$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Quartile of tot	tal dairy intake $^{\beta}$		P -trend $^{\gamma}$		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q1			Q4	r-lienu		
$ \begin{array}{c} \text{Stroke}^{\delta} \\ \text{Cancer mortality} \\ \text{Lung cancer}^{\delta} \\ \text{Gastric cancer}^{\delta} \\ \text{Colorectal cancer}^{\delta} \\ \text{Colorectal cancer}^{\delta} \\ \text{CVD mortality} \\ \text{Lung cancer}^{\delta} \\ \text{CVD mortality} \\ \text{CHD}^{\delta} \\ \text{Stroke}^{\delta} \\ \text{Colorectal cancer}^{\delta} \\ \text{CVD mortality} \\ \text{CHD}^{\delta} \\ \text{Stroke}^{\delta} \\ \text{CVD mortality} \\ \text{CHD}^{\delta} \\ \text{Stroke}^{\delta} \\ \text{CVD mortality} \\ \text{CHD}^{\delta} \\ \text{Stroke}^{\delta} \\ \text{CVD mortality} \\ \text{CHD}^{\delta} \\ \text{CVD} \\ \text{CHD}^{\delta} \\ \text{Stroke}^{\delta} \\ \text{CVD} \\ \text{CHD}^{\delta} \\ \text{CVD} \\ \text{CHD}^{\delta} \\ \text{CVD} \\ \text{CHD}^{\delta} \\ \text{CVD} \\ \text{CHD}^{\delta} \\ \text{CVD}$	-							
$\begin{array}{c} \textbf{Cancer mortality} \\ \text{Lung cancer}^{\delta} \\ \text{Gastric cancer}^{\delta} \\ \text{Golorectal cancer}^{\delta} \\ \text{Colorectal cancer}^{\delta} \\ \textbf{Colorectal cancer}^{\delta} \\ \textbf{Colorectal cancer}^{\delta} \\ \textbf{Colorectal cancer}^{\delta} \\ \textbf{CVD mortality} \\ \textbf{CVD mortality} \\ \text{CHD}^{\delta} \\ \text{Stroke}^{\delta} \\ \textbf{Colorectal cancer}^{\delta} \\ \textbf{CVD mortality} \\ \text{Lung cancer}^{\delta} \\ \textbf{CVD mortality} \\ \textbf{CHD}^{\delta} \\ \textbf{Stroke}^{\delta} \\ \textbf{Strok}^{\delta} \\ \textbf{Stroke}^{$. ,	, , ,	. ,	. ,			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1.00 (<i>ref.</i>)	0.89 (0.68-1.17)	0.84 (0.63-1.11)	0.97 (0.75-1.25)	0.619		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-	. ,	· · · ·	, , , , , , , , , , , , , , , , , , ,	,			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	. ,	, , ,	, ,	, , ,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Colorectal cancer ^o	1.00 (<i>ref.</i>)	0.74 (0.47-1.17)	0.79 (0.50-1.26)	1.07 (0.71-1.60)	0.751		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Milk intak	e frequency				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Almost never/				•		
$\begin{array}{cccc} CHD^{\delta} & 1.00 \ (\textit{ref.}) & 0.82 \ (0.54-1.26) & 0.73 \ (0.47-1.14) \ 1.07 \ (0.78-1.43) & 0.588 \\ \textbf{Stroke}^{\delta} & 1.00 \ (\textit{ref.}) & 0.95 \ (0.70-1.28) & 0.93 \ (0.69-1.27) \ 0.93 \ (0.74-1.18) & 0.585 \\ \hline \textbf{Cancer mortality} \\ \texttt{Lung cancer}^{\delta} & 1.00 \ (\textit{ref.}) & 0.94 \ (0.69-1.29) & 0.93 \ (0.68-1.28) \ 0.84 \ (0.65-1.08) & 0.168 \\ \textbf{Gastric cancer}^{\delta} & 1.00 \ (\textit{ref.}) & 1.14 \ (0.79-1.63) \ 1.04 \ (0.72-1.51) \ 0.94 \ (0.70-1.26) & 0.531 \\ \textbf{1.00 \ (\textit{ref.})} & 0.74 \ (0.44-1.24) \ 0.61 \ (0.35-1.07) \ 1.04 \ (0.72-1.51) & 0.663 \\ \hline \textbf{Vogurt intake frequency} & \frac{3 \ times/wk/}{\text{Almost daily}} \\ \hline \textbf{CVD mortality} \\ \texttt{CHD}^{\delta} & 1.00 \ (\textit{ref.}) & 0.77 \ (0.56-1.07) \ 0.61 \ (0.38-0.98) \ 0.86 \ (0.51-1.42) & 0.062 \\ \hline \textbf{Stroke}^{\delta} & 1.00 \ (\textit{ref.}) & 0.93 \ (0.72-1.18) \ 1.06 \ (0.79-1.44) \ 1.24 \ (0.88-1.75) & 0.333 \\ \hline \end{array}$		1-2 times/mo	1-2 times/wk	3-4 times/wk	Almost daily			
$ \begin{array}{c} \text{Stroke}^{\delta} \\ \hline \text{Cancer mortality} \\ \text{Lung cancer}^{\delta} \\ \text{Gastric cancer}^{\delta} \\ \text{Gastric cancer}^{\delta} \\ \text{Colorectal cancer}^{\delta} \\ \hline \text{Colorectal cancer}^{\delta} \\ \hline \text{CVD mortality} \\ \hline \text{CVD mortality} \\ \text{CHD}^{\delta} \\ \text{Stroke}^{\delta} \\ \end{array} \begin{array}{c} 1.00 \ (\textit{ref.}) \\ 1.00 \ (\textit{ref.}) \\ 0.95 \ (0.70-1.28) \\ 0.93 \ (0.69-1.27) \\ 0.93 \ (0.69-1.27) \\ 0.93 \ (0.68-1.28) \\ 0.84 \ (0.65-1.08) \\ 0.94 \ (0.65-1.08) \\ 0.168 \\ 0.168 \\ 1.00 \ (\textit{ref.}) \\ 1.14 \ (0.79-1.63) \\ 1.04 \ (0.72-1.51) \\ 0.94 \ (0.70-1.26) \\ 0.531 \\ 1.00 \ (\textit{ref.}) \\ 0.74 \ (0.44-1.24) \\ 0.61 \ (0.35-1.07) \\ 1.04 \ (0.72-1.51) \\ 0.663 \\ \hline \\ $	-							
$\begin{array}{c} \textbf{Cancer mortality} \\ \text{Lung cancer}^{\delta} \\ \text{Gastric cancer}^{\delta} \\ \text{Gastric cancer}^{\delta} \\ \text{Colorectal cancer}^{\delta} \\ \text{Colorectal cancer}^{\delta} \\ \hline 1.00 (\textit{ref.}) \\ 1.14 (0.79-1.63) \\ 1.04 (0.72-1.51) \\ 1.04 (0.72-1.51) \\ 0.94 (0.70-1.26) \\ 0.531 \\ 1.00 (\textit{ref.}) \\ 0.74 (0.44-1.24) \\ 0.61 (0.35-1.07) \\ 1.04 (0.72-1.51) \\ 0.663 \\ \hline \\ \textbf{Yogurt intake frequency} \\ \hline \\ \textbf{Almost never} \\ \hline 1-2 \ \text{times/mo} \\ 1-2 \ \text{times/wk} \\ \hline \\ \textbf{Almost daily} \\ \hline \\ \textbf{CVD mortality} \\ \text{CHD}^{\delta} \\ \text{Stroke}^{\delta} \\ \hline 1.00 (\textit{ref.}) \\ 0.77 (0.56-1.07) \\ 0.61 (0.38-0.98) \\ 0.86 (0.51-1.42) \\ 0.062 \\ 1.00 (\textit{ref.}) \\ 0.93 (0.72-1.18) \\ 1.06 (0.79-1.44) \\ 1.24 (0.88-1.75) \\ 0.333 \\ \hline \end{array}$	CHD ^δ	1.00 (<i>ref.</i>)	0.82 (0.54-1.26)	0.73 (0.47-1.14)	1.07 (0.78-1.43)	0.588		
$ \begin{array}{c} \mbox{Lung cancer}^{\delta} & 1.00 \ (\textit{ref.}) & 0.94 \ (0.69-1.29) & 0.93 \ (0.68-1.28) & 0.84 \ (0.65-1.08) & 0.168 \\ 1.00 \ (\textit{ref.}) & 1.14 \ (0.79-1.63) & 1.04 \ (0.72-1.51) & 0.94 \ (0.70-1.26) & 0.531 \\ 1.00 \ (\textit{ref.}) & 0.74 \ (0.44-1.24) & 0.61 \ (0.35-1.07) & 1.04 \ (0.72-1.51) & 0.663 \\ \end{array} \\ \hline \begin{array}{c} & & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline \hline \hline$	Stroke $^{\delta}$	1.00 (<i>ref.</i>)	0.95 (0.70-1.28)	0.93 (0.69-1.27)	0.93 (0.74-1.18)	0.585		
$ \begin{array}{c} \text{Gastric cancer}^{\delta} \\ \text{Colorectal cancer}^{\delta} \end{array} \begin{array}{c} 1.00 \ (\textit{ref.}) \\ 1.00 \ (\textit{ref.}) \\ 0.74 \ (0.44-1.24) \\ 0.61 \ (0.35-1.07) \\ 1.04 \ (0.72-1.51) \\ 0.94 \ (0.70-1.26) \\ 0.531 \\ 0.663 \end{array} \end{array} \\ \begin{array}{c} \text{Stroke}^{\delta} \end{array} \begin{array}{c} 1.00 \ (\textit{ref.}) \\ 1.00 \ (\textit{ref.}) \\ 1.2 \ \textit{times/mo} \\ 1.2 \ \textit{times/wk} \\ 1.00 \ (\textit{ref.}) \\ 1.00 \ (\textit{ref.}) \\ 1.00 \ (\textit{ref.}) \\ 0.93 \ (0.72-1.18) \\ 1.06 \ (0.79-1.44) \\ 1.24 \ (0.88-1.75) \\ 0.333 \end{array} $								
$ \begin{array}{c} \text{Colorectal cancer}^{\delta} \\ \text{Colorectal cancer}^{\delta} \\ \text{CVD mortality} \\ \text{CHD}^{\delta} \\ \text{Stroke}^{\delta} \\ \end{array} \begin{array}{c} 1.00 \ (\textit{ref.}) \\ 1.00 \ (\textit{ref.}) \\ 0.74 \ (0.44-1.24) \\ 0.61 \ (0.35-1.07) \\ 1.04 \ (0.72-1.51) \\ 1.04 \ (0.72-1.51) \\ 0.663 \\ \hline \\ 3 \ times/wk/ \\ \underline{\text{Almost daily}} \\ \hline \\ \underline{\text{Almost never}} \\ 1-2 \ times/mo \\ 1-2 \ times/wk \\ \hline \\ \underline{\text{Almost daily}} \\ \hline \\ 1.00 \ (\textit{ref.}) \\ 1.00 \ (\textit{ref.}) \\ 0.93 \ (0.72-1.18) \\ 1.06 \ (0.79-1.44) \\ 1.24 \ (0.88-1.75) \\ 0.333 \\ \hline \end{array} \right) $	Lung cancer $^{\delta}$	1.00 (<i>ref.</i>)	0.94 (0.69-1.29)	0.93 (0.68-1.28)	0.84 (0.65-1.08)	0.168		
$\frac{\text{Yogurt intake frequency}}{\text{Almost never}} = \frac{1-2 \text{ times/mo}}{1-2 \text{ times/wk}} + \frac{3 \text{ times/wk/}}{\text{Almost daily}}$ $\frac{\text{CVD mortality}}{\text{CHD}^{\delta}} = 1.00 (\textit{ref.}) = 0.77 (0.56-1.07) = 0.61 (0.38-0.98) = 0.86 (0.51-1.42) = 0.062 \\ 1.00 (\textit{ref.}) = 0.93 (0.72-1.18) = 1.06 (0.79-1.44) = 1.24 (0.88-1.75) = 0.333 $	Gastric cancer $^{\delta}$	1.00 (<i>ref.</i>)	1.14 (0.79-1.63)	1.04 (0.72-1.51)	0.94 (0.70-1.26)	0.531		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Colorectal cancer $^{\delta}$	1.00 (<i>ref.</i>)	0.74 (0.44-1.24)	0.61 (0.35-1.07)	1.04 (0.72-1.51)	0.663		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Almost never1-2 times/mo1-2 times/wkAlmost dailyCVD mortality CHD $^{\delta}$ 1.00 (<i>ref.</i>)0.77 (0.56-1.07)0.61 (0.38-0.98)0.86 (0.51-1.42)0.062Stroke $^{\delta}$ 1.00 (<i>ref.</i>)0.93 (0.72-1.18)1.06 (0.79-1.44)1.24 (0.88-1.75)0.333								
CVD mortality 1.00 (ref.) 0.77 (0.56-1.07) 0.61 (0.38-0.98) 0.86 (0.51-1.42) 0.062 Stroke δ 1.00 (ref.) 0.93 (0.72-1.18) 1.06 (0.79-1.44) 1.24 (0.88-1.75) 0.333		Almost never	1-2 times/mo	1-2 times/wk				
CHD δ1.00 (<i>ref.</i>)0.77 (0.56-1.07)0.61 (0.38-0.98)0.86 (0.51-1.42)0.062Stroke δ1.00 (<i>ref.</i>)0.93 (0.72-1.18)1.06 (0.79-1.44)1.24 (0.88-1.75)0.333	CVD mortality				7 diffest daily	I.		
Stroke ⁶ 1.00 (<i>ref.</i>) 0.93 (0.72-1.18) 1.06 (0.79-1.44) 1.24 (0.88-1.75) 0.333	-	1.00 (<i>ref.</i>)	0.77 (0.56-1.07)	0.61 (0.38-0.98)	0.86 (0.51-1.42)	0.062		
	Stroke ^δ	1.00 (<i>ref.</i>)	, , ,	. ,	. ,	0.333		
	Cancer mortality	()	, , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·			
Lung cancer ⁶ 1.00 (<i>ref.</i>) 0.81 (0.62-1.06) 0.98 (0.70-1.37) 1.02 (0.68-1.53) 0.753	Lung cancer δ	1.00 (<i>ref.</i>)	0.81 (0.62-1.06)	0.98 (0.70-1.37)	1.02 (0.68-1.53)	0.753		
Gastric cancer ⁶ 1.00 (<i>ref.</i>) 0.77 (0.57-1.04) 0.77 (0.52-1.15) 1.13 (0.74-1.71) 0.557	Gastric cancer δ	. ,	, , ,	, ,	, , ,	0.557		
Colorectal cancer ⁶ 1.00 (<i>ref.</i>) 0.71 (0.47-1.06) 0.88 (0.54-1.45) 0.50 (0.23-1.07) 0.058	Colorectal cancer $^{\delta}$. ,	, , ,	, ,	, , ,			
Cheese intake frequency			Cheese inta	ake frequency		_		
Almost never 1-2 times/mo 1-2 times/wk		Almost povor	1.2 timos/mo	1.2 timos/wk	3 times/wk/			
Almost daily		Almost nevel			Almost daily			
CVD mortality	-							
CHD ^δ 1.00 (<i>ref.</i>) 0.77 (0.57-1.03) 0.96 (0.64-1.43) 1.30 (0.77-2.20) 0.961		(<i>i</i>	, , ,	, ,	, , ,			
Stroke δ 1.00 (<i>ref.</i>) 0.97 (0.79-1.19) 0.83 (0.60-1.14) 0.83 (0.51-1.37) 0.233		1.00 (<i>ref.</i>)	0.97 (0.79-1.19)	0.83 (0.60-1.14)	0.83 (0.51-1.37)	0.233		
	_		/-					
Lung cancer δ 1.00 (<i>ref.</i>) 0.89 (0.70-1.13) 1.23 (0.91-1.67) 1.45 (0.94-2.26) 0.126	-	(<i>i</i>		. ,	. ,			
Gastric cancer ^δ 1.00 (<i>ref.</i>) 0.89 (0.68-1.15) 0.85 (0.58-1.24) 1.17 (0.71-1.95) 0.734	_	. ,	, , ,	, ,	, , ,			
Colorectal cancer ^δ 1.00 (<i>ref.</i>) 0.91 (0.64-1.30) 1.49 (0.97-2.28) 1.01 (0.46-2.21) 0.308	Colorectal cancer °	1.00 (<i>ref.</i>)	0.91 (0.64-1.30)	1.49 (0.97-2.28)	1.01 (0.46-2.21)	0.308		

e-Table 1. Association between total dairy intake and sub outcomes among Men (n=16,565)^a

^B Ranges for the quartiles of total dairy intake were 0-40.8 g/d, 44.9-109.8 g/d, 110.8-210.0 g/d, and 211.0-325.0 g/d in men.

^{V}*P*-trend was calculated using the median value of each category of total dairy intake and calculated by treating exposure as a continuous variable for subgroup dairy products frequency. ^{$^{\delta}}Adjusted for age (continuous),education level (junior high school or lower, high school, college or higher, or missing), BMI (<18.5kg/m², 18.5-24.9 kg/m², ≥25.0kg/m², or missing), smoking status (never, former, <20 cigarettes/d, ≥20 cigarettes/d, or missing), alcohol drinking status (current, never, former, or missing), history of hypertension (yes, or no), history of diabetes (yes, or no), energy intake (sex-specific tertiles or missing), fish intake (sex-specific tertiles or missing), and vegetable and fruit intake (sex-specific tertiles or missing).</sup>$

		Quartile of to	tal dairy intake $^{\beta}$		P -trend $^{\gamma}$		
	Q1	Q2	Q3	Q4	P-trend		
CVD mortality							
CHD ^δ	1.00 (ref.)	· · · · ·	,	0.74 (0.43-1.27)	0.303		
Stroke ^δ	1.00 (ref.)	0.95 (0.66-1.35)	1.14 (0.83-1.56)	1.05 (0.75-1.47)	0.460		
Cancer mortality							
Lung cancer ^o	1.00 (ref.)	, ,	, , ,	0.71 (0.42-1.20)	0.252		
Gastric cancer δ	1.00 (ref.)	. ,	· · · ·	1.37 (0.79-2.37)	0.426		
Colorectal cancer ^δ	1.00 (ref.)	0.61 (0.34-1.08)	0.74 (0.45-1.23)	0.98 (0.60-1.61)	0.696		
		Milk intak	e frequency				
	Almost never/				•		
	1-2 times/mo	1-2 times/wk	3-4 times/wk	Almost daily			
CVD mortality							
CHD ^δ	1.00 (<i>ref.</i>)	1.26 (0.70-2.25)	1.57 (0.92-2.67)	0.91 (0.57-1.45)	0.568		
Stroke $^{\delta}$	1.00 (<i>ref.</i>)	1.07 (0.69-1.66)	1.10 (0.73-1.65)	1.15 (0.83-1.58)	0.272		
Cancer mortality							
Lung cancer $^{\delta}$	1.00 (<i>ref.</i>)	1.33 (0.72-2.47)	0.78 (0.40-1.51)	0.85 (0.52-1.39)	0.291		
Gastric cancer $^{\delta}$	1.00 (<i>ref.</i>)	0.78 (0.35-1.72)	0.89 (0.44-1.72)	1.13 (0.66-1.91)	0.482		
Colorectal cancer $^{\delta}$	1.00 (<i>ref.</i>)	0.49 (0.23-1.03)	0.57 (0.30-1.09)	0.77 (0.49-1.19)	0.444		
		Yogurt intake frequency					
	Almost never	1-2 times/mo	1-2 times/wk	3 times/wk/ Almost daily			
CVD mortality							
CHD ^δ	1.00 (ref.)	1.23 (0.81-1.85)	0.72 (0.43-1.20)	0.71 (0.39-1.27)	0.125		
Stroke $^{\delta}$	1.00 (ref.)	0.92 (0.68-1.24)	0.98 (0.72-1.34)	1.03 (0.73-1.46)	0.882		
Cancer mortality							
Lung cancer δ_{-}	1.00 (<i>ref.</i>)	· · · · ·	,	0.92 (0.52-1.61)	0.737		
Gastric cancer $^{\delta}$	1.00 (ref.)	0.78 (0.45-1.35)	1.05 (0.61-1.78)	1.20 (0.68-2.12)	0.495		
Colorectal cancer $^{\delta}$	1.00 (<i>ref.</i>)	1.29 (0.79-2.11)	1.63 (0.99-2.66)	1.32 (0.75-2.32)	0.149		
		Cheese inta	ake frequency	0.11			
	Almost never	1-2 times/mo	1-2 times/wk	3 times/wk/			
CVD mortality				Almost daily	,		
CHD ^δ	1.00 (ref.)	0.95 (0.63-1.42)	0 70 (0 44 1 41)	0 71 (0 29 1 79)	0.323		
Stroke ^δ	. ,	, ,	, , ,	· · · ·	0.899		
Cancer mortality	1.00 (ref.)	0.87 (0.65-1.15)	1.00 (0.74-1.49)	0.30 (0.37-1.01)	0.099		
Lung cancer δ	1.00 (<i>ref.</i>)	0 98 (0 64-1 51)	1 16 (0 60-1 06)	0.64 (0.25-1.62)	0.766		
Gastric cancer ^{δ}	1.00 (<i>ref.</i>) 1.00 (ref.)	, ,	1.63 (0.94-2.83)	, , ,	0.538		
Colorectal cancer δ	1.00 (ref.)	, ,	, , ,	0.44 (0.11-1.85)	0.538		
	1.00 (<i>Tel.</i>)	1.04 (0.00-1.09)	0.70(0.42-1.44)	0.00 (0.37-2.00)	0.043		

e-Table 2. Association between total dairy intake and sub outcomes among Women (n=17,596)^a

^B Ranges for the quartiles of total dairy intake were 0-49.4 g/d, 49.9-205.0 g/d, 210.0-224.5 g/d, and 229.3-310.0 g/d in women.

^{V}*P*-trend was calculated using the median value of each category of total dairy intake and calculated by treating exposure as a continuous variable for subgroup dairy products freqency. ^{$^{\delta}}Adjusted for age (continuous),education level (junior high school or lower, high school, college or higher, or missing), BMI (<18.5kg/m², 18.5-24.9 kg/m², ≥25.0kg/m², or missing), smoking status (never, former, <20 cigarettes/d, ≥20 cigarettes/d, or missing), alcohol drinking status (current, never, former, or missing), history of hypertension (yes, or no), history of diabetes (yes, or no), energy intake (sex-specific tertiles or missing), fish intake (sex-specific tertiles or missing), and vegetable and fruit intake (sex-specific tertiles or missing).</sup>$

e-Table 3. Association between total dairy intake and mortality after excluding death ascertained in the
initial three years among Men (n=16,410)ª

			tal dairy intake		<i>P</i> -trend $^{\beta}$
	Q1	Q2	Q3	Q4	P-trend*
All-cause mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.94 (0.86-1.03)	1.00 (0.91-1.09)	0.94 (0.86-1.02)	0.654
Cancer mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.98 (0.85-1.12)	0.97 (0.84-1.12)	0.92 (0.81-1.06)	0.332
CVD mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.89 (0.74-1.06)	1.01 (0.84-1.21)	0.96 (0.81-1.14)	0.724
		Milk intake	e frequency		
	Almost never/ 1-2 times/mo	1-2 times/wk	3-4 times/wk	Almost daily	
All-cause mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.96 (0.87-1.06)	0.93 (0.84-1.03)	0.98 (0.91-1.06)	0.634
Cancer mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.96 (0.82-1.12)	1.02 (0.88-1.19)	0.93 (0.82-1.05)	0.292
CVD mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.90 (0.73-1.12)	0.93 (0.76-1.15)	1.03 (0.88-1.20)	0.548
	Almost never	1-2 times/mo	1-2 times/wk	3 times/wk/ Almost daily	
All-cause mortality ^v	1.00 (<i>ref.</i>)	0.91 (0.84-0.98)	0.90 (0.81-1.00)	1.05 (0.93-1.18)	0.325
Cancer mortality ^v	1.00 (<i>ref.</i>)	0.91 (0.80-1.03)	0.96 (0.82-1.13)	1.05 (0.86-1.27)	0.807
CVD mortality ^v	1.00 (<i>ref.</i>)	0.95 (0.81-1.11)	0.93 (0.76-1.14)	0.96 (0.75-1.23)	0.469
_		Cheese inta	ke frequency		
	Almost never	1-2 times/mo	1-2 times/wk	3 times/wk/ Almost daily	
All-cause mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.90 (0.84-0.97)	0.96 (0.87-1.06)	1.08 (0.93-1.25)	0.603
Cancer mortality ^v	1.00 (<i>ref.</i>)	1.01 (0.91-1.13)	1.13 (0.98-1.32)	1.10 (0.87-1.40)	0.139
CVD mortality ^v	1.00 (<i>ref.</i>)	0.85 (0.74-0.98)	0.88 (0.72-1.09)	1.05 (0.78-1.41)	0.292

^B Ranges for the quartiles of total dairy intake were 0-40.8 g/d, 44.9-109.8 g/d, 110.8-210.0 g/d, and 211.0-325.0 g/d in men.

 $^{\gamma}P$ -trend was calculated using the median value of each category of total dairy intake and calculated by treating exposure as a continuous variable for subgroup dairy products frequency.

^{δ}Adjusted for age (continuous),education level (junior high school or lower, high school, college or higher, or missing), BMI (<18.5kg/m², 18.5-24.9 kg/m², ≥25.0kg/m², or missing), smoking status (never, former, <20 cigarettes/d, ≥20 cigarettes/d, or missing), alcohol drinking status (current, never, former, or missing), history of hypertension (yes, or no), history of diabetes (yes, or no), energy intake (sex-specific tertiles or missing), protein intake (sex-specific tertiles or missing), and vegetable and fruit intake (sex-specific tertiles or missing).

e-Table 4. Association between total dairy intake and mortality after excluding death ascertained in the initial three years among Women (n=17,513)^a

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	initial three years ame	ong women (n=		tal daim (intal)				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	• •		<u> </u>		<i>P</i> -trend ^β		
$ \begin{array}{c} { { Cancer mortality }^{\gamma} } \\ { CVD mortality }^{\gamma} \\ { CVD mortality }^{\gamma} \\ { 1.00 (ref.) } \\ { 1.00 (ref.) } \\ { 1.01 (0.80-1.27) } \\ { 1.03 (0.83-1.27) } \\ { 1.03 (0.83-1.27) } \\ { 0.92 (0.73-1.16) } \\ { 0.92 (0.73-1.16) } \\ { 0.92 (0.73-1.16) } \\ { 0.92 (0.73-1.16) } \\ { 0.92 (0.73-1.16) } \\ { 0.92 (0.73-1.16) } \\ { 0.92 (0.73-1.16) } \\ { 0.92 (0.73-1.16) } \\ { 0.95 (0.83-1.09) } \\ { 0.10 (0.91-1.13) } \\ { 0.831 \\ 0.831 \\ 0.955 } \\ { 0.955 \\ CVD mortality }^{\gamma} \\ { 1.00 (ref.) } \\ { 1.00 (ref.) } \\ { 1.01 (0.87-1.16) } \\ { 0.95 (0.83-1.09) 1.01 (0.91-1.13) \\ 0.955 \\ CVD mortality }^{\gamma} \\ { 1.00 (ref.) } \\ { 1.00 (ref.) } \\ { 1.01 (0.87-1.21) 0.84 (0.65-1.07) 0.98 (0.82-1.18) \\ 0.955 \\ CVD mortality }^{\gamma} \\ { 1.00 (ref.) } \\ { 0.91 (0.82-1.01) 0.93 (0.84-1.04) 0.91 (0.82-1.03) \\ 0.91 (0.80-1.03) \\ 0.91 (0.80-1.03) \\ 0.91 (0.80-1.03) \\ 0.90 (0.74-1.11) 0.90 (0.72-1.11) 0.86 (0.67-1.10) \\ 0.185 \\ \hline \\ $		Q1						
$ \begin{array}{c cccc} \text{CVD mortality}^{\vee} & 1.00 \ (\text{ref.}) & 1.01 \ (0.80-1.27) \ 1.03 \ (0.83-1.27) \ 0.92 \ (0.73-1.16) & 0.769 \\ \hline & & & & & & & & & & & & & & & & & &$	All-cause mortality $^{\gamma}$	1.00 (ref.)	0.97 (0.86-1.09)	1.04 (0.93-1.16)	0.98 (0.87-1.10)	0.752		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cancer mortality $^{\gamma}$	1.00 (ref.)	0.85 (0.69-1.05)	0.97 (0.80-1.17)	1.00 (0.82-1.22)	0.896		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CVD mortality $^{\gamma}$	1.00 (ref.)	1.01 (0.80-1.27)	1.03 (0.83-1.27)	0.92 (0.73-1.16)	0.769		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Milk intake	e frequency				
$\begin{array}{c c} \mbox{Cancer mortality}^{Y} & 1.00 \ (ref.) & 0.94 \ (0.73-1.21) & 0.84 \ (0.65-1.07) & 0.98 \ (0.82-1.18) & 0.955 \\ \mbox{CVD mortality}^{Y} & 1.00 \ (ref.) & 1.13 \ (0.85-1.50) & 1.04 \ (0.79-1.37) & 1.02 \ (0.83-1.26) & 0.957 \\ \hline \\ \hline & Yogurt intake \ frequency \\ \hline & Yogurt intake \ frequency \\ \hline & Almost \ never & 1-2 \ times/mo & 1-2 \ times/wk & Almost \ daily \\ \hline & All-cause \ mortality ^{Y} & 1.00 \ (ref.) & 0.91 \ (0.82-1.01) & 0.93 \ (0.84-1.04) & 0.91 \ (0.80-1.03) & 0.105 \\ \hline & Cancer \ mortality ^{Y} & 1.00 \ (ref.) & 0.96 \ (0.80-1.15) & 0.96 \ (0.79-1.16) & 1.09 \ (0.88-1.33) & 0.633 \\ \hline & CVD \ mortality ^{Y} & 1.00 \ (ref.) & 0.90 \ (0.74-1.11) & 0.90 \ (0.72-1.11) & 0.86 \ (0.67-1.10) & 0.185 \\ \hline & Cheese \ intake \ frequency \\ \hline & Almost \ never & 1-2 \ times/mo & 1-2 \ times/wk & Almost \ daily \\ \hline & All-cause \ mortality ^{Y} & 1.00 \ (ref.) & 0.89 \ (0.81-0.97) \ 0.88 \ (0.78-1.00) \ 0.87 \ (0.72-1.05) & 0.011 \\ \hline & Cancer \ mortality ^{Y} & 1.00 \ (ref.) & 0.95 \ (0.80-1.12) \ 1.04 \ (0.84-1.28) \ 0.92 \ (0.67-1.28) & 0.833 \\ \hline \end{array}$			1-2 times/wk	3-4 times/wk	Almost daily			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	All-cause mortality $^{\gamma}$	1.00 (<i>ref.</i>)	1.01 (0.87-1.16)	0.95 (0.83-1.09)	1.01 (0.91-1.13)	0.831		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Cancer mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.94 (0.73-1.21)	0.84 (0.65-1.07)	0.98 (0.82-1.18)	0.955		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CVD mortality $^{\gamma}$	1.00 (<i>ref.</i>)	1.13 (0.85-1.50)	1.04 (0.79-1.37)	1.02 (0.83-1.26)	0.957		
$ \frac{\text{Almost never}}{\text{All-cause mortality}^{\text{V}}} \frac{1.00 (ref.)}{1.00 (ref.)} \frac{0.91 (0.82-1.01)}{0.91 (0.82-1.01)} \frac{0.93 (0.84-1.04)}{0.91 (0.80-1.03)} \frac{0.91 (0.80-1.03)}{0.91 (0.80-1.03)} \frac{0.105}{0.96 (0.79-1.16)} \frac{0.96 (0.79-1.16)}{0.90 (0.72-1.11)} \frac{0.90 (0.78-1.33)}{0.633} \frac{0.633}{0.633} \frac{0.633}{0.633}$								
$ \begin{array}{c cccc} \mbox{All-cause mortality} & 1.00 \ (ref.) & 0.91 \ (0.82-1.01) & 0.93 \ (0.84-1.04) & 0.91 \ (0.80-1.03) & 0.105 \\ \mbox{Cancer mortality} & 1.00 \ (ref.) & 0.96 \ (0.80-1.15) & 0.96 \ (0.79-1.16) & 1.09 \ (0.88-1.33) & 0.633 \\ \mbox{CVD mortality} & 1.00 \ (ref.) & 0.90 \ (0.74-1.11) & 0.90 \ (0.72-1.11) & 0.86 \ (0.67-1.10) & 0.185 \\ \hline & & \\ \hline \hline \hline & & \\ \hline \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \hline$		Almost never	1-2 times/mo	1-2 times/wk				
$ \begin{array}{c c} \text{CVD mortality}^{\forall} & 1.00 \ (\textit{ref.}) & 0.90 \ (0.74\text{-}1.11) & 0.90 \ (0.72\text{-}1.11) & 0.86 \ (0.67\text{-}1.10) & 0.185 \\ \hline \\ $	All-cause mortality ^v	1.00 (<i>ref.</i>)	0.91 (0.82-1.01)	0.93 (0.84-1.04)		0.105		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Cancer mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.96 (0.80-1.15)	0.96 (0.79-1.16)	1.09 (0.88-1.33)	0.633		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	CVD mortality ^v	1.00 (<i>ref.</i>)	0.90 (0.74-1.11)	0.90 (0.72-1.11)	0.86 (0.67-1.10)	0.185		
Almost never1-2 times/mo1-2 times/wkAlmost dailyAll-cause mortality $^{\vee}$ 1.00 (<i>ref.</i>)0.89 (0.81-0.97)0.88 (0.78-1.00)0.87 (0.72-1.05)0.011Cancer mortality $^{\vee}$ 1.00 (<i>ref.</i>)0.95 (0.80-1.12)1.04 (0.84-1.28)0.92 (0.67-1.28)0.833			Cheese inta	ke frequency				
All-cause mortality ^Y 1.00 (ref.) 0.89 (0.81-0.97) 0.88 (0.78-1.00) 0.87 (0.72-1.05) 0.011 Cancer mortality ^Y 1.00 (ref.) 0.95 (0.80-1.12) 1.04 (0.84-1.28) 0.92 (0.67-1.28) 0.833		Almost never	1-2 times/mo	1-2 times/wk				
Cancer mortality ^v 1.00 (<i>ref.</i>) 0.95 (0.80-1.12) 1.04 (0.84-1.28) 0.92 (0.67-1.28) 0.833	All-cause mortality ^v	1.00 (<i>ref.</i>)	0.89 (0.81-0.97)	0.88 (0.78-1.00)		0.011		
	•	· · · ·	· · · ·	· · · · · ·	· · · · ·			
	CVD mortality ^Y	(<i>, ,</i>	· · · /	· · · · ·	(/	0.556		
	CVD mortality ^γ	(<i>, ,</i>	· · · /	· · · · ·	(/			

^B Ranges for the quartiles of total dairy intake were 0-49.4 g/d, 49.9-205.0 g/d, 210.0-224.5 g/d, and 229.3-310.0 g/d in women.

 $^{\gamma}P$ -trend was calculated using the median value of each category of total dairy intake and calculated by treating exposure as a continuous variable for subgroup dairy products frequency.

^{δ}Adjusted for age (continuous),education level (junior high school or lower, high school, college or higher, or missing), BMI (<18.5kg/m², 18.5-24.9 kg/m², ≥25.0kg/m², or missing), smoking status (never, former, <20 cigarettes/d, ≥20 cigarettes/d, or missing), alcohol drinking status (current, never, former, or missing), history of hypertension (yes, or no), history of diabetes (yes, or no), energy intake (sexspecific tertiles or missing), protein intake (sex-specific tertiles or missing), fish intake (sex-specific tertiles or missing), and vegetable and fruit intake (sex-specific tertiles or missing).

e-Table 5. Association between total dairy intake and mortality in stratified analysis (n=34,161).

	Association between to			total dairy intake		<i>P</i> -trend ^β	<i>P</i> -
		Q1	Q2	Q3	Q4	P-trend ^e	interaction ^v
Men	n o stolih i						
<i>All-cause I</i> Age	<i>nonality</i> <50 y (n=8,116) ≥50 y (n=8,449)	()	0.91 (0.77-1.08) 0.94 (0.85-1.04)	(/	(/	0.470 0.618	0.778
BMI	<25 kg/m² (n=11,598) ≥25 kg/m² (n=4,483)					0.587 0.024	0.035
Currently smoking	No (n=6,310) Yes (n=9,989)	()	1.05 (0.90-1.23) 0.91 (0.82-1.01)	(/	(/	0.119 0.819	0.402
Cancer mo	ortality						
Age	<50 y (n=8,116) ≥50 y (n=8,449)	· · · ·	0.88 (0.68-1.15) 1.02 (0.87-1.19)	, , ,	,	0.527 0.270	0.763
BMI	<25 kg/m² (n=11,598) ≥25 kg/m² (n=4,483)		1.02 (0.87-1.20) 0.93 (0.71-1.21)			0.405 0.039	0.131
Currently smoking	No (n=6,310) Yes (n=9,989)	· · ·	1.18 (0.91-1.54) 0.93 (0.79-1.09)	· · /	· · /	0.338 0.401	0.944
CVD morta	alitv						
Age	<50 y (n=8,116) ≥50 y (n=8,449)	()	0.76 (0.53-1.08) 0.91 (0.74-1.12)	()	· · /	0.549 0.656	0.538
BMI	<25 kg/m² (n=11,598) ≥25 kg/m² (n=4,483)					0.551 0.766	0.631
Currently smoking	No (n=6,310) Yes (n=9,989)	()	0.97 (0.70-1.34) 0.84 (0.67-1.03)	(/	(/	0.287 0.520	0.570
Women							
<i>All-cause i</i> Age	<50 y (n=7,942) ≥50 y (n=9,654)	· · · ·	1.22 (0.96-1.54) 0.87 (0.76-1.00)	, , ,	,	0.536 0.376	0.789
BMI	<25 kg/m² (n=12,000) ≥25 kg/m² (n=5,122)					0.474 0.736	0.551
	No (n=13,629) Yes (n=1,195)	()	0.93 (0.81-1.07) 1.39 (0.95-2.05)	· · · · · · · · · · · · · · · · · · ·	(/	0.510 0.116	0.095
Cancer mo	ortality						
Age	<50 y (n=7,942) ≥50 y (n=9,654)	· · /	1.23 (0.85-1.78) 0.68 (0.53-0.88)	. ,	· · /	0.352 0.341	0.128
BMI	<25 kg/m² (n=12,000) ≥25 kg/m² (n=5,122)					0.163 0.082	0.061
Currently smoking	No (n=13,629) Yes (n=1,195)	• • •	0.84 (0.66-1.06) 1.02 (0.48-2.15)	· · /		0.748 0.433	0.562

Age	<50 y (n=7,942) ≥50 y (n=9,654)	• •	. ,	· · /	1.59 (0.91-2.77) 0.85 (0.66-1.10)	0.169 0.852	0.090
BMI	<25 kg/m² (n=12,000) ≥25 kg/m² (n=5,122)					0.834 0.689	0.648
	No (n=13,629) Yes (n=1,195)	. ,	0.96 (0.73-1.27) 1.86 (0.91-3.82)	, ,	0.90 (0.68-1.19) 1.19 (0.53-2.69)	0.742 0.293	0.172
					a		

[°]Hazard ratios (HRs) and 95% confidence intervals (95%Cls) were calculated by Cox proportional hazards models. [°]*P*-trend was calculated as per 100g/d increment of total dairy intake.

^vAdjusted for age (continuous), education level (junior high school or lower, high school, college or higher, or missing), BMI (<18.5kg/m², 18.5-24.9 kg/m², ≥25.0kg/m², or missing), smoking status (never, former, <20 cigarettes/d, ≥20 cigarettes/d, or missing), alcohol drinking status (current, never, former, or missing), history of hypertension (yes, or no), history of diabetes (yes, or no), energy intake (sex-specific tertiles or missing), fish intake (sex-specific tertiles or missing), and vegetable and fruit intake (sex-specific tertiles or missing) except the stratified variable.

	_	Milk intake frequency					<i>P</i> -
		Almost never/ 1-2 times/mo	1-2 times/wk	3-4 times/wk	Almost daily	<i>P</i> -trend ^β	, interaction
Men							
All-cause i	-	1.00 (()	0.05 (0.70.4.00)	0.04 (0.70.4.40)		0.700	
Age	< y (n=8,116) ≥ y (n=8,449)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	· · · ·	0.91 (0.76-1.10) 0.91 (0.81-1.02)	· · /	0.768 0.547	0.891
BMI	<25 kg/m ² (n=11,598 ≥25 kg/m ² (n=4,483)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	, ,	0.97 (0.86-1.09) 0.84 (0.69-1.02)	, ,	0.704 0.061	0.081
Currently smoking	No (n=6,310) Yes (n=9,989)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	· · /	0.93 (0.78-1.12) 0.92 (0.82-1.04)	· · /	0.059 0.969	0.197
Cancer mo	ortality						
Age	< y (n=8,116) ≥ y (n=8,449)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	0.94 (0.7-1.27) 1.02 (0.86-1.22)	()	0.677 0.327	0.941
BMI	<25 kg/m ² (n=11,598 ≥25 kg/m ² (n=4,483)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	. ,	1.02 (0.85-1.23) 1.01 (0.75-1.35)	, ,	0.797 0.060	0.181
Currently smoking	No (n=6,310) Yes (n=9,989)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	· · /	1.21 (0.91-1.61) 0.95 (0.79-1.14)	· · /	0.175 0.507	0.611
CVD morta	alitv						
Age	< y (n=8,116) ≥ y (n=8,449)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	. ,	0.84 (0.57-1.24) 0.93 (0.73-1.17)	. ,	0.874 0.584	0.810
BMI	<25 kg/m² (n=11,598 ≥25 kg/m² (n=4,483)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	. ,	1.08 (0.85-1.38) 0.65 (0.44-0.98)	. ,	0.450 0.916	0.689
Currently smoking	No (n=6,310) Yes (n=9,989)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	· · /	0.87 (0.60-1.26) 0.93 (0.73-1.19)	· · /	0.302 0.368	0.467
Nomen <i>All-cause i</i>	mortality						
Age	<50 y (n=7,942) ≥50 y (n=9,654)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	1.24 (0.94-1.64) 0.84 (0.72-0.98)	()	0.451 0.545	0.669
BMI	<25 kg/m² (n=12,000 ≥25 kg/m² (n=5,122)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)		0.90 (0.75-1.07) 1.05 (0.84-1.32)		0.774 0.948	0.975
Currently smoking	No (n=13,629) Yes (n=1,195)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	· · · ·	0.92 (0.78-1.08) 1.61 (1.02-2.53)	· · /	0.477 0.082	0.067
Cancer mo	ortality						
Age	<50 y (n=7,942) ≥50 y (n=9,654)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	· · /	1.11 (0.71-1.73) 0.71 (0.53-0.94)	· · /	0.291 0.478	0.127
BMI	<25 kg/m² (n=12,000 ≥25 kg/m² (n=5,122)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	. ,	0.80 (0.59-1.08) 0.87 (0.59-1.31)	, ,	0.289 0.098	0.107
Currently smoking	No (n=13,629) Yes (n=1,195)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	0.85 (0.64-1.11) 0.90 (0.32-2.51)	()	0.684 0.443	0.530

Age	<50 y (n=7,942) ≥50 y (n=9,654)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	0.58 (0.25-1.33) 1.19 (0.88-1.61)	· · /	(,	0.108 0.948	0.078
BMI	<25 kg/m ² (n=12,000 ≥25 kg/m ² (n=5,122)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	· · · ·	· · ·	1.06 (0.80-1.41) 1.01 (0.72-1.41)	0.774 0.918	0.777
	No (n=13,629) Yes (n=1,195)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	0.98 (0.69-1.38) 1.29 (0.52-3.16)	· · · ·	· · ·	0.863 0.161	0.122

^eHazard ratios (HRs) and 95% confidence intervals (95%CIs) were calculated by Cox proportional hazards models. ^B *P*-trend was calculated by treating exposure as a continuous variable.

^vModel 1 was adjusted for age (continuous),education level (junior high school or lower, high school, college or higher, or missing), BMI (<18.5kg/m², 18.5-24.9 kg/m², ≥25.0kg/m², or missing), smoking status (never, former, <20 cigarettes/d, ≥20 cigarettes/d, or missing), alcohol drinking status (current, never, former, or missing), history of hypertension (yes, or no), history of diabetes (yes, or no), energy intake (sex-specific tertiles or missing), fish intake (sex-specific tertiles or missing), and vegetable and fruit intake (sex-specific tertiles or missing) except the stratified variable.

	Association between yo	Sart mano and		e frequency		_	<i>P</i> -
		Almost never	1-2 times/mo	1-2 times/wk	3 times/wk/ Almost daily	<i>P</i> -trend ^β	interaction ^v
Men <i>All -cause</i>	mortality						
Age	<50 y (n=8,116) ≥50 y (n=8,449)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	0.81 (0.66-0.99) 0.90 (0.80-1.01)	· · · ·	0.579 0.129	0.747
BMI	<25 kg/m² (n=11,598 ≥25 kg/m² (n=4,483)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	, ,	0.94 (0.83-1.06) 0.82 (0.68-1.00)	, ,	0.912 0.041	0.146
Currently smoking	No (n=6,310) Yes (n=9,989)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	. ,	0.96 (0.82-1.14) 0.86 (0.75-0.98)	,	0.414 0.022	0.020
Cancer mo	ortality						
Age	<50 y (n=8,116) ≥50 y (n=8,449)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	```	0.88 (0.65-1.21) 0.97 (0.81-1.17)	```	0.551 0.759	0.650
BMI	<25 kg/m² (n=11,598 ≥25 kg/m² (n=4,483)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	1.06 (0.88-1.27) 0.81 (0.58-1.12)	· · · ·	0.966 0.549	0.715
Currently smoking	No (n=6,310) Yes (n=9,989)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	()	0.98 (0.75-1.28) 0.96 (0.79-1.17)	()	0.740 0.351	0.238
CVD morta	ality						
Age	<50 y (n=8,116) ≥50 y (n=8,449)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	0.68 (0.43-1.08) 0.95 (0.77-1.21)	· · · ·	0.349 0.583	0.636
BMI	<25 kg/m² (n=11,598 ≥25 kg/m² (n=4,483)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	, ,	0.89 (0.69-1.16) 1.01 (0.71-1.44)	, ,	0.522 0.970	0.504
Currently smoking	No (n=6,310) Yes (n=9,989)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	• • •	1.09 (0.79-1.51) 0.83 (0.64-1.09)	• • •	0.283 0.073	0.015
Women <i>All -cause</i>	mortality						
Age	<50 y (n=7,942) ≥50 y (n=9,654)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	(,	1.02 (0.80-1.29) 0.90 (0.80-1.01)	, ,	0.500 0.009	0.062
BMI	<25 kg/m ² (n=12,000 ≥25 kg/m ² (n=5,122)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	, ,	0.95 (0.83-1.09) 0.96 (0.79-1.16)	, ,	0.288 0.517	0.731
Currently smoking	No (n=13,629) Yes (n=1,195)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	· · /	0.91 (0.81-1.04) 1.16 (0.79-1.71)	· · /	0.143 0.821	0.479
Cancer mo	ortality						
Age	<50 y (n=7,942) ≥50 y (n=9,654)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	• • •	0.99 (0.66-1.48) 0.97 (0.78-1.20)	• • •	0.304 0.971	0.534
BMI	<25 kg/m ² (n=12,000 ≥25 kg/m ² (n=5,122)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	, ,	0.93 (0.73-1.18) 1.12 (0.80-1.56)	, ,	0.790 0.295	0.349
Currently smoking	No (n=13,629) Yes (n=1,195)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	(,	1.02 (0.82-1.27) 0.97 (0.44-2.13)	, ,	0.366 0.659	0.770

e-Table 7. Association between yogurt intake and mortality in stratified analysis (n=34,161).

Age	<50 y (n=7,942) ≥50 y (n=9,654)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	0.56 (0.33-0.97)0.90 (0.54-1.48)0.92 (0.52-1.62)0.9780.98 (0.79-1.21)0.86 (0.68-1.09)0.80 (0.62-1.05)0.069	0.278
BMI	<25 kg/m ² (n=12,000 ≥25 kg/m ² (n=5,122)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	0.94 (0.72-1.22)0.97 (0.74-1.28)0.94 (0.69-1.27)0.6970.87 (0.63-1.20)0.83 (0.58-1.19)0.77 (0.51-1.15)0.152	0.402
Currently smoking	No (n=13,629) Yes (n=1,195)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	0.91 (0.71-1.16)0.90 (0.70-1.16)0.88 (0.66-1.17)0.3021.18 (0.63-2.21)1.21 (0.60-2.44)0.37 (0.13-1.01)0.172	0.912

^eHazard ratios (HRs) and 95% confidence intervals (95%CIs) were calculated by Cox proportional hazards models. ^B*P*-trend was calculated by treating exposure as a continuous variable.

^vModel 1 was adjusted for age (continuous),education level (junior high school or lower, high school, college or higher, or missing), BMI (<18.5kg/m², 18.5-24.9 kg/m², ≥25.0kg/m², or missing), smoking status (never, former, <20 cigarettes/d, ≥20 cigarettes/d, or missing), alcohol drinking status (current, never, former, or missing), history of hypertension (yes, or no), history of diabetes (yes, or no), energy intake (sex-specific tertiles or missing), fish intake (sex-specific tertiles or missing), and vegetable and fruit intake (sex-specific tertiles or missing) except the stratified variable.

	Association between ch			ke frequency			<i>P</i> -
	-	Almost never	1-2 times/mo	1-2 times/wk	3 times/wk/ Almost daily	<i>P</i> -trend ^β	interaction ^v
	montolity						
<i>All -cause</i> Age	<50 y (n=8,116) ≥50 y (n=8,449)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	0.96 (0.79-1.16) 0.94 (0.84-1.05)	· · · ·	0.572 0.361	0.939
BMI	<25 kg/m² (n=11,598 ≥25 kg/m² (n=4,483)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	, ,	0.97 (0.86-1.08) 0.92 (0.75-1.13)	, ,	0.553 0.511	0.973
Currently smoking	No (n=6,310) Yes (n=9,989)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	0.96 (0.81-1.14) 0.96 (0.85-1.08)	· · · ·	0.643 0.364	0.973
Cancer mo	ortality						
Age	<50 y (n=8,116) ≥50 y (n=8,449)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	(,	1.00 (0.73-1.37) 1.17 (0.99-1.39)	(,	0.693 0.080	0.231
BMI	<25 kg/m² (n=11,598 ≥25 kg/m² (n=4,483)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	, ,	1.24 (1.05-1.47) 0.84 (0.60-1.19)	· /	0.027 0.720	0.259
Currently smoking	No (n=6,310) Yes (n=9,989)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	1.14 (0.87-1.50) 1.15 (0.96-1.38)	()	0.290 0.338	0.655
CVD morta	ality						
Age	<50 y (n=8,116) ≥50 y (n=8,449)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	0.86 (0.56-1.30) 0.85 (0.67-1.07)	· · · ·	0.498 0.155	0.888
BMI	<25 kg/m² (n=11,598 ≥25 kg/m² (n=4,483)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	, ,	0.86 (0.67-1.09) 0.84 (0.55-1.27)	, ,	0.081 0.924	0.285
Currently smoking	No (n=6,310) Yes (n=9,989)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	· · /	1.04 (0.75-1.44) 0.76 (0.59-1.00)	· · · ·	0.588 0.093	0.559
Women <i>All -cause</i>	mortality						
Age	<50 y (n=7,942) ≥50 y (n=9,654)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	(,	1.00 (0.78-1.29) 0.81 (0.70-0.93)	(,	0.928 0.001	0.160
BMI	<25 kg/m² (n=12,000 ≥25 kg/m² (n=5,122)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	,	0.89 (0.76-1.04) 0.84 (0.67-1.06)	,	0.077 0.089	0.839
Currently smoking	No (n=13,629) Yes (n=1,195)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	• • •	0.83 (0.71-0.96) 0.93 (0.60-1.45)	• • •	0.016 0.807	0.401
Cancer mo	ortality						
Age	<50 y (n=7,942) ≥50 y (n=9,654)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	• • •	1.24 (0.82-1.85) 0.94 (0.74-1.20)	• • •	0.440 0.441	0.353
BMI	<25 kg/m ² (n=12,000 ≥25 kg/m ² (n=5,122)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	, ,	0.99 (0.77-1.28) 1.12 (0.77-1.62)	, ,	0.999 0.756	0.998
Currently smoking	No (n=13,629) Yes (n=1,195)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	(,	1.02 (0.80-1.29) 0.95 (0.40-2.29)	(,	0.864 0.684	0.480

e-Table 8. Association between cheese intake and mortality in stratified analysis (n=34,161).

Age	<50 y (n=7,942) ≥50 y (n=9,654)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	0.99 (0.63-1.56)1.31 (0.78-2.22)1.50 (0.69-3.27)0.2240.88 (0.71-1.08)0.80 (0.60-1.05)0.90 (0.61-1.33)0.123	0.041
BMI	<25 kg/m² (n=12,000 ≥25 kg/m² (n=5,122)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	1.05 (0.82-1.34)1.07 (0.79-1.45)0.99 (0.63-1.56)0.7880.72 (0.53-0.99)0.71 (0.45-1.12)1.00 (0.56-1.80)0.178	0.303
Currently smoking	No (n=13,629) Yes (n=1,195)	1.00 (<i>ref.</i>) 1.00 (<i>ref.</i>)	0.90 (0.72-1.13)0.99 (0.74-1.32)0.98 (0.64-1.52)0.7891.33 (0.73-2.41)1.24 (0.58-2.65)0.85 (0.28-2.65)0.821	0.311

^eHazard ratios (HRs) and 95% confidence intervals (95%CIs) were calculated by Cox proportional hazards models. ^B*P*-trend was calculated by treating exposure as a continuous variable.

^vModel 1 was adjusted for age (continuous),education level (junior high school or lower, high school, college or higher, or missing), BMI (<18.5kg/m², 18.5-24.9 kg/m², ≥25.0kg/m², or missing), smoking status (never, former, <20 cigarettes/d, ≥20 cigarettes/d, or missing), alcohol drinking status (current, never, former, or missing), history of hypertension (yes, or no), history of diabetes (yes, or no), energy intake (sex-specific tertiles or missing), fish intake (sex-specific tertiles or missing), and vegetable and fruit intake (sex-specific tertiles or missing) except the stratified variable.

		<i>P</i> -trend ^β				
	Q1	Q2	Q3	Q4	P-trend	
All-cause mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.96 (0.89-1.04)	0.98 (0.91-1.06)	0.95 (0.88-1.02)	0.214	
Cancer mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.99 (0.87-1.12)	0.99 (0.88-1.12)	0.95 (0.84-1.07)	0.421	
CVD mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.89 (0.77-1.03)	0.96 (0.83-1.11)	0.90 (0.76-1.06)	0.385	
	Milk intake frequency					
	Almost never/ 1-2 times/mo	1-2 times/week	3-4 times/week	Almost daily		
All-cause mortality ^v	1.00 (<i>ref.</i>)	0.97 (0.89-1.07)	0.95 (0.87-1.03)	0.97 (0.91-1.04)	0.462	
Cancer mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.98 (0.84-1.13)	1.01 (0.88-1.15)	0.97 (0.87-1.07)	0.569	
CVD mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.88 (0.75-1.04)	0.92 (0.77-1.10)	0.95 (0.83-1.09)	0.683	
	Yogurt intake frequency					
	Almost never	1-2 times/mo	1-2 times/wk	3 times/wk/ Almost daily		
All-cause mortality ^v	1.00 (<i>ref.</i>)	0.93 (0.87-1.00)	0.92 (0.83-1.02)	1.02 (0.91-1.14)	0.303	
Cancer mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.93 (0.83-1.05)	0.99 (0.83-1.18)	1.05 (0.90-1.23)	0.873	
CVD mortality ^γ	1.00 (<i>ref.</i>)	0.93 (0.79-1.08)	0.90 (0.74-1.08)	0.98 (0.74-1.30)	0.430	
Cheese intake frequency						
	Almost never	1-2 times/mo	1-2 times/wk	3 times/wk/ Almost daily		
All-cause mortality ^v	1.00 (<i>ref.</i>)	0.91 (0.85-0.98)	0.97 (0.87-1.08)		0.513	
Cancer mortality ^Y	1.00 (<i>ref.</i>)	· · · ·	1.09 (0.93-1.27)	· · · ·	0.314	
CVD mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.89 (0.79-1.00)	0.90 (0.77-1.05)	1.02 (0.81-1.29)	0.269	

e-Table 9. Association between dairy intake and mortality after multiple imputation among men^a

^oPooled hazard ratios (HRs) and 95% confidence intervals (95%CIs) were calculated by Cox proportional hazards models using five imputed datasets.

^BP-trend was calculated using the median value of each category of total dairy intake and calculated by treating exposure as a continuous variable for subgroup dairy products freqency.

^vAdjusted for age (continuous),education level (junior high school or lower, high school, college or higher, or missing), BMI (<18.5kg/m2, 18.5-24.9 kg/m2, ≥25.0kg/m2, or missing), smoking status (never, former, <20 cigarettes/d, ≥20 cigarettes/d, or missing), alcohol drinking status (current, never, former, or missing), history of hypertension (yes, or no), history of diabetes (yes, or no), energy intake (sex-specific tertiles or missing), fish intake (sex-specific tertiles or missing), and vegetable and fruit intake (sex-specific tertiles or missing).

		<i>P</i> -trend ^β				
	Q1	Q2	Q3	Q4	P-trend *	
All-cause mortality $^{\gamma}$	1.00 (ref.)	0.96 (0.87-1.07)	0.98 (0.90-1.08)	0.95 (0.86-1.04)	0.335	
Cancer mortality $^{\gamma}$	1.00 (ref.)	0.90 (0.74-1.08)	0.94 (0.79-1.13)	0.96 (0.82-1.14)	0.816	
CVD mortality $^{\gamma}$	1.00 (ref.)	1.00 (0.78-1.26)	0.99 (0.79-1.23)	0.88 (0.73-1.05)	0.173	
	Milk intake frequency					
	Almost never/ 1-2 times/mo	1-2 times/wk	3-4 times/wk	Almost daily		
All-cause mortality ^v	1.00 (<i>ref.</i>)	1.02 (0.88-1.18)	0.92 (0.82-1.04)	0.96 (0.88-1.06)	0.279	
Cancer mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.99 (0.80-1.24)	0.82 (0.67-1.01)	0.94 (0.81-1.11)	0.416	
CVD mortality $^{\gamma}$	1.00 (<i>ref.</i>)	1.10 (0.87-1.40)	0.99 (0.80-1.24)	0.96 (0.81-1.14)	0.381	
	Yogurt intake frequency					
	Almost never	1-2 times/mo	1-2 times/wk	3 times/wk/ Almost daily		
All-cause mortality ^v	1.00 (<i>ref.</i>)	0.93 (0.84-1.02)	0.94 (0.86-1.03)	0.94 (0.84-1.06)	0.226	
Cancer mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.97 (0.84-1.13)	0.98 (0.83-1.16)	1.07 (0.90-1.27)	0.546	
CVD mortality ^v	1.00 (<i>ref.</i>)	0.93 (0.76-1.13)	0.91 (0.76-1.09)	0.86 (0.67-1.10)	0.162	
Cheese intake frequency						
	Almost never	1-2 times/mo	1-2 times/wk	3 times/wk/ Almost daily		
All-cause mortality ^v	1.00 (<i>ref.</i>)	0.91 (0.84-0.99)	0.91 (0.82-1.01)	0.93 (0.78-1.11)	0.029	
Cancer mortality $^{\gamma}$	1.00 (<i>ref.</i>)	0.96 (0.80-1.14)	1.02 (0.86-1.21)	0.94 (0.71-1.24)	0.780	
CVD mortality ^v	1.00 (<i>ref.</i>)	0.92 (0.79-1.08)	0.93 (0.72-1.20)	1.03 (0.75-1.43)	0.671	

e-Table 10. Association between dairy intake and mortality after multiple imputation among women a

^oPooled hazard ratios (HRs) and 95% confidence intervals (95%CIs) were calculated by Cox proportional hazards models using five imputed datasets.

^B*P*-trend was calculated using the median value of each category of total dairy intake and calculated by treating exposure as a continuous variable for subgroup dairy products freqency.

^{γ}Adjusted for age (continuous),education level (junior high school or lower, high school, college or higher, or missing), BMI (<18.5kg/m², 18.5-24.9 kg/m², ≥25.0kg/m², or missing), smoking status (never, former, <20 cigarettes/d, ≥20 cigarettes/d, or missing), alcohol drinking status (current, never, former, or missing), history of hypertension (yes, or no), history of diabetes (yes, or no), energy intake (sexspecific tertiles or missing), fish intake (sex-specific tertiles or missing), and vegetable and fruit intake (sex-specific tertiles or missing).