1 Supporting Information

Experimental Procedures:

Primer Sequences used in this paper

Gene Name	Forward Primer	Reverse Primer	
rp49	AGTATCTGATGCCCAACATC	ACAATCTCCTTGCGCTTC	
Sirt6	TCGGGACACGTTGTCCTCCAC	TCTGGCTTCATCGAAGGAAACAT	
Spargel	CATTACCATGGCCAAGAACAAGGTGC	CGGGTGGAGTTTGTTGCTGAGTGGC	
TFAM	CCAGCATCAGCAACACTCC	GGCATCGGACCAGTTCTTAG	
Delg	CAAGTTTAAGCGAGAACAAATACGCCTG	TACATTCTTTTAGCAGCTGGAGGTG	
Cox4	GGCGTTTCACTCCTCTTCTG	CTGTTGTTCTCGTAGTCCCACTTG	
EiP74EF	GCGAATACTGTCCGCGTTTC	GATGTCCTTGGGCACATCCA	
Eip75B	GCGGTCCAGAATCAGCAG	GAGGATGTGGAGGAGGATGA	
BR-C	AACACCCGGTCATACTGCTG	ATGGCTGTGTGTGTCCTCTG	
EcR	ATTTGGTGCTTGTGCCGAAC	AAGGATCATAGCTTCCGGCG	
Ultraspiracle	CAGTATCCGCCTAACCATCC	TTCCTCTGCCGCTTGTCTAT	
Kr-h1	CCGAATACGACATAACAGCC	CCCGATTTCCGTGAATATGT	
dilp2	AGCAAGCCTTTGTCCTTCATCTC	ACACCATACTCAGCACCTCGTTG	
dilp5	GAGGCACCTTGGGCCTATTC	CATCTGGTGAGATTCGGAGC	
Sir2	TATATCCCGGCGAGTTTCAG	GAGGCCGTTGAAAAGGAGCCG	
Sirt4	TGTCCAAACCGAATGTTTTGGTTC	GTTCCTGGCCCAGTACCGCTT	
Sirt7	ACGTGGCGCAGTCTTACATAA	TTCGATCTTCCGTCGTGCG	
InR	ACGATGTAGAGGGCAGTGTA	TACCACGAAGATAGCGTAGC	
GSK	ATATACAGATCTTTTGTTTGGCAA	AGGAGGAAGTTCTTGGACGA	
ΑΚΤ	TCTCCGTACAGGGAACGACT	TGGACTTGAGCACACGACTC	
Raptor	GCGACTGTTTGACAAGCGTT	CGTCCCACTCGTACACAACA	
Rheb	CGACGTAATGGGCAAGAAAT	CAAGACAACCGCTCTTCTCC	
4eBP	CCAGGAAGGTTGTCATCTCG	GTTGGACGGCGGAGTTTG	
GLUT1	GGATTGGCCTCAGGTCTCAC	GCGAAAATGGATACCGCCAC	
HexA	GTAACGTATGTGCAGGATCT	ATCATAATGTGCTGCGGTAT	
РЕРСК	CATTGCGTGGATGAAGTTTG	ATGCCCTCCCAGAACACAC	
FBPase	TCATCAACATGCTGAAGTCA	CGATGTATTTGCCCTGTTTC	
LDH	GTGTGACATCCGTGGTCAAG	CTACGATCCGTGGCATCTTT	
PFK	CTGCAGCAGGATGTCTACCA	GTCGATGTTCGCCTTGATCT	
PDK1	GGTCGTTACATAGGCGAGGG	AAAGAGAACGCTGGTCCTGG	
Трі	GACTGGAAGAACGTGGTGGT	CGTTGATGATGTCCACGAAC	
Mondo	GCGGCGTTACAACATAAAGA	CTCCATGCGCAAAGCTTCAA	
HIF1a	CCAAAGGAGAAAAGAAGGAAC	GAATCTTGAGGAAAGCGATG	
SREBP	TGGCTTCTACCAAGTGCCAG	CAAGAGCTGTTGCGTTGGAC	
Brummer	TCCCGAGTTTCTGTCCAAGT	GCGTCCTTTCTGTGCTTCTT	
Lipase	GATTTGGGCATAGAGATGTG	CTCATAGGGATTACGGAGAG	
Trehalase	TATCGGCTTCGGTTATGG	CGGGAGTGTTCAGGTTGTTT	
ACC	CATTGTTAGTGTGTGGCTGTGA	CTTATCTCTGGCTCTGAACG	
DAG	ATCTCCCTTAGCCTGTTTAG	TAACGAAGGTCGCCATAAG	
MCAD	CAACCACATTCCTGCTGA	TCTTCTGTTCCTTGTTACCG	

	r			
	FAS	CGGAGAAGAGTTACATCCTG	CAATCACCACCTTTACGC	
	Cptl	AGGAACTGCAGCCTATCATGG	GGAGTTGCTTTGCCCTTCAG	
	SCD1	TTTCTTCGCCAAGATCGGCT	CAATCTCCTCCTTGGGCTGG	
	DGAT	ACTGCTCTGCATTGGAGGTC	ATGTCCTTCGCCTTCGTTGT	
	Thiolase	GAAGAACAGCCAGAATATCG	CACGATGTAGTCGATGAGC	
	MnSOD	AGGCCAAGTCGAAGAGCGA	ACGGTCAGCGTGGTCAGCTC	
	Catalase	GACGATGTACATTCAGGTCA	CACCTCAGCAAAGTAGTTCT	
	Thioredoxin1	GGTGCGTTCTATTGTGCT	ACGGTGTCGTAAACATCCT	
	GSTD2q	TACGGCAAGGATGACTATCT	CAGGAAGGTGTCGAGAAAT	
4			· · ·	
5				
6				
7				
8				
-				
9				
-				
10				
10				
11				
12				
12				
12				
12				
14				
14				
1 -				
12				
10				
10				
47				
1/				

23 Supplementary Figures and Legends:

24 Supplementary Figure 1:

(A) Protein sequence alignment of SIRT6 from Drosophila, mouse and human (uniprot.org) 25 26 using ClustalW, indicating conserved active site residues, NAD+ binding and catalytic domain. 27 (B) Schematic representation of chromosomal position indicating site of CRISPR mediated deletion of Sirt6 and insertion of knock-in cassette containing STOP codons and RFP. (C) 28 Genome sequence pre- and post CRISPR mediation deletion-insertion, as indicated. Primers 29 used for confirmation are highlighted in yellow. (D) PCR based confirmation of STOP-RFP 30 cassette insertion in *Sirt6^{-/-bck-L1/L2}* flies. L1 and L2 indicate two independently generated fly 31 lines (male-M and female-F) were confirmed for *Sirt6* deletion. (E) Quantitative PCR showing 32 absence of *Sirt6* mRNA in CRISPR mutants of *Sirt6* relative to *w*¹¹¹⁸ controls. (F) Larval weights 33 at 24, 48 and 72 hours post synchronised egg laying of w¹¹¹⁸ and Sirt6^{-/-bck-L1} flies (N=3, n=30-34 40 per genotype). (G) Quantitative PCR to confirm over-expression of Sirt6 mRNA from Sirt6^{OE} 35 transgenic flies (*actingal4>Sirt6^{OE}*) relative to control (*actingal4>w¹¹¹⁸*). (H) Larval body size at 36 24, 48 and 72 hours post synchronised egg laying in *actingal4>w¹¹¹⁸* and transgenic *Sirt6* over-37 expressing flies. (I) Percentage pupation in control and *Sirt6* over-expressing transgenic flies 38 (N=3, n=150-200). (J) Body weight in control and Sirt6 over-expressing transgenic flies (N=3, 39 40 n=20-25 per genotype). (K-L) Relative wing dimensions (K) and wing aspect ratio (L) in control and Sirt6 over-expressing transgenic flies (N=3, n=20-25). (M) Quantitative PCR showing UAS-41 *Sirt6 (Sirt6^{OE})* mediated rescue of *Sirt6* mRNA expression in *Sirt6^{-/-bck-1}* flies. Relative changes 42 in Sirt6 expression are computed with respect to control UAS-Sirt6 (Sirt6^{OE}) flies. All data 43 presented is mean ± s.e.m. (N=3, n=3). Asterisk depicts p values (*p<0.05, **p<0.01 and 44 ***p<0.001) as observed by Student's t-test. 45

46 **Supplementary Figure 2**:

47 (A) Relative change in *Sirt6* mRNA expression (black dashed line) and NAD+ levels (green) in 48 w^{1118} larvae during development, as indicated. (B) Relative expression of genes in *Sirt6*-/-bck-L1 49 larvae compared to w^{1118} (black dashed line) during the time course of larval development. 50 Asterisk depicts comparison with w^{1118} at 24 hours and hashtags depict comparison of the 51 *Sirt6*-/-bck-L1 to w^{1118} , at the respective time points, as indicated. All data presented is mean ± 52 s.e.m. (N=3, n=3). (C) Relative change in expression of *dilp2* and *dilp5* in transgenic rescue of Sirt6 larvae at 24, 48 and 72 hours post egg laying (N=3, n=3 with 10-20 larvae per n). Asterisk
and hashtags depict p values (*, #p<0.05, **, ##p<0.01 and ***, ###p<0.001) as observed by
Student's t-test and Two-way ANOVA, as applicable.

56 Supplementary Figure 3:

(A) Starvation survival in 3-5 day old w^{1118} and Sirt6^{-/-bck-L1/L2} flies (N=3, n=6 with 10 flies per 57 n). (B) Oxidative stress survival on 20mM Paraguat in w¹¹¹⁸ (control) and Sirt6^{-/-bck-L1} flies (N=3, 58 n=6 with 10 flies per n). (C) Relative mRNA levels of genes involved in mitochondrial 59 biogenesis w^{1118} and Sirt6-/-bck-L1/L2 flies (N=3, n=3 with 8 flies per n). (D) Representative blots 60 and quantification (right) for change in levels of mitochondrial proteins in w¹¹¹⁸ and Sirt6^{-/-bck-} 61 ^{L1/L2} flies (N=3, n=3 with 8 flies per n). (E) Mitochondrial DNA content (normalised to nuclear 62 DNA) in 35-37 day old w^{1118} (control) and Sirt6^{-/-bck-L1/L2} flies (N=2, n=3 with 30 flies per n). (F) 63 64 Mitochondrial DNA content (normalised to nuclear DNA) in transgenic rescue of Sirt6 in 35-37 days old flies. (G) Average number of eggs laid per fly over a period of 20 days from a 65 heterogeneous cross, parents as indicted (N=5, n=10). All data presented is mean ± s.e.m. 66 Asterisk depict p values (*, #p<0.05, **, ##p<0.01 and ***, ###p<0.001) as observed by Student's 67 t-test and Two-way ANOVA, as applicable. 68

69 Supplementary Figure 4:

(A-B) Weight gain and pupation onset (marked in black) in w^{1118} larvae reared on differential 70 concentration of yeast (A) and glucose (B) diets, as indicated (N=3, n=20-25). (C) Weight gain 71 and pupation onset (marked in black) in w¹¹¹⁸ and Sirt6^{-/-bck-L1} larvae reared on differential 72 concentration of glucose diets, as indicated (N=3, n=20-25). (D) Body weight measurement in 73 w¹¹¹⁸ and Sirt6^{-/-bck-L1} 3-5 day old flies (N=3, n=20-25 per genotype), reared on differential 74 concentration of glucose diets, as indicated. (E) Median survival under starvation in w^{1118} and 75 Sirt6^{-/-bck-L1} flies reared on differential concentrations of yeast and glucose diets, from three 76 independent experiments (N=3, n=8 with 10 flies per n). (F) Median survival under oxidative 77 stress in w¹¹¹⁸ and Sirt6^{-/-bck-L1} flies reared on differential concentrations of yeast and glucose 78 79 diets, from three independent experiments (N=3, n=8 with 10 flies per n). All data presented 80 is mean ± s.e.m. Student's t-test and Two-way ANOVA were used to analyse statistical significance of the data (*p<0.05, **p<0.01 and ***p<0.001). 81

82

83 Supplementary Figure 5:

(A-B) Life spans of w^{1118} (A) and Sirt6^{-/-bck-1} (B) flies on normal diet, which were reared on 84 differential yeast diets during larval development (n = 10 with 10 flies per n). (C-D) Life spans 85 of w^{1118} (C) and Sirt6^{-/-bck-1} (D) flies on normal diet, which were reared on differential glucose 86 diets during larval development (n = 10 with 10 flies per n). (E) Median life spans of w^{1118} and 87 Sirt6^{-/-bck-1} reared on differential yeast and glucose diets (N=3, n = 10 with 10 flies per n). Log-88 rank (Mantel-Cox) test was used to plot survival curves and statistical analysis. Asterisks 89 indicate comparison with w^{1118} grown on ND and hashtag indicates comparison among w^{1118} 90 and Sirt6^{-/-bck-1} for the particular diet. All data presented is mean ± s.e.m. Two-way ANOVA 91 was used to analyse statistical significance of the data (*, #p<0.05, **, ##p<0.01 and ***, 92 ^{###}p<0.001). 93

Human Mouse	MSVNYAAGLSPYADKGKCGLPEIFD MSVNYAAGLSPYADKGKCGLPEIFD	PPEELERKVWELARLVWQSSSVVFHTGAGIS PPEELERKVWELARLMWQSSSVVFHTGAGIS ASG	60 60	C
Drosopnila	MSCNYADGLSAYDNKGILGAPESFD ** *** *** * :** * ** **	SDEVVAEKC <mark>QELAELIKKSGHVVLHIGAGISISAG</mark>	60	C
Human	IFD R SPHGVWTMEERGLAPKFDTT	FESARPTQTHMALVQLERVGLLRFLVSQNVDGLHV	120	Product length pre-deletion
Mouse	IFDFRGPHGVWTMEERGLAPKFDTT	FENARPSKTHMALVQLERMGFLSFLVSQNVDGLHV	120	CTCGATGGACTCATTTAGC
Drosophila	IPD REPKGVWTLEEKGEKPDFNVS	FDEARPTKTHMAIIALIESGYVQYVISQNIDGLHL *:.***::****:: * . * : :::***:***:	120	GGGAAT/TTTGGGAGCACC GCTGAATTGATCAAGAAAT ATTC
Human	RSGFPRDKLAELHGNMFVEECAKCK	TOYVRDTVVGTMGLKATGRLCTVAKARGLRACR-G	179	
Mouse	RSGFPRDKLAELHGNMFVEECPKCK	TOYVRDTVVGTMGLKATGRLCTVAKTRGLRACR-G	179	Product length post crispr d
Drosophila	KSGLDRKYLSEL <mark>H</mark> GNIYIEQCKKCR	RÕFVSPSAVETVGQKSLQRACKSSMDSKGRSCRSG	180	CTCGATGGACTCATTTAGC
	*** * * ******	* * * * * * * * * * * * *		AGTAGATCAAACtctagaTA/
				GTTATggtaccGGATCTAATT
Human	ELRDTILDWEDSLPDRDLALADEAS	RNADLSITLGTSLQIRPSGNLPLATKRRGGRLVIV	239	CGATTTCGAACCCTCGACCC
Mouse	ELRDTILDWEDSLPDRDLMLADEAS	RTADLSVTLGTSLQIRPSGNLPLATKRRGGRLVIV	239	CAATCGGgcggccgcactagag
Drosophila	ILYDNVLDWEHDLPENDLEMGVMHS	TVADLNIALGTTLQIVPSGDLPLKNLKCGGKFVIC	240	AAGGTTCGCATGGAAGGAA
	* * • **** • ** • ** • *	*** ***********************************		CATACGAAGGCCACAATAC
				TTTTGTCACCACAATTTCAG
Human	NLQPTKHDRHADLRIHGYVDEVMTR	LMKHLGLEIPAWDGPRVLERALPPLPRPPTPK-LE	298	TGTAACCCAGGATTCCAGT
Mouse	NLQPTKHDRQADLRIHGYVDEVMCR	LMKHLGLEIPAWDGPCVLDKALPPLPRPVALK-AE	298	CTTCCGATGGACCTGTTATC
Drosophila	NLOPTKHDKKANLIISSYVDVVLSK	VCKLLGVEIPEYSEASDPTKQSKPMEWTIPTSNVN	300	GTGATGGCGTGTTGAAAGG
	******	· * **·*** · · · *· · · ·		AATTCAAAAGTATTTACATG
				TCTGTTCCTTTAGcggccatcg
Human	PKEESPI-RINGSIPAGPKQEP		354	ATTGGTGGGCGGGGTAAC
Mouse	PPV-HLNGAVHV	SYKSKPNSPILHRPPKRVKTEAAP	333	CTGAAAAGCATACGAAAAC
Drosopnila	IFHRQYKKYVYFIYYLL		317	ATAGCAGAAAAGCCAAGTT
	. : :			GTGAAAGAACGGGGTCAT
Human	c 255	= = NAD Binding Loop (A58-E75)		AATTAGCGCTTTCTATTTTC
Mouso	S 222	Catalytic Domain		AGCAGCAGGCTGTGCACGC
Drosonhila	- 317			
ы озорніца	517	Conserved active site residues		ATATAATAGCATGCGATG
				TTGTATAAAGTAATTATGTA
				TctgcagATAACTTCGTATAA

Product length pre-deletion: 279bp
CTCGATGGACTCATTTAGCCGTAC
AGTAGATCAAAC/TTTTATCAAACCATGAGCTGCAACTACGC/GGATGGATTGTCAGCCTACGACAACAA
GGGAAT/TTTGGGAGCACCAGAGAGTTTCGACAGCGATGAGGTTGTGGCCGAAAAGTGCCAGGAATTG
GCTGAATTGATCAAGAAATCGGGACACGTTGTCCTCCACACGGGAGCTGGGAT <mark>CAGTACGTCTGCAGGA</mark>
ATTC
Product length post crispr deletion and insertion: 2083kb, 631bp for internal REP primer
CTCGATGGACTCATTTAGCCGTACAAAATATAAACAAATTAATACCAAAAAGACATAATAGTCGCTTTTGA
AGTAGATCAAACtctagaTAATGATTAGTGATTAATAAagatctATAACTTCGTATAATGTATGCTATACGAA
GTTATggtaccGGATCTAATTCAATTAGAGACTAATTCAATTAGAGCTAATTCAATTAGGATCCAAGCTTAT
CGATTTCGAACCCTCGACCGCCGGAGTATAAATAGAGGCGCTTCGTCTACGGAGCGACAATTCAATTCAA
ACAAGCAAAGTGAACACGTCGCTAAGCGAAAGCTAAGCAAATAAACAAGCGCAGCTGAACAAGCTAAA
CAATCGGgcggccgcactagagccggtcgccaccATGAGGTCTTCCAAGAATGTTATCAAGGAGTTCATGAGGTTT
AAGGTTCGCATGGAAGGAACGGTCAATGGGCACGAGTTTGAAATAGAAGGCGAAGGAGAGGGGAGGC
CATACGAAGGCCACAATACCGTAAAGCTTAAGGTAACCAAGGGGGGACCTTTGCCATTTGCTTGGGATA
TTTTGTCACCACAATTTCAGTATGGAAGCAAGGTATATGTCAA <mark>GCACCCTGCCGACATACCAGAC</mark> TATAA
AAAGCTGTCATTTCCTGAAGGATTTAAATGGGAAAGGGTCATGAACTTTGAAGACGGTGGCGTCGTTAC
TGTAACCCAGGATTCCAGTTTGCAGGATGGCTGTTTCATCTACAAGGTCAAGTTCATTGGCGTGAACTTTC
CTTCCGATGGACCTGTTATGCAAAAGAAGACAATGGGCTGGGAAGCCAGCACTGAGCGTTTGTATCCTC
GTGATGGCGTGTTGAAAGGAGAGAGATTCATAAGGCTCTGAAGCTGAAAGACGGTGGTCATTACCTAGTTG
AATTCAAAAGTATTTACATGGCAAAGAAGCCTGTGCAGCTACCAGGGTACTACTATGTTGACTCCAAACT
GGATATAACAAGCCACAACGAAGACTATACAATCGTTGAGCAGTATGAAAGAACCGAGGGACGCCACCA
TCTGTTCCTTTAGcggccatcgaattcgagctcgcccACTAAGCGTCGCGCCACTTCAACGCTCGATGGGAGCGTC
ATTGGTGGGCGGGGTAACCGTCGAAATCAGTGTTTACGCTTCCAATCGCAACAAAAAATTCACTGCAACA
CTGAAAAGCATACGAAAACGATGAAGATTGTACGAGAAACCATAAAGTATTTTATCCACAAAGACACGT
ATAGCAGAAAAGCCAAGTTAACTCGGCGATAAGTTGTGTACACAAGAATAAAATCGGCCAGATTCAGTG
TTGTCAGAAATAAGAAAACCCCACTATGTTTTTCTTTGCCTTTTCTTCTCCCAGCGATCATTCAT
GTGAAAGAACGGGGTCATTGCACGGAGTTTCGACTGCGGGAAAGCAGAGCTGCCGTTCACTTCGTCTAT
AATTAGCGCTTTCTATTTTCCCCCGATTCGGGCCGCTGCTGCGCTTTTCCGCCTGCTGTTTGTGGCAAGTGT
AGCAGCAGGCTGTGCACGCAGTGTGGCATGCACTTGGCTTTCCACCGTTGGTATCGATTCTCTGGGACGA
TGAGTCATTCCTTTCGGGGCCACAGCATAATCGTTGCCAGCTCACCGAAATGGTGACTTCATTTCTTAACT
GCCGTCAAGCATGCGATTGTACATACATACATACTTATATATGTACATATTTATGTGACTATGGTAGGTCG
ATATAATAAGCAATCAACGCAAAGCAAATGTGTCAGTCCTGCTTACAGGAACGATTCTATTTAGTAATTTTCG
TTGTATAAAGTAATTATGTATGTATGTAAGCCCCATAAATCTGAAACAATTAGGCAAAACCATGCGAAGC
TetgeagATAACTTCGTATAATGTATGCTATACGAAGTTATgetageTTTGGGAGCACCAGAGAGTTTCGACA
GCGATGAGGTTGTGGCCGAAAAGTGCCAGGAATTGGCTGAATTGATCAAGAAATCGGGACACGTTGTCC
TCCACACGGGAGCTGGGAT <mark>CAGTACGTCTGCAGGAATTC</mark>

1. actingal4>w¹¹¹⁸ 2. actingal4>Sirt6^{0E}

Supplementary figure 1

Contd.

Supplementary figure 1

Supplementary figure 2

Supplementary figure 3

Supplementary figure 4

Supplementary Figure 5