferred, to give
a model, with its parameters, that is not driven by the con-
founding signal.
Limitation: with many confounds the problem is harder
Here we have studied the case of one, clearly-identi�ed, con-
found. The case of multiple confounds (eg age, education, gen-
der, ethnicity), is more challenging. In such situations, de-
confounding approaches may remove fully the signal of inter-
est. For confound-isolating cross-validation, reliable estimation
of mutual information will require much larger sample sizes
than with a single confound. In practice, we recommend to
identify the most impactful confound to run confound-isolating
cross-validation.
Another concern could be that such confounding factors are

not well identi�ed. In that case, the proposed approach does
Figure 6. Comparisons on population-imaging data Each sub-�gure shows one prediction setting: (a) CamCan Age prediction, (b) CamCan Fluid Intelligence
prediction, (c) UKBB Age prediction. The left column of each sub-�gure reports the prediction performance as the mean absolute error for the �ve approaches
considered: Prediction from the data without deconfounding, prediction after deconfounding test and train jointly, prediction with out-of-sample deconfounding,
prediction with confound-isolating cross-validation, and prediction from confounds. The left column displays the distribution across validation folds for the
actual data (top, orange), and for permuted data distribution (bottom, gray). The right column displays the distribution of p-values across folds, obtained by
permutation, and the text yields the aggregated p-value across folds (see the main text), testing whether prediction accuracy is better than chance. Test subsets
always represent 1/5 of the whole dataset. The �gure clearly displays di�erent behaviors across the three problems: without deconfounding, and deconfounding
test and train jointly yield signi�cant, but probably spurious accuracy; out-of-sample deconfounding can be over-conservative (the prediction is worse than chance
on UKBB) suggesting that the deconfounding model removes too much variance; confound-isolating cross validation yields more nuanced results, and prediction
from confounds yields variable results.
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not help, but such a case is very hard to handle with statistical
methods (see e.g. [62]). We thus leave handling of imperfect
confounder knowledge for future research.

Elements to interpret analyses with confounds

De�ning confounds calls for modeling choices
Whether a variable should be considered as a confounding ef-
fect or not is not dictated by the data, but by the question at
hand. The actual notion of confound comes from causal model-
ing, to give a causal interpretation tomodel parameters [15, 63].
Confound variables are then chosen so as to model the di�er-
ence between the measurements at hand and those obtained
with a hypothetical intervention. Such choices are implicitly
based on amodel of which variables are causes or consequences
of the �ctional intervention and the outcome of interest [see 64,
for guidelines in the case of UKBB].
In pure biomarker settings, the focus is not on potential in-

terventions, but on detecting or predicting an outcome. The
concern is then that the measured accuracy might not re�ect
the actual application settings [27, 22]. Here also, the choice of
variables to control for must be governed by an understanding
of how the data at hand may di�er from ideal data to re�ect
the target application. More concretely, Confounds can indeed
relate to any aspect of the setup, e.g. acquisition devices, data
processing routines when these are not homogeneous across
all the dataset, measurement-related covariate such as motion,
individual conditions, such as age, sex or genetics, that is cor-
related with the imaging variable and with the outcome.
Deconfounding for causal interpretations: the collider-bias danger
Using deconfounding to cancel the impact of a putative con-
found z removes any bias incurred by the spurious association
between the data X and the prediction target y, when z is asso-
ciated with both X and y. However, z may be a consequence of
both the target and the data. In such a situation conditioning
on it can create a form of selection bias, sometimes known as
“collider bias” [65, 66]. Conditioning on the third variable z
can then reverse the correlation between two variables X and
y, a phenomenon known as Berkson’s or Simpson’s statistical
paradox [67, 68]. It can be understood from a simple example:
when studying a population of hospital patients, individuals
may have been admitted to the hospital because they have dis-
ease A or B. On this speci�c population, the two diseases are
anti-correlated. However, concluding that disease A protects
from disease B would be incorrect. Another example can be
found in a cognitive experiment where both a visible-enough
stimuli and a timely motor response are needed for a successful
response. When learning a model decoding stimuli visibility
from brain response, deconfounding on successful responses
would lead this model to rely on motor-cortex activity, while
the link between visual stimuli and motor cortex is not neu-
roscienti�cally relevant as such. Deconfounding by itself does
not su�ce to yield associations with clear interpretations.

Figure 7. Comparisons on tabular data: predicting income from socio-
demographics and mental-health, controlling for quali�cations. The left col-
umn of the �gure reports the prediction performance by the mean absolute
error for the �ve approaches considered: Prediction from the data without
deconfounding, prediction after deconfounding test and train jointly, predic-
tion with out-of-sample deconfounding, prediction with confound-isolating
cross-validation, and prediction from confounds. The left column displays
the distribution across validation folds for the actual data (top, orange), and
for permuted data distribution (bottom, gray). The right column displays the
distribution of p-values across folds, obtained by permutation, and the text
yields the aggregated p-value across folds (see the main text), testing whether
prediction accuracy is better than chance.

A sampling view on confounds
Confound-isolating cross-validation strives to sample an ideal
sub-population. This is also one of the best strategies to avoid
the presence of confounds in experimental settings: targeting
the recruitment of participants so that the design is balanced,
for instance with matched controls or randomized controlled
trials. But this can only be done at study design, and targeted
acquisitions, with matching and restriction, can make it hard
to collect large samples or tackle many covariates. At analysis
time, researchers have to rely on statistical methods to adapt
the analysis to the presence of confounds. For in-sample analy-
sis, propensity scores are a classic reweighting technique used
to obtain reliable e�ect estimates from confounded datasets
[69, 70]. The use of subsampling in confound-isolating cross-
validation can be seen as an extension of these ideas for out-
sample validation of predictive accuracy. The only caveat is
that one has to ensure that sampling does not deterministi-
cally lead to a �xed test set, which would weaken the statisti-
cal guarantees brought by the validation experiment. Here, we
propose to perform this check a posteriori. In the future, more
complex sampling strategies could be designed to ensure some
randomness in the test set.

Conclusion: deconfounding and isolating confounds
are complementary

Deconfounding strives to remove confounding e�ects from the
data, after which successful prediction can be interpreted as a
direct link from the remaining brain signals to the outcome of
interest. However, in biomarkers settings, the primary focus
may be on the quality of detection, rather than interpretation,
for instance to improve diagnosis or prognosis. In such set-
tings, an important question is: how much do the brain sig-
nals improve the prediction upon a simpler measure of the
confounding e�ect? Answering this question calls for a cross-
validation procedure isolating this confounding e�ect. The cor-
responding prediction accuracy can then safely be interpreted
as not resulting in any way from the confounding e�ect.

Availability of Supporting Source code and Re-
quirements

• Project name: Confound Prediction
• Project home page: https://github.com/darya-chyzhyk/

confound_prediction
• Operating system(s): OS independent
• Programming language: Python
• Other requirements: Python (>= 3.5), Scipy (>=1.1.0), Scikit-
learn (>=0.21.2), Numpy (>=1.14.2), Pytest(>=5.1.1)

• License: BSD 3-Clause License

Data Availability

Supporting data and Python implementation to control con-
found e�ect are available via the GigaScience database GigaDB
[71]
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Appendices

Data preprocessing

CamCan data were preprocessed using Pypreprocess [72], a col-
lection of Python scripts for preprocessing fMRI data, that is
based on the SPM12 software and the nipype toolbox [73]. We
preprocessed CamCan data only. For UKBB data the prepro-
cessed and connectivity matrices are available from the data
repository. We apply a commonly used protocol that includes
the following steps: Motion correction, correction for subject’s
head motion during the acquisition. Estimated six motion pa-
rameters (three translational parameters and three rotational
parameters) are used as confounds in the age prediction exper-
iments. For each subject we expressed the head motion using
translation across all three axes as a square root of the mean
of the sum of square �nite di�erence of each translation axes
over the time:

√
~∆translation2x + ~∆translation2y + ~∆translation2z

3The rest-fMRI data are coregistered to the anatomical T1-MRI
and then normalized to MNI template.

Supplementary results on the resting state data sets

Figure 8. Evolution of mutual information and correlation with the number
of subjects for di�erent subsampling methods on the CamCan dataset with
Fluid Intelligence prediction and UKBB Age prediction. This �gure shows
that the proposed method e�ectively reduces statistical dependencies between
confound and target (red curve) for both data sets and both predictors.

Supplementary results on simulated data, 1000 sam-
ples

Figure 9. Benchmarking approaches to control confounded predictions on
simulated data with many samples. The left column of each sub-�gure as-
sesses the prediction performance through the mean absolute error (in sig-
nal units). We display the error distribution across validation folds for the
data (top, orange), and for permuted data distribution (bottom, gray). The
right column displays the distribution of p-values across folds, obtained by
permutation, and the text reports the aggregated p-value across folds (see the
main text). Five approaches are benchmarked: Without deconfounding, Decon-
founding test and train jointly, Out-of-sampling deconfounding, Confound-
isolating cross-validation, and Prediction from confounds. There are three
simulation settings: (a) No direct link between target and brain, (b) A direct
link between target and brain and (c) A weak confound and a direct link be-
tween target and brain. Green ticks indicate correct conclusions, red crosses
mark incorrect ones, and warning signs the weak results.

https://github.com/neurospin/pypreprocess
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