Supplementary Information

Quantifying and comparing radiation damage in the Protein Data Bank

Kathryn L. Shelley^{1,2}* and Elspeth F. Garman¹*

¹Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom ²School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, United Kingdom

kathryn.l.shelley@gmail.com elspeth.garman@bioch.ox.ac.uk

Supplementary Figures

Supplementary Figure 1: Comparison of the distribution of the *B*_{Damage} values of all atoms in low and high dose models.

There is minimal difference between the distribution of the B_{Damage} values of all atoms in a structure in a low dose (blue curve) structure as compared to a high dose (orange curve) structure. Displayed kernel density estimates are of a low (1.11 MGy, PDB accession code 5MCC, blue curve) and a high (22.7 MGy, PDB accession code 5MCN, orange curve) dose structure of GH7 family cellobiohydrolase¹. Source data are provided as a Source Data file.

a Swarm plots and **b** box plots representing the distribution of the B_{Damage} values of the 204 glutamate and aspartate side chain oxygen atoms across the 11 increasingly damaged structures in the GH7 cellobiohydrolase damage series¹ (5MCC = lowest dose; 5MCN = highest dose). In **b**, boxes demarcate the median, lower and upper quartiles, whilst the tails demarcate the minimum and maximum B_{Damage} values. The median B_{Damage} value of all atoms in the structure varies between 0.96 and 0.98 (depending on the structure): the black line in plots **a** and **b** has been drawn at $B_{Damage} = 0.98$. **c** Whilst the increase in the number of glutamate and aspartate side chain carboxyl group oxygen atoms with a B_{Damage} value greater than the median B_{Damage} value of all atoms in the structure plateaus, **d** the raw B_{Damage} values of these atoms (represented here by the 75th percentile) continue to increase. Source data are provided as a Source Data file.

Supplementary Figure 3: Setting a lower threshold for the protein size amenable to B_{net} analysis.

 B_{net} vs. the number of aspartate/glutamate side chain oxygen atoms for structures containing up to 50 such atoms. We expect these two variables to be independent, and therefore for the range and distribution of B_{net} values to be the same regardless of the number of side-chain carboxyl group oxygen atoms. However, for very small structures this is not the case, hence we impose a threshold of a minimum 20 aspartate/glutamate side chain oxygen atoms in order to meet this assumption. Red circles represent B_{net} values of individual structures, whilst black squares and diamonds represent the median B_{net} value plus 95% confidence limits (namely the 2.5th and 97.5th percentiles), respectively, at every number of side-chain carboxyl group oxygen atoms for which there are 10 or more example structures in the dataset (of 93,978 PDB-REDO structures described in the main text). Note upper confidence limits are not plotted for structures with fewer than six side-chain carboxyl group oxygen atoms because their values are infinite. Source data are provided as a Source Data file. **Supplementary Figure 4:** Damage to Asp/Glu in high *B*_{net} structures.

There is clear evidence of radiation damage to aspartate/glutamate side chain carboxyl groups in 5FXL² and 3A07³ in their electron density maps. A representative damaged carboxyl group is shown for each structure. Damage to the disulfide bonds in these structures is shown in Figure 6. $2mF_{obs} - DF_{calc}$ maps (blue) are contoured at 1.5 rmsd; $F_{obs} - F_{calc}$ difference density maps are contoured at +/- 3.0 rmsd (green/red).

Supplementary Figure 5: B_{net} and B_{net} -percentile as a function of PDB deposition year.

Scatter plots of **a** B_{net} and **b** B_{net} -percentile vs. deposition year for our dataset of 93,978 PDB-REDO structures. Spearman's rank correlation coefficients (ρ_s) indicate no correlation between these variables. Source data are provided at <u>https://doi.org/10.5281/zenodo.5566558</u>.

Supplementary Tables

	<i>B</i> _{net} (Asp/Glu)		<i>B</i> _{net} (Asn/Gln)		Wilson <i>B</i> -factor				
	Gradient	у-	R ²	Gradient	у-	R ²	Gradient	y-intercept	R ²
Series	(MGy⁻¹)	intercept		(MGy⁻¹)	intercept		(Ų/MGy)	(Å ²)	
Serrano-Posada <i>et al.</i> , 2015 ⁴	0.0532	2.32	0.00570	-0.124	2.85	0.0242	0.0558	11.5	0.00388
Ferraroni <i>et al.</i> , 2012 ⁵	0.303	0.961	0.949	0.413	1.27	0.612	-1.58	21.2	0.665
Bui <i>et al.</i> , 2014, series 1 ⁶	0.313	1.31	0.761	-0.0200	1.88	0.988	0.922	10.8	0.998
Bui <i>et al.</i> , 2014, series 2 ⁶	0.534	1.84	1.00	-0.0696	2.36	0.764	0.376	9.88	0.998
Sutton <i>et al.</i> , 2013 ⁷	0.285	1.31	0.365	-0.0579	1.70	0.0235	0.261	10.7	0.703
Castellvi <i>et al.</i> , 2019 ⁸	1.35	1.68	0.868	-0.113	1.64	0.968	0.894	6.29	1.00
Zarate-Romero <i>et al.</i> , 2019 ⁹	0.284	1.24	0.994	0.00293	1.17	0.00419	-0.273	15.1	0.0716
Taberman <i>et al.</i> , 2019 ¹⁰	0.213	1.74	0.777	0.0417	1.18	0.263	0.546	10.1	0.984
Dubnovitsky <i>et al.</i> , 2005 ¹¹	0.230	1.35	0.977	0.0271	2.55	0.104	0.602	14.8	0.991
Fioravanti <i>et al.</i> , 2007 ¹²	0.289	1.39	0.999	-0.0327	2.24	0.949	0.368	17.1	0.904
Juers & Weik, 2011 ¹³	0.303	1.51	0.843	0.0165	1.00	0.315	0.697	10.9	0.962
Correy, <i>et al.,</i> 2016 ¹⁴	0.212	1.36	0.911	0.00940	1.32	0.0543	0.995	34.4	0.869
Russi <i>et al.</i> , 2017, series 1 ¹⁵	0.308	1.56	0.598	-0.101	2.50	0.295	0.537	12.6	0.992
Russi <i>et al.</i> , 2017, series 2 ¹⁵	0.145	0.888	0.836	-0.0476	1.54	0.274	0.597	23.4	0.985
Polyakov <i>et al.</i> , 2019, series 1 ¹⁶	0.516	1.88	0.958	-0.0377	1.84	0.0822	0.427	9.66	0.750
Polyakov et al., 2019, series 2 ¹⁶	0.186	2.12	0.613	0.0968	1.87	0.339	0.768	8.49	0.580
Polyakov <i>et al.</i> , 2019, series 3 ¹⁶	0.677	1.87	0.991	-0.0143	1.92	0.0663	0.936	8.77	0.912
De la Mora <i>et al.</i> , 2011 ¹⁷	0.165	1.34	0.838	-0.0119	1.02	0.839	0.442	13.6	0.997
Pechkova <i>et al.</i> , 2009, series 1 ¹⁸	0.0173	1.76	0.924	-0.0174	4.95	0.689	0.0198	5.95	0.962
Pechkova <i>et al.</i> , 2009, series 2 ¹⁸	0.0452	2.20	0.491	-0.00914	3.83	0.257	0.204	9.36	0.774
Fukuda <i>et al.</i> , 2016 ¹⁹	0.156	2.82	0.946	0.00539	1.56	0.0205	0.0888	9.84	0.602
Hasegawa <i>et al.</i> , 2017 ²⁰	-0.0137	2.02	0.901	-0.0125	1.77	0.582	0.237	10.5	0.985
Bury <i>et al.</i> , 2017 * ¹	0.221	1.03	0.986	0.00303	1.10	0.0405	0.669	22.8	0.656

Supplementary Table 1: Gradients and y-intercepts of the lines of best fit calculated for the B_{net} vs. dose data for the 23 selected radiation damage series. All values rounded to 3sf. * symbol indicates final four structures have been excluded from the calculation of the line of best fit plotted for the series in Figure 3.

	<i>B</i> _{net} (Asp/Glu)		<i>B</i> _{net} (Asn/Gln)		Wilson <i>B</i> -factor	
Metric	Gradient (MGy ⁻¹)	y-intercept	Gradient (MGy ⁻¹)	y-intercept	Gradient (Å ² /MGy)	y-intercept (Å ²)
Mean average	0.291	1.65	-0.00237	1.96	0.351	13.6
Relative standard deviation	97.4%	27.2%	4360%	47.8%	154%	51.2%

Supplementary Table 2: Mean average and relative standard deviation scores calculated for the gradients and y-intercepts of the lines of best fit plotted between *B*_{net} and dose for the 23 radiation damage series listed in Supplementary Table 1. All values rounded to 3sf.

Publication	Protein	PDB accession codes	Doses (MGy)
Serrano-Posada <i>et</i>	Thermus thermophilus	2YAE, 2YAF, 2YAH,	0.2, 0.4, 0.6, 0.8, 1.0, 1.2,
<i>al.</i> , 2015 ⁴	HB27 multicopper	2YAM, 2YAO, 2YAP,	1.4, 1.6
	oxidase	2YAQ, 2YAR	
Ferraroni <i>et al.</i> ,	Steccherinum	3T6W, 3T6X, 3T6Z,	0.14, 0.28, 0.84, 1.26
2012 ⁵	ochraceum blue laccase	3T71	
Bui <i>et al.</i> , 2014	Aspergillus flavus urate	4CW2, 4CW6, 4CW3	0.0025, 0.092, 0.665
(series 1)°	oxidase (with 5-PMUA)		
Bui <i>et al.</i> , 2014	Aspergillus flavus urate	4D13, 4D17, 4D19	0.0022, 0.106, 1.75
(series 2)°	oxidase (with 5-PIU)		
Sutton <i>et al.</i> , 2013 ⁷	<i>Gallus gallus</i> lysozyme	4H8X, 4H8Y, 4H8Z,	0.07, 0.14, 0.21, 0.28,
		4H90, 4H91, 4H92, 4H92, 4H91, 4H92,	0.35, 0.42, 0.49, 0.56,
		4H9B 4H9C 4H9F	0.03, 0.70, 0.77, 0.04,
		4H9F, 4H9H, 4H9I	
Castellvi <i>et al.</i> ,	Homo sapiens aldose	6F7R, 6F81, 6F82	0.03, 0.75, 1.65
2019 ⁸	reductase		
Zarate-Romero et	Neurospora crassa	6NSW, 6NSY, 6NSZ,	0.135, 0.263, 0.526,
<i>al.</i> , 2019 ⁹	catalase-3	6NT0, 6NT1	1.31, 2.89
Taberman <i>et al.</i> ,	Streptomyces	6QRR, 6QRS, 6QRT,	0.13, 0.76, 1.38, 2.01,
201910	<i>rubiginosus</i> xylose	OURU, OURV, OURVV,	2.03, 3.25, 3.88
	isomerase		
Dubnovitsky <i>et al.</i> ,	Bacillus alcalophilus	2BHX, 2BI1, 2BI2, 2BI3,	0.022, 0.099, 0.22, 0.88,
2005	phosphoserine	2015, 2019, 201A	1.5, 2.9, 4.7
-	aminotransferase		12.46.02
Fioravanti <i>et al.</i> ,	Haloarcula marismortui	2J5K, 2J5Q, 2J5R	1.2, 4.6, 8.2
200712	malate dehydrogenase		01 25 40 72
Juers & Weik,	Bacillus	3P/P, 3P/Q, 3P/R, 3P/S	0.1, 2.5, 4.9, 7.2
2011.3	thermoproteolyticus		
Commune to 1 2010 ¹⁴	thermolysin		
Correy <i>et al.</i> , 2016	<i>Lucilia cuprina</i> gE7 carboxylesterase	4QWW, 4UBI, 4UBJ, 4LIRK 4LIRM 4LIRI	1.85, 3.7, 5.55, 7.4, 9.26, 11 11
Russi et al 2017	Homo saniens		1 11 2 22 3 33 4 44
$(series 1)^{15}$	cyclophilin A	5KUO, 5KUR, 5KUS,	5.55, 6.66, 7.77, 8.88,
(Selles 1)	cyclophinin A	5KUU, 5KUV, 5KUW	9.99
Russi <i>et al.</i> , 2017	Thaumatococcus	5KVW, 5KVX, 5KVZ,	1.86, 3.72, 5.58, 9.3
(series 2) ¹⁵	<i>daniellii</i> thaumatin	5KW0	
Polyakov <i>et al.</i> ,	Steccherinum	6RGH, 6RGP, 6RHH,	0.015, 0.165, 0.315,
2019	<i>murashkinskyi</i> laccase	6RHI, 6RHO	1.215, 4.065
(series 1) ¹⁶			
Polyakov <i>et al.</i> ,	Steccherinum	6RHR, 6RHU, 6RHX,	0.015, 0.165, 0.315,
2019	<i>murashkinskyi</i> laccase	6RI0, 6RI2	1.215, 4.065
(series 2) ¹⁶	(with chloride)		

Polyakov <i>et al.</i> ,	Steccherinum	6RI4, 6RI6, 6RI8, 6RII,	0.013, 0.4, 0.8, 1.2, 5.2
2019	<i>murashkinskyi</i> laccase	6RIK	
(series 3) ¹⁶	(with fluoride)		
De la Mora <i>et al.</i> ,	<i>Gallus gallus</i> lysozyme	2YBH, 2YBI, 2YBJ, 2YBL,	2.31, 6.62, 12.3, 17.9,
2011 ¹⁷		2YBM, 2YBN	23.3, 28.6
Pechkova <i>et al.</i> ,	Tritirachium album	3DDZ, 3DE0, 3DE1,	9.6, 22.45, 31.2, 44.05
2009	proteinase K, LB	3DE2	
(series 1) ¹⁸	nanotemplate		
Pechkova <i>et al.</i> ,	Tritirachium album	3DE3, 3DE4, 3DE5,	0.85, 9.6, 22.45, 31.2,
2009	proteinase K, classical	3DE6, 3DE7	44.05
(series 2) ¹⁸	hanging drop		
Fukuda <i>et al.</i> ,	Geobacillus	4YSO, 4YSP, 4YSQ,	0.064, 8.316, 8.38,
2016 ¹⁹	thermodenitrificans	4YSR, 4YSS, 4YST, 4YSU	16.632, 16.696, 24.948,
	copper nitrite		25.012
	reductase		
Hasegawa <i>et al.</i> ,	Photinus pyralis	5GX1, 5GX2, 5GX3,	1.1, 3.3, 6.6, 13.2, 25.3
2017 ²⁰	luciferin-regenerating	5GX4, 5GX5	
	enzyme		
Bury <i>et al.</i> , 2017 ¹	<i>Daphnia pulex</i> GH7	5MCC, 5MCD, 5MCE,	1.11, 3.27, 5.43, 7.59,
	family	5MCF, 5MCH, 5MCI,	9.75, 11.9, 14.1, 16.2,
	cellobiohydrolase	5MCJ, 5MCK, 5MCL,	18.4, 20.6, 22.7
		5MCM, 5MCN	

Supplementary Table 3: PDB accession codes and associated doses of the PX structures in the 23 radiation damage series analysed. All doses were calculated with RADDOSE (versions 1²¹, 2²² or 3D²³). Full metadata collated for each structure in the series is available at https://doi.org/10.5281/zenodo.5566557.

	Gradient of line of best fit plotted between B_{net} and dose (MGy ⁻¹) (3sf)				
	Original dataset from Dataset from PD		Original dataset		
	PDB	REDO	subjected to		
			unrestrained B-factor		
Series			refinement		
Serrano-Posada <i>et al.</i> ,	0.0532	0.142	-0.0657		
2015 ⁴					
Pechkova <i>et al.</i> , 2009,	0.0173	-0.0163	-0.000767		
series 1 ¹⁸					
Pechkova <i>et al.</i> , 2009,	0.0452	0.0222	0.0543		
series 2 ¹⁸					
Hasegawa <i>et al.</i> , 2017 ²⁰	-0.0137	0.105	0.127		

Supplementary Table 4: Further exploration of the relationship between B_{net} and dose for four radiation damage datasets (a subset of the 23 datasets listed in Supplementary Tables 1 and 3), each of whose calculated line of best fit between B_{net} and dose has an unusually low gradient. These gradients, calculated for structures downloaded from the PDB, are compared with the gradients of the lines of best fit measured between B_{net} and dose for: i) equivalent structures downloaded from the PDB-REDO databank; and ii) the original (*i.e.* PDB) structures subjected to three macrocycles of unrestrained *B*-factor refinement (see Methods for further details).

Structure property	<i>B</i> _{net} ρ _S (2sf)	<i>B</i> _{net} -percentile ρ _s	
		(2sf)	
Resolution (Å)	-0.42	0.0078	
Rwork	-0.41	-0.15	
R _{free}	-0.40	-0.12	
Temperature (K)	-0.016	-0.020	
Molecular mass (kDa)	-0.18	-0.0082	
Number of Asp/Glu	-0.20	-0.032	
side chain oxygen			
atoms			
% Asp/Glu	-0.091	-0.067	
B-factor restraint	-0.12	-0.17	
weight			

Supplementary Table 5: Spearman's rank correlation coefficients (ρ_s) of the B_{net} and B_{net} -percentile metrics with eight variables identified as possibly influencing their values (resolution, R_{work} , R_{free} , temperature, molecular mass, the number of aspartate/glutamate side chain oxygen atoms, the percentage of aspartate and glutamate residues in the structure, and *B*-factor restraint weight).

PDB accession	Bnet (PDB-	B _{net} percentile	Resolution	Resolution bin	B _{net} (PDB
code	REDO	(PDB-REDO	(3sf)	(min – max)	structure)
	structure)	structure)		(3sf)	
		(rounded to			
		4sf if less than			
		1)			
5WUC ²⁴	42.0	1	1.60	1.60 – 1.60	18.6
5FXL ²	34.1	1	1.78	1.77 – 1.79	29.6
5XQP ²⁵	31.4	1	1.00	0.900 – 1.10	12.9
3585	28.5	1	1.30	1.28 – 1.32	16.3
3UX1 ²⁶	27.5	1	2.80	2.80 - 2.80	25.1
1V70	26.6	0.9991	1.30	1.28 – 1.32	12.1
6Q5R ²⁷	25.4	0.9996	1.61	1.60 – 1.62	48.5
3A07 ³	25.1	1	1.19	1.15 – 1.23	10.1
6BKL ²⁸	23.4	1	2.00	2.00 - 2.00	10.4
2XMK ²⁹	20.9	1	1.35	1.33 – 1.37	28.1

Supplementary Table 6: The B_{net} , B_{net} -percentile and resolution values, plus the resolution bin considered when calculating B_{net} -percentile scores, for the 10 structures with the highest B_{net} values in the PDB-REDO databank as of 19th November 2020. For comparison, the B_{net} values of the original structures deposited by the authors in the PDB are also provided.

Supplementary References

- 1. Bury, C.S., Carmichael, I. & Garman, E.F. OH cleavage from tyrosine: debunking a myth. J. Syn. Rad. 24, 7-18 (2017).
- 2. Hirano, Y., Amano, Y., Yonemura, S. & Hakoshima, T. The force-sensing device region of alpha-catenin is an intrinsically disordered segment in the absence of intramolecular stabilization of the autoinhibitory form. *Genes Cells* **23**, 370-385 (2018).
- 3. Tanaka, H. et al. Mechanism by which the lectin actinohivin blocks HIV infection of target cells. *Proc. Natl Acad. Sci. USA* **106**, 15633-15638 (2009).
- 4. Serrano-Posada, H. et al. X-ray-induced catalytic active-site reduction of a multicopper oxidase: Structural insights into the proton-relay mechanism and O2-reduction states. *Acta Cryst. D.* **71**, 2396-2411 (2015).

- 5. Ferraroni, M. et al. Reaction intermediates and redox state changes in a blue laccase from Steccherinum ochraceum observed by crystallographic high/low X-ray dose experiments. *J. Inorg. Biochem.* **111**, 203-209 (2012).
- 6. Bui, S. et al. Direct evidence for a peroxide intermediate and a reactive enzymesubstrate-dioxygen configuration in a cofactor-free oxidase. *Angew Chem. Int. Ed. Engl.* **53**, 13710-4 (2014).
- 7. Sutton, K.A. et al. Insights into the mechanism of X-ray-induced disulfide-bond cleavage in lysozyme crystals based on EPR, optical absorption and X-ray diffraction studies. *Acta Cryst. D.* **69**, 2381-94 (2013).
- 8. Castellvi, A. et al. Efficacy of aldose reductase inhibitors is affected by oxidative stress induced under X-ray irradiation. *Sci. Rep.* **9**, 3177-3177 (2019).
- 9. Zarate-Romero, A., Stojanoff, V., Cohen, A.E., Hansberg, W. & Rudino-Pinera, E. Xray driven reduction of Cpd I of Catalase-3 from N. crassa reveals differential sensitivity of active sites and formation of ferrous state. *Arch. Biochem. Biophys.* **666**, 107-115 (2019).
- 10. Taberman, H., Bury, C.S., van der Woerd, M.J., Snell, E.H. & Garman, E.F. Structural knowledge or X-ray damage? A case study on xylose isomerase illustrating both. *J. Syn. Rad.* **26**, 931-944 (2019).
- 11. Dubnovitsky, A.P., Ravelli, R.B., Popov, A.N. & Papageorgiou, A.C. Strain relief at the active site of phosphoserine aminotransferase induced by radiation damage. *Protein Sci* **14**, 1498-507. (2005).
- 12. Fioravanti, E., Vellieux, F.M., Amara, P., Madern, D. & Weik, M. Specific radiation damage to acidic residues and its relation to their chemical and structural environment. *J. Syn. Rad.* **14**, 84-91. (2007).
- 13. Juers, D.H. & Weik, M. Similarities and differences in radiation damage at 100 K versus 160 K in a crystal of thermolysin. *J. Syn. Rad.* **18**, 329-337 (2011).
- 14. Correy, G.J. et al. Mapping the Accessible Conformational Landscape of an Insect Carboxylesterase Using Conformational Ensemble Analysis and Kinetic Crystallography. *Structure* **24**, 977-987 (2016).
- 15. Russi, S. et al. Conformational variation of proteins at room temperature is not dominated by radiation damage. *J. Syn. Rad.* **24**, 73-82 (2017).
- 16. Polyakov, K.M., Gavryushov, S., Fedorova, T.V., Glazunova, O.A. & Popov, A.N. The subatomic resolution study of laccase inhibition by chloride and fluoride anions using single-crystal serial crystallography: insights into the enzymatic reaction mechanism. *Acta Cryst. D.* **75**, 804-816 (2019).
- De la Mora, E., Carmichael, I. & Garman, E.F. Effective scavenging at cryotemperatures: further increasing the dose tolerance of protein crystals. *J. Syn. Rad.* 18, 346-57. (2011).
- Pechkova, E., Tripathi, S., Ravelli, R.B., McSweeney, S. & Nicolini, C. Radiation stability of proteinase K crystals grown by LB nanotemplate method. *J. Struct. Biol.* 168, 409-418 (2009).
- 19. Fukuda, Y. et al. Redox-coupled structural changes in nitrite reductase revealed by serial femtosecond and microfocus crystallography. *J. Biochem.* **159**, 527-538 (2016).
- 20. Hasegawa, K. et al. Development of a dose-limiting data collection strategy for serial synchrotron rotation crystallography. *J. Syn. Rad.* **24**, 29-41 (2017).
- 21. Murray, J.W., Garman, E.F. & Ravelli, R.B.G. X-ray absorption by macromolecular crystals: the effects of wavelength and crystal composition on absorbed dose. *J. Appl. Cryst.* **37**, 513-522 (2004).

- 22. Paithankar, K.S., Owen, R.L. & Garman, E.F. Absorbed dose calculations for macromolecular crystals: improvements to RADDOSE. J. Syn. Rad. 16, 152-162 (2009).
- 23. Zeldin, O.B., Gerstel, M. & Garman, E.F. RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography. *J. Appl. Cryst.* **46**, 1225-1230 (2013).
- 24. Su, M. et al. Structural basis for conductance through TRIC cation channels. *Nat. Commun.* **8** 15103-15103 (2017).
- 25. Mahatabuddin, S. et al. Polypentagonal ice-like water networks emerge solely in an activity-improved variant of ice-binding protein. *Proc. Natl Acad. Sci. USA* **115** 5456-5461 (2018).
- 26. Dimattia, M.A. et al. Structural insight into the unique properties of adeno-associated virus serotype 9. *J. Virol.* **86**, 6947-6958 (2012).
- 27. Rhys, G.G. et al. Navigating the Structural Landscape of De Novo alpha-Helical Bundles. J. Am. Chem. Soc. 141, 8787-8797 (2019).
- 28. Thomaston, J.L., Polizzi, N.F., Konstantinidi, A., Wang, J., Kolocouris, A., DeGrado, W.F. Inhibitors of the M2 Proton Channel Engage and Disrupt Transmembrane Networks of Hydrogen-Bonded Waters. *J. Am. Chem. Soc.* **140**, 15219-15226 (2018).
- 29. Badarau, A., Firbank, S.J., Mccarthy, A.A., Banfield, M.J. & Dennison, C. Visualizing the Metal-Binding Versatility of Copper Trafficking Sites. *Biochemistry* **49**, 7798-7810 (2010).