# **RiboReport - Supplemental Material**

Rick Gelhausen<sup>1</sup>, Teresa Müller<sup>1</sup>, Sarah L. Svensson<sup>3</sup>, Omer S. Alkhnbashi<sup>1</sup>, Cynthia M. Sharma<sup>3</sup>, Florian Eggenhofer<sup>1</sup>, Rolf Backofen<sup>1,2</sup>

<sup>1</sup> Bioinformatics Group, Department of Computer Science University of Freiburg, Georges-Köhler-Allee, 79110 Freiburg, Germany

<sup>2</sup> Centre for Biological Signalling Studies (BIOSS), University of Freiburg, 79110 Freiburg, Germany

<sup>3</sup> Department of Molecular Infection Biology II, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider-Str. 2 / D15, 97080 Würzburg, Germany

# **Table of Contents**

| А            | Intro      | oduction                                        | 2  |
|--------------|------------|-------------------------------------------------|----|
| В            | Valie      | dation of labeling method                       | 2  |
| С            | Supp       | plementary Result Figures                       | 3  |
| D            | Supp       | plementary Result Tables                        | 9  |
|              | D.1        | Translatome                                     | 9  |
|              | D.2        | Close-proximity genes                           | 14 |
|              | D.3        | Stand-alone genes                               | 18 |
|              | D.4        | Small Open Reading Frames                       | 22 |
|              | D.5        | Novel sORF detection                            | 25 |
| Е            | Eval       | uation of key results                           | 25 |
|              | E.1        | Predictive power for the <i>translatome</i> set | 25 |
|              | E.2        | Predictive power inside and outside of operons  | 25 |
|              | E.3        | Prediction of novel sORFs                       | 26 |
|              | E.4        | Runtime                                         | 26 |
|              | E.5        | Memory                                          | 26 |
|              | E.6        | Applicability                                   | 27 |
|              | E.7        | Usability                                       | 27 |
| $\mathbf{F}$ | Adaj       | pter sequences used for trimming                | 29 |
|              | <b>F.1</b> | <i>E. coli</i>                                  | 29 |
|              | F.2        | L. monocytogenes                                | 29 |
|              | F.3        | P. aeruginosa                                   | 29 |
|              | F.4        | S. Typhimurium                                  | 29 |

# A Introduction

This document contains supplemental material for *RiboReport* - *Benchmarking* tools for ribosome profiling-based identification of open reading frames in bacteria.

# **B** Validation of labeling method

We validated our labeling approach by comparison to available published MS datasets (proteomics) for the same strains grown under similar conditions. Comparing the translated ORFs found by our labeling method to those detected in the retrieved proteomics data for each organism showed that the majority of genes labeled as translated based on Ribo-seq were also detected by MS (Supplemental Figure S1)(on average 83.81% across all four organisms), thereby validating our labeling procedure.

To further showcase the overlap of human labeling in the genome browser versus MS to generate a robust benchmark set, we selected a set of conserved and highly translated ORFs that could be compared in all four organisms: a long ribosomal protein island that is highly conserved in bacteria (genes rpmJ to secY) and also features several sORFs with less than 50 aa. The genome browser tracks show that for *E. coli*, *P. aeruginosa*, and *L. monocytogenes*, both MS and labeling detected all 22 of these ORFs and that the entire island showed strong Ribo-seq coverage (Supplemental Figures S2A - S2C). In contrast, while all 22 ORFs were labeled as translated in *S.* Typhimurium only five were detected by MS, consistent with the generally lower sensitivity of the *S.* Typhimurium MS dataset (Figure S1).

As an additional check of our labeling procedure, we also labeled a selection of tRNAs and annotated non-coding RNAs based on our de novo E. coli dataset (data not shown). None of the tRNAs examined (86) were called as translated based on comparison of Ribo-seq and RNA-seq coverage. Several wellcharacterized ncRNAs were also labeled as not translated, such as the regulatory small RNAs MicA (Supplemental Figure S3A), Spot 42, SdsR, and GlmY, as well as the housekeeping RNA components of the signal recognition particle (SRP RNA) and RNase P (RnpB) (data not shown). However, some known non-coding RNAs were labeled as translated, such as CsrC (Supplemental Figure S3B) and tmRNA (data not shown). Some of these false positives could be due to resistance to RNase digestion or association with ribosomes (tmRNA). However, some, such as the annotated non-coding RNA RyeG, were recently shown to encode translated sORFs (Supplemental Figure S3C, yodE, 48 aa) [1]. We also inspected an ORF that was detected by MS, but not labeled as translated, katE. This ORF was not labeled as translated because of low coverage (generally below 10 relative reads) (Supplemental Figure S3D). Its detection by MS suggests either the conditions for Ribo-seq and MS were slightly different, or that KatE is a relatively stable protein that is translated at an earlier growth phase from an mRNA that is not highly expressed during exponential growth. Nonetheless, while these examples (Supplemental Figure S3B and S3D) highlight some limitations of our labeling approach, overall the overlap of labels and MS, together with accurate labeling of known non-coding RNAs and sORFs, demonstrates the validity of our approach.

# C Supplementary Result Figures



Fig. S1: Comparison between ORFs labeled as translated with Riboseq data and ORFs detected with proteomics. The intersection between annotated ORFs labeled as translated based on Ribo-seq data (Labels) and those detected by mass spectrometry (MS) for the four benchmark datasets. The majority of the genes detected by MS are also present in the labeled benchmark dataset. The percent of MS ORFs that were also found by our labeling method for each organism are as follows: *E. coli*, 90%; *L. monocytogenes*, 90%; *P. aeruginosa*, 86%; *S.* Typhimurium, 68%; and on average 83.8%. The large overlap validates the manual labeling strategy we employed to create the benchmark datasets.



Fig. S2: Comparison of manual Ribo-seq labels and proteomics (MS) for conserved ribosomal protein ORFs from S. Typhimurium (A), P. aeruginosa (B), and L. monocytogenes (C). Related to Main Figure 3. The conserved region between rpmJ and secY encodes several highly expressed ORFs of diverse length. Corresponding genes between the organisms are labeled with the same colour in the annotation. Genes that are detected in the publicly available MS dataset and by manual curation of the Ribo-seq data (label) are dark grey. Detection by the indicated tools at a 70% overlap threshold based on Ribo-seq data (or RNA-seq, IRSOM) is indicated in light grey. Those that are not detected are white. Transcriptional start sites, if available, are indicated with a bent arrow (+1). Hatched arrows indicate that predictions could not be generated for the genome/dataset.



Fig. S3: Assessing the quality/accuracy of manual curation for wellcharacterized and/or validated *E. coli* genes. An example of a true negative, false positive, true positive, and false negative manual curation from the *E. coli* dataset were selected. (A) The non-coding base-pairing regulatory RNA MicA was correctly labeled as not translated based on Ribo-seq coverage and is a true-negative. (B) The non-coding RNA CsrC shows coverage in the Ribo-seq library and was false-positively labeled as translated. (C) The newly validated sORF true-positive *yodE* (48 aa) [1], encoded on the annotated RyeG sRNA, was labeled as translated based on Ribo-seq. (D) The *katE* ORF was not labeled as translated and shows low coverage in the RNA-seq and Ribo-seq libraries, but has been detected by MS under similar growth conditions. Tool predictions and MS data for annotated coding genes are also included for comparison. Detection (grey arrows) or no detection (white arrows) was determined at a 70% overlap threshold.



Fig. S4: Comparison of detection of corresponding ORFs from the translatome and small ORFs sets by the four tested tools. (A) S. Typhimurium cydABX. (B) P. aeruginosa cioABZ operon. (C) L. monocytogenes cydAB operon. (D) The validated L. monocytogenes sORF lmo1980 (45 aa). The ORFs annotated in syntenic cydAB/cioAB regions, encoding terminal oxidase complexes, were inspected for MS detection, detection based on Ribo-seq by either manual labeling or the computational tools. Corresponding genes between the organisms are labeled in the same colour in the annotation track. Genes encoding associated small protein components of the complexes (pink arrow) are annotated so far only in *P. aeruginosa* (cioZ) and have so far not been detected in the L. monocytogenes cydAB operon [2]. Detection (grey arrows) or no detection (white arrows) was determined at a 70% overlap threshold. Hatched genes indicate that predictions could not be generated for the genome/dataset. Spaces between cydA and cydB are as follows: S. Typhimurium: 15 nt, P. aeruginosa: 3 nt, and L. monocytogenes, 14 nt overlap. For all panels, detection (grey arrows) or no detection (white arrows) was determined at a 70% overlap threshold. Hatched arrows indicate that predictions could not be generated for the genome/dataset.



Fig. S5: Detection of examples of ORFs in bacteria-specific contexts in *E. coli.* set of eight lowly-transcribed polycistronic ORFs (*ydjX-ynjE*) was not labeled as translated based on Ribo-seq because of low overall coverage, but protein products from three of these ORFs were detected by MS under similar growth conditions. (B) The overlapping *btuB-murI* operon. Both ORFs were detected in the MS dataset, labeled as translated based on Ribo-seq, and were also identified by DeepRibo, REPARATION blast, ribotricer, smOR-Fer, and IRSOM. (C) The leaderless ORF *rluC*, which was detected by MS and labeled based on Ribo-seq, was also detected by the prediction tools DeepRibo, REPARATION\_blast, smORFer, ribotricer, and IRSOM, even without a Shine-Dalgarno sequence. (D) The dual function RNA SgrS acts as both a base-pairing repressor, and also encodes the small protein SgrT (43 aa [3]. SgrT was not detected by MS under these conditions but was labeled as translated based on Ribo-seq coverage and was detected by DeepRibo and REPARATION\_blast. For all panels, detection (grey arrows) or no detection (white arrows) was determined at a 70% overlap threshold.



Fig. S6: DeepRibo prediction score distribution. The predictions are split into annotated (orange) and novel (blue) ORF predictions. Novel predictions are those having a score of '-1' for the 'dist' parameter, as described in the DeepRibo documentation. For E. coli the prediction score of the last predicted annotated ORF is -12.14 and the number of novel predictions after this ORF is 42,879. For L. monocytogenes the prediction score of the last predicted annotated ORF is -11.13 and the number of novel predictions after this ORF is 45,282. For P. aeruginosa the prediction score of the last predicted annotated ORF is -12.01 and the number of novel predictions after this ORF is 37,470. For S. Typhimurium the prediction score of the last predicted annotated ORF is -14.8 and the number of novel predictions after this ORF is 36,272.

#### D Supplementary Result Tables

The following supplemental result tables are also available as Google Spreadsheets for exporting and further analysis.

#### **D.1** Translatome

**Table S1:** Statistical evaluation of tool performance for *translatome* ORFs for the *E. coli* benchmark dataset using overlap thresholds of 0.01, 0.7, or 0.9. The overlap threshold is the percent of the ORF length that must overlap with the prediction. The overlap threshold needs to be fulfilled both for prediction with labeled ORF and vice versa. The true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) are based on the numbers of ORFs or predictions given the current overlap threshold. The sensitivity or TP rate (TPR), specificity or TN rate (TNR), FN rate (FNR), precision or positive predictive value (PPV), false discovery rate (FDR), F1 measure, and the accuracy are calculated based on the given TP, TN, FP, and FN values. Since more than one prediction meeting the specified overlap threshold can overlap with one ORF, the number of additional overlapping predictions are reported in the suboptimal TP (sTP) and suboptimal FP (sFP) columns. The number of prediction which do not overlap, given the overlap cutoff, with any annotated gene are displayed int the column no gene found (no\_gene)

TP TN FP FN TPR TNR FNR PPV FDR F1 accuracy sTP sFP no\_gene tool

| <i>E. c</i> | oli an | nd u | sing o | verlap | of <b>0</b> . | 01   |      |               |      |       |     |       |                    |
|-------------|--------|------|--------|--------|---------------|------|------|---------------|------|-------|-----|-------|--------------------|
| 2704        | 644    | 841  | 59     | 0.98   | 0.43          | 0.02 | 0.76 | $0.24\ 0.86$  | 0.79 | 58    | 8   | 149   | REPARATION_blast   |
| 1751        | 1216   | 269  | 1012   | 0.63   | 0.82          | 0.37 | 0.87 | $0.13\ 0.73$  | 0.70 | 2571  | 157 | 81    | Ribo-TISH          |
| 2670        | 1205   | 280  | 93     | 0.97   | 0.81          | 0.03 | 0.91 | $0.09 \ 0.93$ | 0.91 | 16315 | 342 | 2452  | DeepRibo           |
| 1470        | 755    | 730  | 1293   | 0.53   | 0.51          | 0.47 | 0.67 | $0.33 \ 0.59$ | 0.52 | 55    | 33  | 191   | IRSOM              |
| 1095        | 800    | 685  | 1668   | 0.40   | 0.54          | 0.60 | 0.62 | $0.38\ 0.48$  | 0.45 | 2     | 2   | 0     | SPECtre            |
| 2036        | 1394   | 91   | 727    | 0.74   | 0.94          | 0.26 | 0.96 | $0.04\ 0.83$  | 0.81 | 5263  | 28  | 657   | PRICE              |
| 2544        | 507    | 978  | 219    | 0.92   | 0.34          | 0.08 | 0.72 | $0.28\ 0.81$  | 0.72 | 24    | 8   | 414   | ribotricer         |
| 2366        | 568    | 917  | 397    | 0.86   | 0.38          | 0.14 | 0.72 | $0.28\ 0.78$  | 0.69 | 2689  | 395 | 1403  | smORFer            |
| <i>E. c</i> | oli an | nd u | sing o | verlap | of <b>0</b> . | 7    |      |               |      |       |     |       |                    |
| 2693        | 709    | 776  | 70     | 0.97   | 0.48          | 0.03 | 0.78 | $0.22\ 0.86$  | 0.80 | 1     | 0   | 272   | $REPARATION_blast$ |
| 84          | 1416   | 69   | 2679   | 0.03   | 0.95          | 0.97 | 0.55 | $0.45\ 0.06$  | 0.35 | 59    | 26  | 4589  | Ribo-TISH          |
| 2305        | 1437   | 48   | 458    | 0.83   | 0.97          | 0.17 | 0.98 | $0.02\ 0.90$  | 0.88 | 17    | 1   | 19664 | DeepRibo           |
| 1425        | 782    | 703  | 1338   | 0.52   | 0.53          | 0.48 | 0.67 | $0.33\ 0.58$  | 0.52 | 6     | 7   | 320   | IRSOM              |
| 1094        | 802    | 683  | 1669   | 0.40   | 0.54          | 0.60 | 0.62 | $0.38\ 0.48$  | 0.45 | 0     | 0   | 0     | SPECtre            |
| 326         | 1451   | 34   | 2437   | 0.12   | 0.98          | 0.88 | 0.91 | $0.09\ 0.21$  | 0.42 | 1     | 0   | 7711  | PRICE              |
| 2542        | 510    | 975  | 221    | 0.92   | 0.34          | 0.08 | 0.72 | $0.28\ 0.81$  | 0.72 | 3     | 1   | 432   | ribotricer         |
| 1138        | 1080   | 405  | 1625   | 0.41   | 0.73          | 0.59 | 0.74 | $0.26\ 0.53$  | 0.52 | 3     | 2   | 6210  | smORFer            |
| E. c        | oli an | nd u | sing o | verlap | of <b>0</b> . | 9    |      |               |      |       |     |       |                    |
| 2650        | 773    | 712  | 113    | 0.96   | 0.52          | 0.04 | 0.79 | $0.21 \ 0.87$ | 0.81 | 0     | 0   | 380   | $REPARATION_blast$ |
| 51          | 1444   | 41   | 2712   | 0.02   | 0.97          | 0.98 | 0.55 | $0.45\ 0.04$  | 0.35 | 9     | 4   | 4722  | Ribo-TISH          |
| 2246        | 1440   | 45   | 517    | 0.81   | 0.97          | 0.19 | 0.98 | $0.02\ 0.89$  | 0.87 | 3     | 0   | 19741 | DeepRibo           |
| 1425        | 782    | 703  | 1338   | 0.52   | 0.53          | 0.48 | 0.67 | $0.33\ 0.58$  | 0.52 | 2     | 2   | 329   | IRSOM              |
| 1094        | 802    | 683  | 1669   | 0.40   | 0.54          | 0.60 | 0.62 | $0.38\ 0.48$  | 0.45 | 0     | 0   | 0     | SPECtre            |
| 234         | 1456   | 29   | 2529   | 0.08   | 0.98          | 0.92 | 0.89 | $0.11\ 0.15$  | 0.40 | 0     | 0   | 7809  | PRICE              |
| 2542        | 510    | 975  | 221    | 0.92   | 0.34          | 0.08 | 0.72 | $0.28\ 0.81$  | 0.72 | 0     | 0   | 436   | ribotricer         |
| 728         | 1265   | 220  | 2035   | 0.26   | 0.85          | 0.74 | 0.77 | $0.23\ 0.39$  | 0.47 | 0     | 0   | 6810  | smORFer            |

**Table S2:** Statistical evaluation of the *translatome* ORFs for the benchmark dataset L. *monocytogenes* using overlap thresholds of 0.01, 0.7, or 0.9. A detailed column description can be found in main Table S1.

TP TN FP FN TPR TNR FNR PPV FDR F1 accuracy sTP sFP no-gene tool

| L. n | iona | bcyt | ogene | $\boldsymbol{s}$ and | using | g overl | lap of | 0.01 |      |      |       |      |       |                    |
|------|------|------|-------|----------------------|-------|---------|--------|------|------|------|-------|------|-------|--------------------|
| 1946 | 335  | 244  | 342   | 0.85                 | 0.58  | 0.15    | 0.89   | 0.11 | 0.87 | 0.80 | 58    | 8    | 47    | $REPARATION_blast$ |
| 1023 | 390  | 189  | 1265  | 0.45                 | 0.67  | 0.55    | 0.84   | 0.16 | 0.58 | 0.49 | 695   | 110  | 80    | Ribo-TISH          |
| 2284 | 56   | 523  | 4     | 1.00                 | 0.10  | 0.00    | 0.81   | 0.19 | 0.90 | 0.82 | 15433 | 2051 | 4211  | DeepRibo           |
| 985  | 290  | 289  | 1303  | 0.43                 | 0.50  | 0.57    | 0.77   | 0.23 | 0.55 | 0.44 | 34    | 21   | 62    | IRSOM              |
| -    | -    | -    | -     | -                    | -     | -       | -      | -    | -    | -    | -     | -    | -     | SPECtre            |
| 2164 | 227  | 352  | 124   | 0.95                 | 0.39  | 0.05    | 0.86   | 0.14 | 0.90 | 0.83 | 12664 | 673  | 3007  | PRICE              |
| 2288 | 4    | 575  | 0     | 1.00                 | 0.01  | 0.00    | 0.80   | 0.20 | 0.89 | 0.80 | 41    | 31   | 238   | ribotricer         |
| L. n | iona | bcyt | ogene | $\boldsymbol{s}$ and | using | g overl | lap of | 0.7  |      |      |       |      |       |                    |
| 1866 | 367  | 212  | 422   | 0.82                 | 0.63  | 0.18    | 0.90   | 0.10 | 0.85 | 0.78 | 0     | 0    | 207   | REPARATION_blast   |
| 55   | 556  | 23   | 2233  | 0.02                 | 0.96  | 0.98    | 0.71   | 0.29 | 0.05 | 0.21 | 32    | 18   | 1967  | Ribo-TISH          |
| 2194 | 215  | 364  | 94    | 0.96                 | 0.37  | 0.04    | 0.86   | 0.14 | 0.91 | 0.84 | 4     | 1    | 21864 | DeepRibo           |
| 962  | 298  | 281  | 1326  | 0.42                 | 0.51  | 0.58    | 0.77   | 0.23 | 0.54 | 0.44 | 6     | 1    | 108   | IRSOM              |
| -    | -    | -    | -     | -                    | -     | -       | -      | -    | -    | -    | -     | -    | -     | SPECtre            |
| 461  | 565  | 14   | 1827  | 0.20                 | 0.98  | 0.80    | 0.97   | 0.03 | 0.33 | 0.36 | 0     | 0    | 18364 | PRICE              |
| 2288 | 4    | 575  | 0     | 1.00                 | 0.01  | 0.00    | 0.80   | 0.20 | 0.89 | 0.80 | 7     | 1    | 269   | ribotricer         |
| L. n | iond | bcyt | ogene | $\boldsymbol{s}$ and | using | g overl | lap of | 0.9  |      |      |       |      |       |                    |
| 1837 | 374  | 205  | 451   | 0.80                 | 0.65  | 0.20    | 0.90   | 0.10 | 0.85 | 0.77 | 0     | 0    | 243   | $REPARATION_blast$ |
| 36   | 564  | 15   | 2252  | 0.02                 | 0.97  | 0.98    | 0.71   | 0.29 | 0.03 | 0.21 | 7     | 2    | 2035  | Ribo-TISH          |
| 2155 | 224  | 355  | 133   | 0.94                 | 0.39  | 0.06    | 0.86   | 0.14 | 0.90 | 0.83 | 0     | 0    | 21916 | DeepRibo           |
| 962  | 298  | 281  | 1326  | 0.42                 | 0.51  | 0.58    | 0.77   | 0.23 | 0.54 | 0.44 | 3     | 1    | 111   | IRSOM              |
| -    | -    | -    | -     | -                    | -     | -       | -      | -    | -    | -    | -     | -    | -     | SPECtre            |
| 448  | 570  | 9    | 1840  | 0.20                 | 0.98  | 0.80    | 0.98   | 0.02 | 0.33 | 0.36 | 0     | 0    | 18382 | PRICE              |
| 2288 | 4    | 575  | 0     | 1.00                 | 0.01  | 0.00    | 0.80   | 0.20 | 0.89 | 0.80 | 2     | 0    | 273   | ribotricer         |

**Table S3:** Statistical evaluation of the *translatome* ORFs for the benchmark dataset *P. aeruginosa* and using overlap threshold of 0.01, 0.7, or 0.9. A detailed column description can be found in main Table S1.

TP TN FP FN TPR TNR FNR PPV FDR F1 accuracy sTP sFP no-gene tool

| P. a | erug | inosa | and  | using | overla | ap of | 0.01 |               |      |       |     |       |                    |
|------|------|-------|------|-------|--------|-------|------|---------------|------|-------|-----|-------|--------------------|
| 2452 | 1326 | 312   | 1483 | 0.62  | 0.81   | 0.38  | 0.89 | $0.11\ 0.73$  | 0.68 | 57    | 6   | 60    | $REPARATION_blast$ |
| 2776 | 1013 | 625   | 1159 | 0.71  | 0.62   | 0.29  | 0.82 | $0.18\ 0.76$  | 0.68 | 3143  | 335 | 111   | Ribo-TISH          |
| 3869 | 1014 | 624   | 66   | 0.98  | 0.62   | 0.02  | 0.86 | $0.14\ 0.92$  | 0.88 | 12954 | 790 | 3990  | DeepRibo           |
| 2514 | 455  | 1183  | 1421 | 0.64  | 0.28   | 0.36  | 0.68 | $0.32\ 0.66$  | 0.53 | 145   | 117 | 204   | IRSOM              |
| 101  | 1339 | 299   | 3834 | 0.03  | 0.82   | 0.97  | 0.25 | $0.75\ 0.05$  | 0.26 | 0     | 0   | 0     | SPECtre            |
| 3349 | 1263 | 375   | 586  | 0.85  | 0.77   | 0.15  | 0.90 | $0.10\ 0.87$  | 0.83 | 3278  | 45  | 359   | PRICE              |
| 3738 | 273  | 1365  | 197  | 0.95  | 0.17   | 0.05  | 0.73 | $0.27\ 0.83$  | 0.72 | 22    | 10  | 474   | ribotricer         |
| P. a | erug | inosa | and  | using | overla | ap of | 0.7  |               |      |       |     |       |                    |
| 2271 | 1350 | 288   | 1664 | 0.58  | 0.82   | 0.42  | 0.89 | $0.11\ 0.70$  | 0.65 | 6     | 0   | 304   | REPARATION_blast   |
| 143  | 1562 | 76    | 3792 | 0.04  | 0.95   | 0.96  | 0.65 | $0.35 \ 0.07$ | 0.31 | 79    | 36  | 6647  | Ribo-TISH          |
| 3689 | 1378 | 260   | 246  | 0.94  | 0.84   | 0.06  | 0.93 | $0.07 \ 0.94$ | 0.91 | 661   | 45  | 17408 | DeepRibo           |
| 2423 | 504  | 1134  | 1512 | 0.62  | 0.31   | 0.38  | 0.68 | $0.32\ 0.65$  | 0.53 | 11    | 15  | 479   | IRSOM              |
| 101  | 1339 | 299   | 3834 | 0.03  | 0.82   | 0.97  | 0.25 | $0.75\ 0.05$  | 0.26 | 0     | 0   | 0     | SPECtre            |
| 2121 | 1447 | 191   | 1814 | 0.54  | 0.88   | 0.46  | 0.92 | $0.08 \ 0.68$ | 0.64 | 3     | 0   | 5073  | PRICE              |
| 3738 | 276  | 1362  | 197  | 0.95  | 0.17   | 0.05  | 0.73 | $0.27\ 0.83$  | 0.72 | 3     | 0   | 480   | ribotricer         |
| P. a | erug | inosa | and  | using | overla | ap of | 0.9  |               |      |       |     |       |                    |
| 2097 | 1365 | 273   | 1838 | 0.53  | 0.83   | 0.47  | 0.88 | $0.12\ 0.67$  | 0.62 | 1     | 0   | 498   | $REPARATION_blast$ |
| 71   | 1591 | 47    | 3864 | 0.02  | 0.97   | 0.98  | 0.60 | $0.40\ 0.04$  | 0.30 | 12    | 5   | 6846  | Ribo-TISH          |
| 3571 | 1406 | 232   | 364  | 0.91  | 0.86   | 0.09  | 0.94 | $0.06 \ 0.92$ | 0.89 | 127   | 15  | 18118 | DeepRibo           |
| 2421 | 506  | 1132  | 1514 | 0.62  | 0.31   | 0.38  | 0.68 | $0.32\ 0.65$  | 0.53 | 5     | 7   | 497   | IRSOM              |
| 101  | 1339 | 299   | 3834 | 0.03  | 0.82   | 0.97  | 0.25 | $0.75\ 0.05$  | 0.26 | 0     | 0   | 0     | SPECtre            |
| 1543 | 1518 | 120   | 2392 | 0.39  | 0.93   | 0.61  | 0.93 | $0.07 \ 0.55$ | 0.55 | 0     | 0   | 5725  | PRICE              |
| 3738 | 276  | 1362  | 197  | 0.95  | 0.17   | 0.05  | 0.73 | $0.27\ 0.83$  | 0.72 | 1     | 0   | 482   | ribotricer         |

**Table S4:** Statistical evaluation of the *translatome* for the benchmark dataset S. Typhimurium and using overlap threshold of 0.01, 0.7 or 0.9. A detailed column description can be found in Table S1.

| <i>S</i> . T | yphi | mur | rium | and u | sing o | verlap | o of <b>0</b> | .01           |      |       |     |                                |
|--------------|------|-----|------|-------|--------|--------|---------------|---------------|------|-------|-----|--------------------------------|
| 3056         | 1076 | 611 | 228  | 0.93  | 0.64   | 0.07   | 0.83          | $0.17\ 0.88$  | 0.83 | 80    | 29  | 30 REPARATION_blast            |
| 2032         | 1451 | 236 | 1252 | 0.62  | 0.86   | 0.38   | 0.90          | $0.10\ 0.73$  | 0.70 | 2937  | 165 | $37 \; \texttt{Ribo-TISH}$     |
| 3088         | 1462 | 225 | 196  | 0.94  | 0.87   | 0.06   | 0.93          | $0.07 \ 0.94$ | 0.92 | 15588 | 109 | $1307 \; {\tt DeepRibo}$       |
| 1677         | 853  | 834 | 1607 | 0.51  | 0.51   | 0.49   | 0.67          | $0.33\ 0.58$  | 0.51 | 80    | 57  | 89 IRSOM                       |
| 142          | 1303 | 384 | 3142 | 0.04  | 0.77   | 0.96   | 0.27          | $0.73\ 0.07$  | 0.29 | 3     | 3   | 0 SPECtre                      |
| 2210         | 1644 | 43  | 1074 | 0.67  | 0.97   | 0.33   | 0.98          | $0.02 \ 0.80$ | 0.78 | 3703  | 3   | 450  price                     |
| 3116         | 715  | 972 | 168  | 0.95  | 0.42   | 0.05   | 0.76          | $0.24\ 0.85$  | 0.77 | 52    | 57  | $20 \; \texttt{ribotricer}$    |
| <i>S.</i> T  | yphi | mur | rium | and u | sing o | verlap | o of <b>0</b> | .7            |      |       |     |                                |
| 3017         | 1168 | 519 | 267  | 0.92  | 0.69   | 0.08   | 0.85          | $0.15\ 0.88$  | 0.84 | 0     | 0   | 169 REPARATION_blast           |
| 317          | 1599 | 88  | 2967 | 0.10  | 0.95   | 0.90   | 0.78          | $0.22\ 0.17$  | 0.39 | 258   | 42  | 4674 Ribo-TISH                 |
| 2521         | 1657 | 30  | 763  | 0.77  | 0.98   | 0.23   | 0.99          | $0.01 \ 0.86$ | 0.84 | 19    | 1   | $17642 \; {\tt DeepRibo}$      |
| 1642         | 897  | 790 | 1642 | 0.50  | 0.53   | 0.50   | 0.68          | $0.32\ 0.57$  | 0.51 | 10    | 9   | 185 IRSOM                      |
| 142          | 1304 | 383 | 3142 | 0.04  | 0.77   | 0.96   | 0.27          | $0.73\ 0.07$  | 0.29 | 0     | 0   | 0 SPECtre                      |
| 900          | 1676 | 11  | 2384 | 0.27  | 0.99   | 0.73   | 0.99          | $0.01\ 0.43$  | 0.52 | 0     | 0   | 5473 price                     |
| 3114         | 732  | 955 | 170  | 0.95  | 0.43   | 0.05   | 0.77          | $0.23\ 0.85$  | 0.77 | 0     | 0   | 20  ribotricer                 |
| <i>S.</i> T  | yphi | mur | rium | and u | sing o | verlap | o of <b>0</b> | .9            |      |       |     |                                |
| 2921         | 1212 | 475 | 363  | 0.89  | 0.72   | 0.11   | 0.86          | $0.14\ 0.87$  | 0.83 | 0     | 0   | $309 \text{ REPARATION_blast}$ |
| 218          | 1626 | 61  | 3066 | 0.07  | 0.96   | 0.93   | 0.78          | $0.22\ 0.12$  | 0.37 | 43    | 9   | $5048 \; {\tt Ribo-TISH}$      |
| 2459         | 1661 | 26  | 825  | 0.75  | 0.98   | 0.25   | 0.99          | $0.01 \ 0.85$ | 0.83 | 1     | 0   | $17727 \; {\tt DeepRibo}$      |
| 1641         | 897  | 790 | 1643 | 0.50  | 0.53   | 0.50   | 0.68          | $0.32 \ 0.57$ | 0.51 | 3     | 1   | 201 IRSOM                      |
| 142          | 1304 | 383 | 3142 | 0.04  | 0.77   | 0.96   | 0.27          | $0.73\ 0.07$  | 0.29 | 0     | 0   | 0 SPECtre                      |
| 726          | 1677 | 10  | 2558 | 0.22  | 0.99   | 0.78   | 0.99          | $0.01 \ 0.36$ | 0.48 | 0     | 0   | 5648 price                     |
| 3114         | 732  | 955 | 170  | 0.95  | 0.43   | 0.05   | 0.77          | $0.23\ 0.85$  | 0.77 | 0     | 0   | $20 \; {\tt ribotricer}$       |

#### 14 Gelhausen, Müller et al

## D.2 Close-proximity genes

**Table S5:** Statistical evaluation of ORFs located in operons for the benchmark dataset *E. coli* and using overlap threshold of 0.01, 0.7, or 0.9. A detailed column description can be found in main Table S1.

| TP           | TN FP       | $_{\rm FN}$ | TPR     | TNR           | FNR  | PPV  | FDR  | F1   | accuracy | $\mathrm{sTP}$ | $\mathrm{sFP}$ | tool               |
|--------------|-------------|-------------|---------|---------------|------|------|------|------|----------|----------------|----------------|--------------------|
| <i>E. co</i> | oli and u   | sing o      | overlap | o of <b>0</b> | .01  |      |      |      |          |                |                |                    |
| 1766         | 451 564     | 28          | 0.98    | 0.44          | 0.02 | 0.76 | 0.24 | 0.86 | 0.79     | 37             | 7              | $REPARATION_blast$ |
| 1128         | $840\ 175$  | 666         | 0.63    | 0.83          | 0.37 | 0.87 | 0.13 | 0.73 | 0.70     | 1666           | 97             | Ribo-TISH          |
| 1727         | 849 166     | 67          | 0.96    | 0.84          | 0.04 | 0.91 | 0.09 | 0.94 | 0.92     | 10444          | 164            | DeepRibo           |
| 919          | $514 \ 501$ | 875         | 0.51    | 0.51          | 0.49 | 0.65 | 0.35 | 0.57 | 0.51     | 23             | 16             | IRSOM              |
| 683          | $521 \ 494$ | 1111        | 0.38    | 0.51          | 0.62 | 0.58 | 0.42 | 0.46 | 0.43     | 2              | 3              | SPECtre            |
| 1330         | 964 51      | 464         | 0.74    | 0.95          | 0.26 | 0.96 | 0.04 | 0.84 | 0.82     | 3554           | 15             | PRICE              |
| 1664         | $344\ 671$  | 130         | 0.93    | 0.34          | 0.07 | 0.71 | 0.29 | 0.81 | 0.71     | 17             | 7              | ribotricer         |
| 1568         | $348 \ 667$ | 226         | 0.87    | 0.34          | 0.13 | 0.70 | 0.30 | 0.78 | 0.68     | 1815           | 285            | smorfer            |
| E. cc        | oli and u   | sing o      | overlap | o of <b>0</b> | .7   |      |      |      |          |                |                |                    |
| 1754         | 493 522     | 40          | 0.98    | 0.49          | 0.02 | 0.77 | 0.23 | 0.86 | 0.80     | 0              | 0              | REPARATION_blast   |
| 54           | 969 46      | 1740        | 0.03    | 0.95          | 0.97 | 0.54 | 0.46 | 0.06 | 0.36     | 38             | 12             | Ribo-TISH          |
| 1490         | 986 29      | 304         | 0.83    | 0.97          | 0.17 | 0.98 | 0.02 | 0.90 | 0.88     | 8              | 0              | DeepRibo           |
| 909          | $526\ 489$  | 885         | 0.51    | 0.52          | 0.49 | 0.65 | 0.35 | 0.57 | 0.51     | 1              | 4              | IRSOM              |
| 681          | $523\ 492$  | 1113        | 0.38    | 0.52          | 0.62 | 0.58 | 0.42 | 0.46 | 0.43     | 0              | 0              | SPECtre            |
| 221          | $998 \ 17$  | 1573        | 0.12    | 0.98          | 0.88 | 0.93 | 0.07 | 0.22 | 0.43     | 0              | 0              | PRICE              |
| 1661         | $348\ 667$  | 133         | 0.93    | 0.34          | 0.07 | 0.71 | 0.29 | 0.81 | 0.72     | 1              | 1              | ribotricer         |
| 735          | $723\ 292$  | 1059        | 0.41    | 0.71          | 0.59 | 0.72 | 0.28 | 0.52 | 0.52     | 1              | 2              | smorfer            |
| E. cc        | oli and u   | sing o      | overlap | o of <b>0</b> | .9   |      |      |      |          |                |                |                    |
| 1724         | 534 481     | 70          | 0.96    | 0.53          | 0.04 | 0.78 | 0.22 | 0.86 | 0.80     | 0              | 0              | REPARATION_blast   |
| 37           | $990 \ 25$  | 1757        | 0.02    | 0.98          | 0.98 | 0.60 | 0.40 | 0.04 | 0.37     | 7              | 2              | Ribo-TISH          |
| 1456         | $988 \ 27$  | 338         | 0.81    | 0.97          | 0.19 | 0.98 | 0.02 | 0.89 | 0.87     | 1              | 0              | DeepRibo           |
| 909          | $526\ 489$  | 885         | 0.51    | 0.52          | 0.49 | 0.65 | 0.35 | 0.57 | 0.51     | 1              | 1              | IRSOM              |
| 681          | $523\ 492$  | 1113        | 0.38    | 0.52          | 0.62 | 0.58 | 0.42 | 0.46 | 0.43     | 0              | 0              | SPECtre            |
| 157          | 1002 13     | 1637        | 0.09    | 0.99          | 0.91 | 0.92 | 0.08 | 0.16 | 0.41     | 0              | 0              | PRICE              |
| 1661         | 348 667     | 133         | 0.93    | 0.34          | 0.07 | 0.71 | 0.29 | 0.81 | 0.72     | 0              | 0              | ribotricer         |

**Table S6:** Statistical evaluation of ORFs located in operons for the benchmarkdataset L. monocytogenes and using overlap threshold of 0.01, 0.7 or 0.9. A detailedcolumn description can be found in Table S1.TP TN FPFN TPR TNR FNR PPV FDRF1 accuracysTP sFP tool

| L. monocytogenes  and  using  overlap  of  0.01    1391  241  191  231  0.86  0.56  0.14  0.88  0.12  0.87  0.79  45  7  REPARATION_blast    723  291  141  899  0.45  0.67  0.55  0.84  0.16  0.58  0.49  472  82  Ribo-TISH    1619  45  387  3  1.00  0.10  0.00  0.81  0.19  0.89  0.81  10842  1537  DeepRibo    670  213  219  952  0.41  0.49  0.59  0.75  0.25  0.53  0.43  15  15  IRSOM                                                                                                                                                                                                                      | ΠP   | T IN | ΓГ  | $\Gamma IN$ | IPR   | ING   | гıл    | PPV    | Γυπ Γι        | accuracy | SIP   | SFP  | 1001             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|-----|-------------|-------|-------|--------|--------|---------------|----------|-------|------|------------------|
| 1391  241  191  231  0.86  0.56  0.14  0.88  0.12  0.87  0.79  45  7 REPARATION_blast    723  291  141  899  0.45  0.67  0.55  0.84  0.16  0.58  0.49  472  82  Ribo-TISH    1619  45  387  3  1.00  0.10  0.00  0.81  0.19  0.89  0.81  10842  1537  DeepRibo    670  213  219  952  0.41  0.49  0.59  0.75  0.25  0.53  0.43  15  15  IRSOM    670  213  219  952  0.41  0.06  0.86  0.14  0.90  0.83  9246  485  PRICE    1525  176  256  97  0.94  0.41  0.06  0.86  0.14  0.90  0.83  9246  485  PRICE    1622  4  428  0  1.00  0.11  0.85  0.78  0.78  0  0  REPARATION_blast    1554                           | L. m | iona | cyt | ogene       | s and | using | g over | lap of | 0.01          |          |       |      |                  |
| 723291141899 $0.45$ $0.67$ $0.55$ $0.84$ $0.16$ $0.58$ $0.49$ $472$ $82$ Ribo-TISH1619453873 $1.00$ $0.10$ $0.00$ $0.81$ $0.19$ $0.89$ $0.81$ $10842$ $1537$ DeepRibo670213219952 $0.41$ $0.49$ $0.59$ $0.75$ $0.25$ $0.53$ $0.43$ $15$ $15$ IRSOM $                                                                                                                     -$                                                                                                                                                                                                                                            | 1391 | 241  | 191 | 231         | 0.86  | 0.56  | 0.14   | 0.88   | $0.12\ 0.87$  | 0.79     | 45    | 7    | REPARATION_blast |
| 1619  45  387  3  1.00  0.10  0.00  0.81  0.19  0.89  0.81  10842  1537  DeepRibo    670  213  219  952  0.41  0.49  0.59  0.75  0.25  0.53  0.43  15  15  IRSOM    1525  176  256  97  0.94  0.41  0.06  0.86  0.14  0.90  0.83  9246  485  PRICE    1622  4  428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  26  17  ribotricer    L  monocytogenes  and  using overlap of  0.7  0.78  0  0  REPARATION_blast    36  416  16  1586  0.02  0.96  0.98  0.69  0.31  0.04  0.22  21  12  Ribo-TISH    1554  159  273  68  0.96  0.37  0.04  0.85  0.15  0.90  0.83  2  0  DeepRibo    657  217                        | 723  | 291  | 141 | 899         | 0.45  | 0.67  | 0.55   | 0.84   | $0.16\ 0.58$  | 0.49     | 472   | 82   | Ribo-TISH        |
| 670 213 219 952 0.41 0.49 0.59 0.75 0.25 0.53  0.43  15  15 IRSOM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1619 | 45   | 387 | 3           | 1.00  | 0.10  | 0.00   | 0.81   | $0.19\ 0.89$  | 0.81     | 10842 | 1537 | DeepRibo         |
| 1525  176  256  97  0.94  0.41  0.06  0.86  0.14  0.90  0.83  9246  485  PRICE    1622  4  428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  26  17  ribotricer    L  monocytogenes  and using overlap of  0.7  0.7  0.21  0.85  0.78  0  0  REPARATION_blast    36  416  16  1586  0.02  0.96  0.98  0.69  0.31  0.04  0.22  21  12  Ribo-TISH    1554  159  273  68  0.96  0.37  0.04  0.85  0.15  0.90  0.83  2  0  DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.38  0  0  PRICE    1622  4  428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  1  0  ribotricer    L                             | 670  | 213  | 219 | 952         | 0.41  | 0.49  | 0.59   | 0.75   | $0.25 \ 0.53$ | 0.43     | 15    | 15   | IRSOM            |
| 1525  176  256  97  0.94  0.41  0.06  0.86  0.14  0.90  0.83  9246  485  PRICE    1622  4  428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  26  17  ribotricer    L  monocytogenes  and  using overlap of  0.7  0.78  0  0  REPARATION_blast    36  161  1586  0.02  0.96  0.98  0.69  0.31  0.04  0.22  21  12  Ribo-TISH    1554  159  273  68  0.96  0.37  0.04  0.85  0.15  0.90  0.83  2  0  DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.38  0  0  PRICE    351  426  6  1271  0.22  0.99  0.78  0.98  0.02  0.38  0.09  PRICE    1622  4  428  0  1.00  0.01  <                             | -    | -    | -   | -           | -     | -     | -      | -      |               | -        | -     | -    | SPECtre          |
| 1622  4 428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  26  17 ribotricer    L. monocytogenes  and using overlap of  0.7  0.7  0  0  REPARATION_blast    364  16  1586  0.02  0.96  0.98  0.69  0.31  0.04  0.22  21  12 Ribo-TISH    1554  159  273  68  0.96  0.37  0.04  0.85  0.15  0.90  0.83  2  0  DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  1  0  IRSOM    657  217  0.22  0.99  0.78  0.98  0.02  0.35  0.38  0  0  PRICE    351  426  6  1271  0.22  0.99  0.78  0.98  0.79  1  0  ribotricer    L  monocytogenes  and  using overlap of  0.9  0.9  0.66  0.34  0.03  0.22 | 1525 | 176  | 256 | 97          | 0.94  | 0.41  | 0.06   | 0.86   | $0.14\ 0.90$  | 0.83     | 9246  | 485  | PRICE            |
| L. monocytogenes  and  using  overlap  of  0.7    1337  263  169  285  0.82  0.61  0.18  0.89  0.11  0.85  0.78  0  0  REPARATION_blast    36  416  16  1586  0.02  0.96  0.98  0.69  0.31  0.04  0.22  21  12  Ribo-TISH    1554  159  273  68  0.96  0.37  0.04  0.85  0.15  0.90  0.83  2  0  DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  1  0  IRSOM          SPECtre    351  426  6  1271  0.22  0.99  0.78  0.98  0.79  1  0  ribotricer    L  monocytogenes  and  using  overlap of  0.9    135  268  164  307  0.81  0.62  0                                                     | 1622 | 4    | 428 | 0           | 1.00  | 0.01  | 0.00   | 0.79   | $0.21\ 0.88$  | 0.79     | 26    | 17   | ribotricer       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | L. m | iona | cyt | ogene       | s and | using | g over | lap of | 0.7           |          |       |      |                  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1337 | 263  | 169 | 285         | 0.82  | 0.61  | 0.18   | 0.89   | $0.11\ 0.85$  | 0.78     | 0     | 0    | REPARATION_blast |
| 1554  159  273  68  0.96  0.37  0.04  0.85  0.15  0.90  0.83  2  0  DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  1  0  IRSOM    351  426  6  1271  0.22  0.99  0.78  0.98  0.02  0.35  0.38  0  PRICE    1622  4  428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  1  0  ribotricer    L  monocytogenes  and  using overlap of  0.9  0.11  0.85  0.77  0  0  REPARATION_blast    21  421  11  1601  0.01  0.97  0.99  0.66  0.34  0.03  0.22  6  2  Ribo-TISH    1526  164  268  96  0.94  0.38  0.06  0.85  0.15  0.89  0.82  0  DeepRibo    657  217                                   | 36   | 416  | 16  | 1586        | 0.02  | 0.96  | 0.98   | 0.69   | $0.31\ 0.04$  | 0.22     | 21    | 12   | Ribo-TISH        |
| 657 217 215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  1  0  IRSOM    351 426  6  1271  0.22  0.99  0.78  0.98  0.02  0.35  0.38  0  0  PRICE    1622  4  428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  1  0  ribotricer    L  monocytogenes  and  using overlap of  0.9  0.77  0  0  REPARATION_blast    21 421  11  1601  0.01  0.97  0.99  0.66  0.34  0.03  0.22  6  2  Ribo-TISH    1526  164  307  0.81  0.62  0.19  0.89  0.11  0.82  0  0  DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  0  0  IRSOM    -  -  -  -  -  -  -  SPECtre  342                                 | 1554 | 159  | 273 | 68          | 0.96  | 0.37  | 0.04   | 0.85   | $0.15\ 0.90$  | 0.83     | 2     | 0    | DeepRibo         |
| 351 426  6 1271  0.22  0.99  0.78  0.98  0.02  0.35  0.38  0  0 PRICE    1622  4 428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  1  0 ribotricer    L  monocytogenes  and  using overlap of  0.9  0.71  0  REPARATION_blast    1315 268  164  307  0.81  0.62  0.19  0.89  0.11  0.85  0.77  0  0 REPARATION_blast    21  421  11  1601  0.01  0.97  0.99  0.66  0.34  0.03  0.22  6  2 Ribo-TISH    1526  164  268  96  0.94  0.38  0.06  0.85  0.15  0.89  0.82  0  0 DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  0  0 IRSOM    -  -  -  -  -  -  SPECtre    342  429  3  128        | 657  | 217  | 215 | 965         | 0.41  | 0.50  | 0.59   | 0.75   | $0.25 \ 0.53$ | 0.43     | 1     | 0    | IRSOM            |
| 351 426  6 1271  0.22  0.99  0.78  0.98  0.02  0.35  0.38  0  0 PRICE    1622  4 428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  1  0 ribotricer    L.  monocytogenes  and  using  overlap  f  0.9    1315  268  164  307  0.81  0.62  0.19  0.89  0.11  0.85  0.77  0  0 REPARATION_blast    21  421  11  1601  0.01  0.97  0.99  0.66  0.34  0.03  0.22  6  2 Ribo-TISH    1526  164  268  96  0.94  0.38  0.06  0.85  0.15  0.89  0.82  0  0 DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  0  0 IRSOM    -  -  -  -  -  -  -  -  SPECtre    342  429  3                               | -    | -    | -   | -           | -     | -     | -      | -      |               | -        | -     | -    | SPECtre          |
| 1622  4 428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  1  0 ribotricer    L. monocytogenes  and using overlap of  0.9    1315  268  164  307  0.81  0.62  0.19  0.89  0.11  0.85  0.77  0  0 REPARATION_blast    21  421  11  1601  0.01  0.97  0.99  0.66  0.34  0.03  0.22  6  2 Ribo-TISH    1526  164  268  96  0.94  0.38  0.06  0.85  0.15  0.89  0.82  0  0 DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  0  0 IRSOM    -  -  -  -  -  -  -  -  -  -  -  SPECtre    342  429  3  1280  0.21  0.99  0.79  0.21  0.88  0.79  0  0  ribotricer    1622  4                           | 351  | 426  | 6   | 1271        | 0.22  | 0.99  | 0.78   | 0.98   | $0.02 \ 0.35$ | 0.38     | 0     | 0    | PRICE            |
| L. monocytogenes and using overlap of 0.9    1315 268 164 307 0.81 0.62 0.19 0.89 0.11 0.85 0.77 0 0 REPARATION_blast    21 421 11 1601 0.01 0.97 0.99 0.66 0.34 0.03 0.22 6 2 Ribo-TISH    1526 164 268 96 0.94 0.38 0.06 0.85 0.15 0.89 0.82 0 0 DeepRibo    657 217 215 965 0.41 0.50 0.59 0.75 0.25 0.53 0.43 0 0 IRSOM                                                                                                                                                                                                                                                                                            | 1622 | 4    | 428 | 0           | 1.00  | 0.01  | 0.00   | 0.79   | $0.21\ 0.88$  | 0.79     | 1     | 0    | ribotricer       |
| 1315 268 164 307  0.81  0.62  0.19  0.89  0.11  0.85  0.77  0  0  REPARATION_blast    21 421  11 1601  0.01  0.97  0.99  0.66  0.34  0.03  0.22  6  2  Ribo-TISH    1526 164 268  96  0.94  0.38  0.06  0.85  0.15  0.89  0.82  0  DeepRibo    657 217 215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  0  0  IRSOM    -  -  -  -  -  -  -  -  SPECtre    342 429  3  1280  0.21  0.99  0.79  0.99  0.01  0.35  0.38  0  0  PRICE    1622  4  428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  0  0  ribotricer                                                                                                    | L. m | nond | cyt | ogene       | s and | using | g over | lap of | 0.9           |          |       |      |                  |
| 21  421  11  1601  0.01  0.97  0.99  0.66  0.34  0.03  0.22  6  2  Ribo-TISH    1526  164  268  96  0.94  0.38  0.06  0.85  0.15  0.89  0.82  0  DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  0  0  IRSOM    -  -  -  -  -  -  -  -  SPECtre    342  429  3  1280  0.21  0.99  0.79  0.99  0.01  0.35  0.38  0  O  PRICE    1622  4  428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  0  0  ribotricer                                                                                                                                                                                   | 1315 | 268  | 164 | 307         | 0.81  | 0.62  | 0.19   | 0.89   | $0.11\ 0.85$  | 0.77     | 0     | 0    | REPARATION_blast |
| 1526  164  268  96  0.94  0.38  0.06  0.85  0.15  0.89  0.82  0  0  DeepRibo    657  217  215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  0  0  IRSOM    -  -  -  -  -  -  -  -  SPECtre    342  429  3  1280  0.21  0.99  0.79  0.99  0.01  0.35  0.38  0  0  PRICE    1622  4  428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  0  0  ribotricer                                                                                                                                                                                                                                                                | 21   | 421  | 11  | 1601        | 0.01  | 0.97  | 0.99   | 0.66   | $0.34\ 0.03$  | 0.22     | 6     | 2    | Ribo-TISH        |
| 657 217 215  965  0.41  0.50  0.59  0.75  0.25  0.53  0.43  0  0  IRSOM    342 429  3 1280  0.21  0.99  0.79  0.99  0.01  0.35  0.38  0  0  PRICE    1622  4 428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  0  0  ribotricer                                                                                                                                                                                                                                                                                                                                                                                        | 1526 | 164  | 268 | 96          | 0.94  | 0.38  | 0.06   | 0.85   | $0.15\ 0.89$  | 0.82     | 0     | 0    | DeepRibo         |
| 342 429  3 1280  0.21  0.99  0.79  0.99  0.01  0.35  0.38  0  0 PRICE    1622  4 428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  0  0 ribotricer                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 657  | 217  | 215 | 965         | 0.41  | 0.50  | 0.59   | 0.75   | $0.25 \ 0.53$ | 0.43     | 0     | 0    | IRSOM            |
| 342 429  3 1280  0.21  0.99  0.79  0.99  0.01  0.35  0.38  0  0 PRICE    1622  4 428  0  1.00  0.01  0.00  0.79  0.21  0.88  0.79  0  0 ribotricer                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -    | -    | -   | -           | -     | -     | -      | -      |               | -        | -     | -    | SPECtre          |
| 1622    4    428    0    1.00    0.01    0.00    0.79    0.21    0.88    0.79    0    0    ribotricer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 342  | 429  | 3   | 1280        | 0.21  | 0.99  | 0.79   | 0.99   | $0.01 \ 0.35$ | 0.38     | 0     | 0    | PRICE            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1622 | 4    | 428 | 0           | 1.00  | 0.01  | 0.00   | 0.79   | 0.21 0.88     | 0.79     | 0     | 0    | ribotricer       |

**Table S7:** Statistical evaluation of ORFs located in operons for the benchmark dataset *P. aeruginosa* and using overlap threshold of 0.01, 0.7 or 0.9. A detailed column description can be found in Table S1.

TP TN FP FN TPR TNR FNR PPV FDR F1 accuracy sTP sFP tool

| P. a | erugi | inos | $\boldsymbol{a}$ and | using | g over | lap of | 0.01 |               |      |      |     |                    |
|------|-------|------|----------------------|-------|--------|--------|------|---------------|------|------|-----|--------------------|
| 1672 | 899   | 214  | 839                  | 0.67  | 0.81   | 0.33   | 0.89 | $0.11\ 0.76$  | 0.71 | 37   | 5   | $REPARATION_blast$ |
| 1819 | 700   | 413  | 692                  | 0.72  | 0.63   | 0.28   | 0.81 | $0.19\ 0.77$  | 0.70 | 2196 | 234 | Ribo-TISH          |
| 2473 | 716   | 397  | 38                   | 0.98  | 0.64   | 0.02   | 0.86 | $0.14\ 0.92$  | 0.88 | 8365 | 510 | DeepRibo           |
| 1566 | 303   | 810  | 945                  | 0.62  | 0.27   | 0.38   | 0.66 | $0.34\ 0.64$  | 0.52 | 68   | 72  | IRSOM              |
| 49   | 886   | 227  | 2462                 | 0.02  | 0.80   | 0.98   | 0.18 | $0.82\ 0.04$  | 0.26 | 0    | 0   | SPECtre            |
| 2163 | 870   | 243  | 348                  | 0.86  | 0.78   | 0.14   | 0.90 | $0.10\ 0.88$  | 0.84 | 2274 | 26  | PRICE              |
| 2404 | 180   | 933  | 107                  | 0.96  | 0.16   | 0.04   | 0.72 | $0.28\ 0.82$  | 0.71 | 19   | 9   | ribotricer         |
| P. a | erugi | inos | a and                | using | g over | lap of | 0.7  |               |      |      |     |                    |
| 1559 | 915   | 198  | 952                  | 0.62  | 0.82   | 0.38   | 0.89 | $0.11\ 0.73$  | 0.68 | 4    | 0   | REPARATION_blast   |
| 81   | 1062  | 51   | 2430                 | 0.03  | 0.95   | 0.97   | 0.61 | $0.39\ 0.06$  | 0.32 | 43   | 30  | Ribo-TISH          |
| 2353 | 948   | 165  | 158                  | 0.94  | 0.85   | 0.06   | 0.93 | $0.07 \ 0.94$ | 0.91 | 361  | 25  | DeepRibo           |
| 1524 | 332   | 781  | 987                  | 0.61  | 0.30   | 0.39   | 0.66 | $0.34\ 0.63$  | 0.51 | 3    | 7   | IRSOM              |
| 49   | 886   | 227  | 2462                 | 0.02  | 0.80   | 0.98   | 0.18 | $0.82\ 0.04$  | 0.26 | 0    | 0   | SPECtre            |
| 1356 | 991   | 122  | 1155                 | 0.54  | 0.89   | 0.46   | 0.92 | $0.08 \ 0.68$ | 0.65 | 1    | 0   | PRICE              |
| 2404 | 183   | 930  | 107                  | 0.96  | 0.16   | 0.04   | 0.72 | $0.28\ 0.82$  | 0.71 | 2    | 0   | ribotricer         |
| P. a | erugi | inos | $\boldsymbol{a}$ and | using | g over | lap of | 0.9  |               |      |      |     |                    |
| 1446 | 926   | 187  | 1065                 | 0.58  | 0.83   | 0.42   | 0.89 | $0.11\ 0.70$  | 0.65 | 1    | 0   | REPARATION_blast   |
| 41   | 1080  | 33   | 2470                 | 0.02  | 0.97   | 0.98   | 0.55 | $0.45\ 0.03$  | 0.31 | 9    | 5   | Ribo-TISH          |
| 2298 | 965   | 148  | 213                  | 0.92  | 0.87   | 0.08   | 0.94 | $0.06 \ 0.93$ | 0.90 | 81   | 7   | DeepRibo           |
| 1522 | 333   | 780  | 989                  | 0.61  | 0.30   | 0.39   | 0.66 | $0.34\ 0.63$  | 0.51 | 0    | 4   | IRSOM              |
| 49   | 886   | 227  | 2462                 | 0.02  | 0.80   | 0.98   | 0.18 | $0.82\ 0.04$  | 0.26 | 0    | 0   | SPECtre            |
| 1002 | 1033  | 80   | 1509                 | 0.40  | 0.93   | 0.60   | 0.93 | $0.07 \ 0.56$ | 0.56 | 0    | 0   | PRICE              |
| 2404 | 183   | 930  | 107                  | 0.96  | 0.16   | 0.04   | 0.72 | $0.28\ 0.82$  | 0.71 | 0    | 0   | ribotricer         |

**Table S8:** Statistical evaluation of ORFs located in operons for the benchmark dataset S. Typhimurium and using overlap threshold of 0.01, 0.7 or 0.9. A detailed column description can be found in Table S1.

TP TN FP FN TPR TNR FNR PPV FDR F1 accuracy sTP sFP tool

| <i>S.</i> T | yphi | mur | ium  | and u | sing o | verlap | o of <b>0</b> | .01           |      |      |                               |
|-------------|------|-----|------|-------|--------|--------|---------------|---------------|------|------|-------------------------------|
| 1848        | 579  | 429 | 99   | 0.95  | 0.57   | 0.05   | 0.81          | $0.19\ 0.87$  | 0.82 | 58   | $25 \text{ REPARATION_blast}$ |
| 1235        | 841  | 167 | 712  | 0.63  | 0.83   | 0.37   | 0.88          | $0.12\ 0.74$  | 0.70 | 1785 | $110 \; {\tt Ribo-TISH}$      |
| 1833        | 882  | 126 | 114  | 0.94  | 0.88   | 0.06   | 0.94          | $0.06 \ 0.94$ | 0.92 | 9535 | $56 \; {\tt DeepRibo}$        |
| 978         | 462  | 546 | 969  | 0.50  | 0.46   | 0.50   | 0.64          | $0.36 \ 0.56$ | 0.49 | 42   | 47 IRSOM                      |
| 67          | 738  | 270 | 1880 | 0.03  | 0.73   | 0.97   | 0.20          | $0.80\ 0.06$  | 0.27 | 2    | 2  SPECtre                    |
| 1346        | 990  | 18  | 601  | 0.69  | 0.98   | 0.31   | 0.99          | $0.01 \ 0.81$ | 0.79 | 2298 | 2 PRICE                       |
| 1846        | 341  | 667 | 101  | 0.95  | 0.34   | 0.05   | 0.73          | $0.27\ 0.83$  | 0.74 | 44   | 36  ribotricer                |
| S. T        | yphi | mur | ium  | and u | sing o | verlap | o of <b>0</b> | .7            |      |      |                               |
| 1828        | 624  | 384 | 119  | 0.94  | 0.62   | 0.06   | 0.83          | $0.17\ 0.88$  | 0.83 | 0    | 0 REPARATION_blast            |
| 174         | 949  | 59  | 1773 | 0.09  | 0.94   | 0.91   | 0.75          | $0.25\ 0.16$  | 0.38 | 142  | $29 \; {\tt Ribo-TISH}$       |
| 1480        | 997  | 11  | 467  | 0.76  | 0.99   | 0.24   | 0.99          | $0.01 \ 0.86$ | 0.84 | 7    | $0 \; {\tt DeepRibo}$         |
| 964         | 470  | 538 | 983  | 0.50  | 0.47   | 0.50   | 0.64          | $0.36 \ 0.56$ | 0.49 | 2    | 6 IRSOM                       |
| 67          | 739  | 269 | 1880 | 0.03  | 0.73   | 0.97   | 0.20          | $0.80\ 0.06$  | 0.27 | 0    | 0  SPECtre                    |
| 551         | 999  | 9   | 1396 | 0.28  | 0.99   | 0.72   | 0.98          | $0.02\ 0.44$  | 0.52 | 0    | 0 PRICE                       |
| 1844        | 347  | 661 | 103  | 0.95  | 0.34   | 0.05   | 0.74          | $0.26\ 0.83$  | 0.74 | 0    | $0 \; {\tt ribotricer}$       |
| <i>S.</i> T | yphi | mur | rium | and u | sing o | verlap | o of <b>0</b> | .9            |      |      |                               |
| 1782        | 659  | 349 | 165  | 0.92  | 0.65   | 0.08   | 0.84          | $0.16\ 0.87$  | 0.83 | 0    | 0 REPARATION_blast            |
| 121         | 968  | 40  | 1826 | 0.06  | 0.96   | 0.94   | 0.75          | $0.25\ 0.11$  | 0.37 | 24   | 8  Ribo-TISH                  |
| 1458        | 998  | 10  | 489  | 0.75  | 0.99   | 0.25   | 0.99          | $0.01 \ 0.85$ | 0.83 | 1    | $0 \; {\tt DeepRibo}$         |
| 963         | 470  | 538 | 984  | 0.49  | 0.47   | 0.51   | 0.64          | $0.36 \ 0.56$ | 0.48 | 1    | 1 IRSOM                       |
| 67          | 739  | 269 | 1880 | 0.03  | 0.73   | 0.97   | 0.20          | $0.80\ 0.06$  | 0.27 | 0    | 0  SPECtre                    |
| 453         | 1000 | 8   | 1494 | 0.23  | 0.99   | 0.77   | 0.98          | $0.02 \ 0.38$ | 0.49 | 0    | 0  PRICE                      |
| 1844        | 347  | 661 | 103  | 0.95  | 0.34   | 0.05   | 0.74          | $0.26\ 0.83$  | 0.74 | 0    | $0 \; \texttt{ribotricer}$    |

#### 18 Gelhausen, Müller et al

#### D.3 Stand-alone genes

**Table S9:** Statistical evaluation of ORFs located outside operons for the benchmark dataset *E. coli* and using overlap threshold of 0.01, 0.7, or 0.9. A detailed column description can be found in main Table S1. TP TN FP FN TPR TNR FNR PPV FDR F1 accuracy sTP sFP tool

| <u> </u>   | T 1 1 | 11  | 111  | 1110   | 11110  | 1 1110         | 1 1 1 |        | 1 1  | accuracy | 011  | DII | 1001               |
|------------|-------|-----|------|--------|--------|----------------|-------|--------|------|----------|------|-----|--------------------|
| <i>E</i> . | coli  | and | usin | ig ove | rlap o | f <b>0.0</b> 1 | L     |        |      |          |      |     |                    |
| 941        | 191   | 279 | 28   | 0.97   | 0.41   | 0.03           | 0.77  | 0.23(  | ).86 | 0.79     | 22   | 2   | $REPARATION_blast$ |
| 624        | 376   | 94  | 345  | 0.64   | 0.80   | 0.36           | 0.87  | 0.13(  | ).74 | 0.69     | 907  | 60  | Ribo-TISH          |
| 943        | 356   | 114 | 26   | 0.97   | 0.76   | 0.03           | 0.89  | 0.11 ( | ).93 | 0.90     | 5892 | 178 | DeepRibo           |
| 553        | 241   | 229 | 416  | 0.57   | 0.51   | 0.43           | 0.71  | 0.29 ( | 0.63 | 0.55     | 37   | 19  | IRSOM              |
| 413        | 279   | 191 | 556  | 0.43   | 0.59   | 0.57           | 0.68  | 0.32 ( | ).53 | 0.48     | 0    | 1   | SPECtre            |
| 706        | 430   | 40  | 263  | 0.73   | 0.91   | 0.27           | 0.95  | 0.05(  | 0.82 | 0.79     | 1711 | 13  | PRICE              |
| 882        | 162   | 308 | 87   | 0.91   | 0.34   | 0.09           | 0.74  | 0.26 ( | 0.82 | 0.73     | 11   | 1   | ribotricer         |
| <i>E</i> . | coli  | and | usin | ig ove | rlap o | f <b>0.7</b>   |       |        |      |          |      |     |                    |
| 940        | 216   | 254 | 29   | 0.97   | 0.46   | 0.03           | 0.79  | 0.21 ( | ).87 | 0.80     | 1    | 0   | REPARATION_blast   |
| 30         | 447   | 23  | 939  | 0.03   | 0.95   | 0.97           | 0.57  | 0.43(  | 0.06 | 0.33     | 21   | 14  | Ribo-TISH          |
| 816        | 451   | 19  | 153  | 0.84   | 0.96   | 0.16           | 0.98  | 0.02(  | 0.90 | 0.88     | 9    | 1   | DeepRibo           |
| 516        | 256   | 214 | 453  | 0.53   | 0.54   | 0.47           | 0.71  | 0.29 ( | 0.61 | 0.54     | 5    | 3   | IRSOM              |
| 413        | 279   | 191 | 556  | 0.43   | 0.59   | 0.57           | 0.68  | 0.32 ( | ).53 | 0.48     | 0    | 0   | SPECtre            |
| 105        | 453   | 17  | 864  | 0.11   | 0.96   | 0.89           | 0.86  | 0.14 ( | ).19 | 0.39     | 1    | 0   | PRICE              |
| 881        | 162   | 308 | 88   | 0.91   | 0.34   | 0.09           | 0.74  | 0.26 ( | 0.82 | 0.72     | 4    | 0   | ribotricer         |
| <i>E</i> . | coli  | and | usin | ig ove | rlap o | f <b>0.9</b>   |       |        |      |          |      |     |                    |
| 926        | 239   | 231 | 43   | 0.96   | 0.51   | 0.04           | 0.80  | 0.20 ( | ).87 | 0.81     | 0    | 0   | REPARATION_blast   |
| 14         | 454   | 16  | 955  | 0.01   | 0.97   | 0.99           | 0.47  | 0.53 ( | 0.03 | 0.33     | 2    | 2   | Ribo-TISH          |
| 790        | 452   | 18  | 179  | 0.82   | 0.96   | 0.18           | 0.98  | 0.02(  | ).89 | 0.86     | 2    | 0   | DeepRibo           |
| 516        | 256   | 214 | 453  | 0.53   | 0.54   | 0.47           | 0.71  | 0.29 ( | 0.61 | 0.54     | 1    | 1   | IRSOM              |
| 413        | 279   | 191 | 556  | 0.43   | 0.59   | 0.57           | 0.68  | 0.32 ( | ).53 | 0.48     | 0    | 0   | SPECtre            |
| 77         | 454   | 16  | 892  | 0.08   | 0.97   | 0.92           | 0.83  | 0.17(  | ).15 | 0.37     | 0    | 0   | PRICE              |
| 881        | 162   | 308 | 88   | 0.91   | 0.34   | 0.09           | 0.74  | 0.26 ( | ).82 | 0.72     | 0    | 0   | ribotricer         |

**Table S10:** Statistical evaluation of ORFs located outside operons for the benchmark dataset L. monocytogenes and using overlap threshold of 0.01, 0.7 or 0.9. Adetailed column description can be found in Table S1.TP TN FP FN TPR TNR FNR PPV FDRF1 accuracy sTP sFP tool

| <u> </u>     | 111 | 11   | 1 1 1 | 1110  | 11110  | 1 1 1 1 0 | 11 1  | 1 D10         | 1 1  | accuracy | 911  | SI I | 1001               |
|--------------|-----|------|-------|-------|--------|-----------|-------|---------------|------|----------|------|------|--------------------|
| <i>L</i> . 1 | mon | ocy  | toge  | nes a | nd usi | ing ov    | erlap | of <b>0.0</b> | )1   |          |      |      |                    |
| 556          | 94  | 53   | 110   | 0.83  | 0.64   | 0.17      | 0.91  | 0.09 (        | 0.87 | 0.80     | 13   | 1    | REPARATION_blast   |
| 300          | 99  | 48   | 366   | 0.45  | 0.67   | 0.55      | 0.86  | 0.14 (        | 0.59 | 0.49     | 223  | 28   | Ribo-TISH          |
| 665          | 11  | 136  | 1     | 1.00  | 0.07   | 0.00      | 0.83  | 0.17(         | 0.91 | 0.83     | 4595 | 514  | DeepRibo           |
| 316          | 77  | 70   | 350   | 0.47  | 0.52   | 0.53      | 0.82  | 0.18 (        | 0.60 | 0.48     | 20   | 7    | IRSOM              |
| -            | -   | -    | -     | -     | -      | -         | -     | -             | -    | -        | -    | -    | SPECtre            |
| 639          | 51  | 96   | 27    | 0.96  | 0.35   | 0.04      | 0.87  | 0.13 (        | 0.91 | 0.85     | 3418 | 188  | PRICE              |
| 666          | 0   | 147  | 0     | 1.00  | 0.00   | 0.00      | 0.82  | 0.18 (        | 0.90 | 0.82     | 16   | 14   | ribotricer         |
| L.           | mon | nocy | toge  | nes a | nd usi | ing ov    | erlap | of <b>0.7</b> | 7    |          |      |      |                    |
| 529          | 104 | 43   | 137   | 0.79  | 0.71   | 0.21      | 0.92  | 0.08 (        | 0.85 | 0.78     | 0    | 0    | REPARATION_blast   |
| 19           | 140 | 7    | 647   | 0.03  | 0.95   | 0.97      | 0.73  | 0.27(         | 0.05 | 0.20     | 11   | 6    | Ribo-TISH          |
| 640          | 56  | 91   | 26    | 0.96  | 0.38   | 0.04      | 0.88  | 0.12 (        | 0.92 | 0.86     | 2    | 1    | DeepRibo           |
| 305          | 81  | 66   | 361   | 0.46  | 0.55   | 0.54      | 0.82  | 0.18 (        | 0.59 | 0.47     | 5    | 1    | IRSOM              |
| -            | -   | -    | -     | -     | -      | -         | -     | -             | -    | -        | -    | -    | SPECtre            |
| 110          | 139 | 8    | 556   | 0.17  | 0.95   | 0.83      | 0.93  | 0.07 (        | 0.28 | 0.31     | 0    | 0    | PRICE              |
| 666          | 0   | 147  | 0     | 1.00  | 0.00   | 0.00      | 0.82  | 0.18 (        | 0.90 | 0.82     | 6    | 1    | ribotricer         |
| L. 1         | mon | nocy | toge  | nes a | nd usi | ing ov    | erlap | of <b>0.9</b> | )    |          |      |      |                    |
| 522          | 106 | 41   | 144   | 0.78  | 0.72   | 0.22      | 0.93  | 0.07(         | 0.85 | 0.77     | 0    | 0    | $REPARATION_blast$ |
| 15           | 143 | 4    | 651   | 0.02  | 0.97   | 0.98      | 0.79  | 0.21 (        | 0.04 | 0.19     | 1    | 0    | Ribo-TISH          |
| 629          | 60  | 87   | 37    | 0.94  | 0.41   | 0.06      | 0.88  | 0.12 (        | 0.91 | 0.85     | 0    | 0    | DeepRibo           |
| 305          | 81  | 66   | 361   | 0.46  | 0.55   | 0.54      | 0.82  | 0.18 (        | 0.59 | 0.47     | 3    | 1    | IRSOM              |
| -            | -   | -    | -     | -     | -      | -         | -     | -             | -    | -        | -    | -    | SPECtre            |
| 106          | 141 | 6    | 560   | 0.16  | 0.96   | 0.84      | 0.95  | 0.05(         | 0.27 | 0.30     | 0    | 0    | PRICE              |
| 666          | 0   | 147  | 0     | 1.00  | 0.00   | 0.00      | 0.82  | 0.18 (        | 0.90 | 0.82     | 2    | 0    | ribotricer         |

**Table S11:** Statistical evaluation of ORFs located outside operons for the benchmark dataset *P. aeruginosa* and using overlap threshold of 0.01, 0.7, or 0.9. Adetailed column description can be found in main Table S1.TP TN FPFN TPR TNR FNR PPV FDRF1 accuracy sTP sFP tool

|             |     |      |       |        |        |        |               |               | ě    |      |     |                  |
|-------------|-----|------|-------|--------|--------|--------|---------------|---------------|------|------|-----|------------------|
| P. a        | eru | gino | sa an | d usir | ng ove | rlap o | of <b>0.0</b> | 1             |      |      |     |                  |
| 781         | 427 | 98   | 643   | 0.55   | 0.81   | 0.45   | 0.89          | $0.11\ 0.68$  | 0.62 | 26   | 1   | REPARATION_blast |
| 957         | 313 | 212  | 467   | 0.67   | 0.60   | 0.33   | 0.82          | $0.18\ 0.74$  | 0.65 | 947  | 101 | Ribo-TISH        |
| 1396        | 298 | 227  | 28    | 0.98   | 0.57   | 0.02   | 0.86          | $0.14\ 0.92$  | 0.87 | 4650 | 280 | DeepRibo         |
| 959         | 149 | 376  | 465   | 0.67   | 0.28   | 0.33   | 0.72          | $0.28\ 0.70$  | 0.57 | 101  | 57  | IRSOM            |
| 52          | 453 | 72   | 1372  | 0.04   | 0.86   | 0.96   | 0.42          | $0.58\ 0.07$  | 0.26 | 0    | 0   | SPECtre          |
| 1186        | 393 | 132  | 238   | 0.83   | 0.75   | 0.17   | 0.90          | $0.10\ 0.87$  | 0.81 | 1006 | 19  | PRICE            |
| 1335        | 93  | 432  | 89    | 0.94   | 0.18   | 0.06   | 0.76          | $0.24\ 0.84$  | 0.73 | 4    | 1   | ribotricer       |
| <i>P. a</i> | eru | gino | sa an | d usir | ıg ove | rlap o | of <b>0.7</b> |               |      |      |     |                  |
| 712         | 435 | 90   | 712   | 0.50   | 0.83   | 0.50   | 0.89          | $0.11\ 0.64$  | 0.59 | 2    | 0   | REPARATION_blast |
| 62          | 500 | 25   | 1362  | 0.04   | 0.95   | 0.96   | 0.71          | $0.29\ 0.08$  | 0.29 | 36   | 6   | Ribo-TISH        |
| 1336        | 430 | 95   | 88    | 0.94   | 0.82   | 0.06   | 0.93          | $0.07 \ 0.94$ | 0.91 | 300  | 20  | DeepRibo         |
| 899         | 172 | 353  | 525   | 0.63   | 0.33   | 0.37   | 0.72          | $0.28\ 0.67$  | 0.55 | 8    | 8   | IRSOM            |
| 52          | 453 | 72   | 1372  | 0.04   | 0.86   | 0.96   | 0.42          | $0.58\ 0.07$  | 0.26 | 0    | 0   | SPECtre          |
| 765         | 456 | 69   | 659   | 0.54   | 0.87   | 0.46   | 0.92          | $0.08 \ 0.68$ | 0.63 | 2    | 0   | PRICE            |
| 1334        | 93  | 432  | 90    | 0.94   | 0.18   | 0.06   | 0.76          | $0.24\ 0.84$  | 0.73 | 1    | 0   | ribotricer       |
| <i>P. a</i> | eru | gino | sa an | d usir | ig ove | rlap o | of <b>0.9</b> |               |      |      |     |                  |
| 651         | 439 | 86   | 773   | 0.46   | 0.84   | 0.54   | 0.88          | $0.12\ 0.60$  | 0.56 | 0    | 0   | REPARATION_blast |
| 30          | 511 | 14   | 1394  | 0.02   | 0.97   | 0.98   | 0.68          | $0.32\ 0.04$  | 0.28 | 3    | 0   | Ribo-TISH        |
| 1273        | 441 | 84   | 151   | 0.89   | 0.84   | 0.11   | 0.94          | $0.06 \ 0.92$ | 0.88 | 46   | 8   | DeepRibo         |
| 899         | 173 | 352  | 525   | 0.63   | 0.33   | 0.37   | 0.72          | $0.28\ 0.67$  | 0.55 | 5    | 3   | IRSOM            |
| 52          | 453 | 72   | 1372  | 0.04   | 0.86   | 0.96   | 0.42          | $0.58\ 0.07$  | 0.26 | 0    | 0   | SPECtre          |
| 541         | 485 | 40   | 883   | 0.38   | 0.92   | 0.62   | 0.93          | $0.07 \ 0.54$ | 0.53 | 0    | 0   | PRICE            |
| 1334        | 93  | 432  | 90    | 0.94   | 0.18   | 0.06   | 0.76          | $0.24\ 0.84$  | 0.73 | 1    | 0   | ribotricer       |

**Table S12:** Statistical evaluation of ORFs located outside operons for the benchmark dataset S. Typhimurium and using overlap threshold of 0.01, 0.7, or 0.9. A detailed column description can be found in Table S1.

| TP TN FP | FN TPR TN | R FNR PPV FDI | F1 accuracy | sTP sFP t | iool |
|----------|-----------|---------------|-------------|-----------|------|
|----------|-----------|---------------|-------------|-----------|------|

| <i>S.</i> T                             | $\mathbf{yph}$ | imu | ırium | and  | using | overla | p of | 0.01          |      |      |    |                  |
|-----------------------------------------|----------------|-----|-------|------|-------|--------|------|---------------|------|------|----|------------------|
| 1213                                    | 494            | 185 | 124   | 0.91 | 0.73  | 0.09   | 0.87 | $0.13\ 0.89$  | 0.85 | 33   | 4  | REPARATION_blast |
| 797                                     | 609            | 70  | 540   | 0.60 | 0.90  | 0.40   | 0.92 | $0.08 \ 0.72$ | 0.70 | 1164 | 55 | Ribo-TISH        |
| 1257                                    | 580            | 99  | 80    | 0.94 | 0.85  | 0.06   | 0.93 | $0.07 \ 0.93$ | 0.91 | 6083 | 54 | DeepRibo         |
| 703                                     | 389            | 290 | 634   | 0.53 | 0.57  | 0.47   | 0.71 | $0.29\ 0.60$  | 0.54 | 47   | 18 | IRSOM            |
| 75                                      | 563            | 116 | 1262  | 0.06 | 0.83  | 0.94   | 0.39 | $0.61 \ 0.10$ | 0.32 | 1    | 1  | SPECtre          |
| 866                                     | 654            | 25  | 471   | 0.65 | 0.96  | 0.35   | 0.97 | $0.03 \ 0.78$ | 0.75 | 1410 | 1  | PRICE            |
| 1272                                    | 371            | 308 | 65    | 0.95 | 0.55  | 0.05   | 0.81 | $0.19\ 0.87$  | 0.81 | 24   | 21 | ribotricer       |
| S. Typhimurium and using overlap of 0.7 |                |     |       |      |       |        |      |               |      |      |    |                  |
| 1189                                    | 544            | 135 | 148   | 0.89 | 0.80  | 0.11   | 0.90 | $0.10\ 0.89$  | 0.86 | 0    | 0  | REPARATION_blast |
| 143                                     | 650            | 29  | 1194  | 0.11 | 0.96  | 0.89   | 0.83 | $0.17 \ 0.19$ | 0.39 | 116  | 13 | Ribo-TISH        |
| 1041                                    | 660            | 19  | 296   | 0.78 | 0.97  | 0.22   | 0.98 | $0.02 \ 0.87$ | 0.84 | 12   | 1  | DeepRibo         |
| 678                                     | 427            | 252 | 659   | 0.51 | 0.63  | 0.49   | 0.73 | $0.27 \ 0.60$ | 0.55 | 8    | 3  | IRSOM            |
| 75                                      | 565            | 114 | 1262  | 0.06 | 0.83  | 0.94   | 0.40 | $0.60\ 0.10$  | 0.32 | 0    | 0  | SPECtre          |
| 349                                     | 677            | 2   | 988   | 0.26 | 1.00  | 0.74   | 0.99 | $0.01 \ 0.41$ | 0.51 | 0    | 0  | PRICE            |
| 1270                                    | 385            | 294 | 67    | 0.95 | 0.57  | 0.05   | 0.81 | $0.19\ 0.88$  | 0.82 | 0    | 0  | ribotricer       |
| <i>S.</i> T                             | yph            | imu | ırium | and  | using | overla | p of | 0.9           |      |      |    |                  |
| 1139                                    | 553            | 126 | 198   | 0.85 | 0.81  | 0.15   | 0.90 | $0.10\ 0.88$  | 0.84 | 0    | 0  | REPARATION_blast |
| 97                                      | 658            | 21  | 1240  | 0.07 | 0.97  | 0.93   | 0.82 | $0.18\ 0.13$  | 0.37 | 19   | 1  | Ribo-TISH        |
| 1001                                    | 663            | 16  | 336   | 0.75 | 0.98  | 0.25   | 0.98 | $0.02 \ 0.85$ | 0.83 | 0    | 0  | DeepRibo         |
| 678                                     | 427            | 252 | 659   | 0.51 | 0.63  | 0.49   | 0.73 | $0.27 \ 0.60$ | 0.55 | 2    | 0  | IRSOM            |
| 75                                      | 565            | 114 | 1262  | 0.06 | 0.83  | 0.94   | 0.40 | $0.60\ 0.10$  | 0.32 | 0    | 0  | SPECtre          |
| 273                                     | 677            | 2   | 1064  | 0.20 | 1.00  | 0.80   | 0.99 | $0.01\ 0.34$  | 0.47 | 0    | 0  | PRICE            |
| 1270                                    | 385            | 294 | 67    | 0.95 | 0.57  | 0.05   | 0.81 | $0.19\ 0.88$  | 0.82 | 0    | 0  | ribotricer       |

## D.4 Small Open Reading Frames

**Table S13:** Statistical evaluation of sORFs for the benchmark dataset *E. coli* and using overlap threshold of 0.01, 0.7 or 0.9. We could not find any sORF results for the benchmark dataset: *L. monocytogenes*. A detailed column description can be found in Table S1.

| $\mathrm{TP}$ | TN   | $\mathbf{FP}$  | FN             | TPR   | TNR   | FNR           | PPV  | FDR  | F1   | accuracy | $\mathrm{sTP}$ | sFP | tool                         |
|---------------|------|----------------|----------------|-------|-------|---------------|------|------|------|----------|----------------|-----|------------------------------|
| <i>E</i> .    | coli | and            | l usi          | ng ov | erlap | of <b>0.0</b> | )1   |      |      |          |                |     |                              |
| 23            | 50   | 10             | 31             | 0.43  | 0.83  | 0.57          | 0.70 | 0.30 | 0.53 | 0.64     | 0              | 0   | REPARATION_blast             |
| 7             | 59   | 1              | 47             | 0.13  | 0.98  | 0.87          | 0.88 | 0.12 | 0.23 | 0.58     | 0              | 0   | Ribo-TISH                    |
| 50            | 50   | 10             | 4              | 0.93  | 0.83  | 0.07          | 0.83 | 0.17 | 0.88 | 0.88     | 55             | 8   | DeepRibo                     |
| 9             | 48   | 12             | 45             | 0.17  | 0.80  | 0.83          | 0.43 | 0.57 | 0.24 | 0.50     | 0              | 1   | IRSOM                        |
| 20            | 45   | 15             | 34             | 0.37  | 0.75  | 0.63          | 0.57 | 0.43 | 0.45 | 0.57     | 0              | 0   | SPECtre                      |
| 24            | 57   | 3              | 30             | 0.44  | 0.95  | 0.56          | 0.89 | 0.11 | 0.59 | 0.71     | 11             | 2   | PRICE                        |
| 50            | 51   | 9              | 4              | 0.93  | 0.85  | 0.07          | 0.85 | 0.15 | 0.88 | 0.89     | 11             | 1   | ribotricer                   |
| <i>E</i> .    | coli | and            | l usi          | ng ov | erlap | of <b>0.7</b> | 7    |      |      |          |                |     |                              |
| 18            | 51   | 9              | 36             | 0.33  | 0.85  | 0.67          | 0.67 | 0.33 | 0.44 | 0.61     | 0              | 0   | $\texttt{REPARATION\_blast}$ |
| 3             | 60   | 0              | 51             | 0.06  | 1.00  | 0.94          | 1.00 | 0.00 | 0.11 | 0.55     | 0              | 0   | Ribo-TISH                    |
| 44            | 53   | $\overline{7}$ | 10             | 0.81  | 0.88  | 0.19          | 0.86 | 0.14 | 0.84 | 0.85     | 3              | 0   | DeepRibo                     |
| 4             | 51   | 9              | 50             | 0.07  | 0.85  | 0.93          | 0.31 | 0.69 | 0.12 | 0.48     | 0              | 0   | IRSOM                        |
| 18            | 45   | 15             | 36             | 0.33  | 0.75  | 0.67          | 0.55 | 0.45 | 0.41 | 0.55     | 0              | 0   | SPECtre                      |
| 12            | 59   | 1              | 42             | 0.22  | 0.98  | 0.78          | 0.92 | 0.08 | 0.36 | 0.62     | 1              | 0   | PRICE                        |
| 47            | 52   | 8              | $\overline{7}$ | 0.87  | 0.87  | 0.13          | 0.85 | 0.15 | 0.86 | 0.87     | 3              | 0   | ribotricer                   |
| <i>E</i> .    | coli | and            | l usi          | ng ov | erlap | of <b>0.</b>  | )    |      |      |          |                |     |                              |
| 18            | 52   | 8              | 36             | 0.33  | 0.87  | 0.67          | 0.69 | 0.31 | 0.45 | 0.61     | 0              | 0   | $\texttt{REPARATION\_blast}$ |
| 2             | 60   | 0              | 52             | 0.04  | 1.00  | 0.96          | 1.00 | 0.00 | 0.07 | 0.54     | 0              | 0   | Ribo-TISH                    |
| 42            | 53   | $\overline{7}$ | 12             | 0.78  | 0.88  | 0.22          | 0.86 | 0.14 | 0.82 | 0.83     | 2              | 0   | DeepRibo                     |
| 4             | 51   | 9              | 50             | 0.07  | 0.85  | 0.93          | 0.31 | 0.69 | 0.12 | 0.48     | 0              | 0   | IRSOM                        |
| 18            | 45   | 15             | 36             | 0.33  | 0.75  | 0.67          | 0.55 | 0.45 | 0.41 | 0.55     | 0              | 0   | SPECtre                      |
| 4             | 59   | 1              | 50             | 0.07  | 0.98  | 0.93          | 0.80 | 0.20 | 0.14 | 0.55     | 0              | 0   | PRICE                        |
| 47            | 52   | 8              | 7              | 0.87  | 0.87  | 0.13          | 0.85 | 0.15 | 0.86 | 0.87     | 0              | 0   | ribotricer                   |

**Table S14:** Statistical evaluation of sORFs for the benchmark dataset *P. aeruginosa* and using overlap threshold of 0.01, 0.7 or 0.9. We could not find any sORF results for the benchmark dataset: *L. monocytogenes*. A detailed column description can be found in Table S1.

| TP TN FP FN TPR TNR FNR PPV FDR | F1 accuracy sTP sFP tool |
|---------------------------------|--------------------------|
|---------------------------------|--------------------------|

| Ρ. | aeru | gin | osa            | and  | using | overla | ap of | 0.01          |      |   |                          |
|----|------|-----|----------------|------|-------|--------|-------|---------------|------|---|--------------------------|
| 5  | 4    | 1   | 2              | 0.71 | 0.8   | 0.29   | 0.83  | $0.17 \ 0.77$ | 0.75 | 0 | 0 REPARATION_blast       |
| 1  | 5    | 0   | 6              | 0.14 | 1.0   | 0.86   | 1.00  | $0.00\ 0.25$  | 0.50 | 0 | 0  Ribo-TISH             |
| 7  | 4    | 1   | 0              | 1.00 | 0.8   | 0.00   | 0.88  | $0.12\ 0.93$  | 0.92 | 6 | $2 \; \texttt{DeepRibo}$ |
| 4  | 3    | 2   | 3              | 0.57 | 0.6   | 0.43   | 0.67  | $0.33\ 0.62$  | 0.58 | 0 | 0 IRSOM                  |
| 0  | 4    | 1   | 7              | 0.00 | 0.8   | 1.00   | 0.00  | $1.00\ 0.00$  | 0.33 | 0 | 0  SPECtre               |
| 6  | 4    | 1   | 1              | 0.86 | 0.8   | 0.14   | 0.86  | $0.14\ 0.86$  | 0.83 | 2 | 0 PRICE                  |
| 5  | 2    | 3   | 2              | 0.71 | 0.4   | 0.29   | 0.62  | $0.38\ 0.67$  | 0.58 | 0 | $0 \; {\tt ribotricer}$  |
| Ρ. | aeru | gin | osa            | and  | using | overla | ap of | 0.7           |      |   |                          |
| 4  | 4    | 1   | 3              | 0.57 | 0.8   | 0.43   | 0.80  | $0.20\ 0.67$  | 0.67 | 0 | 0 REPARATION_blast       |
| 0  | 5    | 0   | 7              | 0.00 | 1.0   | 1.00   | 0.00  | $0.00\ 0.00$  | 0.42 | 0 | 0  Ribo-TISH             |
| 7  | 4    | 1   | 0              | 1.00 | 0.8   | 0.00   | 0.88  | $0.12\ 0.93$  | 0.92 | 0 | $1 \; {\tt DeepRibo}$    |
| 3  | 4    | 1   | 4              | 0.43 | 0.8   | 0.57   | 0.75  | $0.25 \ 0.55$ | 0.58 | 0 | 0 IRSOM                  |
| 0  | 4    | 1   | $\overline{7}$ | 0.00 | 0.8   | 1.00   | 0.00  | $1.00\ 0.00$  | 0.33 | 0 | 0  SPECtre               |
| 4  | 5    | 0   | 3              | 0.57 | 1.0   | 0.43   | 1.00  | $0.00\ 0.73$  | 0.75 | 0 | 0 PRICE                  |
| 4  | 2    | 3   | 3              | 0.57 | 0.4   | 0.43   | 0.57  | $0.43\ 0.57$  | 0.50 | 0 | $0 \; {\tt ribotricer}$  |
| Ρ. | aeru | gin | osa            | and  | using | overla | ap of | 0.9           |      |   |                          |
| 4  | 4    | 1   | 3              | 0.57 | 0.8   | 0.43   | 0.80  | $0.20\ 0.67$  | 0.67 | 0 | 0 REPARATION_blast       |
| 0  | 5    | 0   | 7              | 0.00 | 1.0   | 1.00   | 0.00  | $0.00\ 0.00$  | 0.42 | 0 | 0  Ribo-TISH             |
| 6  | 4    | 1   | 1              | 0.86 | 0.8   | 0.14   | 0.86  | $0.14\ 0.86$  | 0.83 | 0 | $0 \; {\tt DeepRibo}$    |
| 3  | 4    | 1   | 4              | 0.43 | 0.8   | 0.57   | 0.75  | $0.25 \ 0.55$ | 0.58 | 0 | 0 IRSOM                  |
| 0  | 4    | 1   | $\overline{7}$ | 0.00 | 0.8   | 1.00   | 0.00  | $1.00\ 0.00$  | 0.33 | 0 | 0  SPECtre               |
| 4  | 5    | 0   | 3              | 0.57 | 1.0   | 0.43   | 1.00  | $0.00\ 0.73$  | 0.75 | 0 | 0 PRICE                  |
| 4  | 2    | 3   | 3              | 0.57 | 0.4   | 0.43   | 0.57  | $0.43\ 0.57$  | 0.50 | 0 | $0 \; {\tt ribotricer}$  |

**Table S15:** Statistical evaluation of sORFs for the benchmark dataset *S.* Typhimurium and using overlap threshold of 0.01, 0.7 or 0.9. We could not find any sORF results for the benchmark dataset: *L. monocytogenes.* A detailed column description can be found in Table S1.

TP TN FP FN TPR TNR FNR PPV FDR  $\,$  F1 accuracy sTP sFP tool

| <i>S</i> . 7 | [yp]                                    | him            | uri            | um ai | nd usi | ng ov | erlap | of <b>0.01</b> |      |    |                              |
|--------------|-----------------------------------------|----------------|----------------|-------|--------|-------|-------|----------------|------|----|------------------------------|
| 11           | 62                                      | 7              | 20             | 0.35  | 0.90   | 0.65  | 0.61  | $0.39\ 0.45$   | 0.73 | 0  | 0 REPARATION_blast           |
| 4            | 64                                      | 5              | 27             | 0.13  | 0.93   | 0.87  | 0.44  | $0.56\ 0.20$   | 0.68 | 0  | 0  Ribo-TISH                 |
| 30           | 59                                      | 10             | 1              | 0.97  | 0.86   | 0.03  | 0.75  | $0.25 \ 0.85$  | 0.89 | 38 | $11 \; {\tt DeepRibo}$       |
| 6            | 48                                      | 21             | 25             | 0.19  | 0.70   | 0.81  | 0.22  | $0.78\ 0.21$   | 0.54 | 1  | 1 IRSOM                      |
| 3            | 62                                      | $\overline{7}$ | 28             | 0.10  | 0.90   | 0.90  | 0.30  | $0.70\ 0.15$   | 0.65 | 0  | 0  SPECtre                   |
| 18           | 65                                      | 4              | 13             | 0.58  | 0.94   | 0.42  | 0.82  | $0.18\ 0.68$   | 0.83 | 8  | 0 PRICE                      |
| 30           | 54                                      | 15             | 1              | 0.97  | 0.78   | 0.03  | 0.67  | $0.33 \ 0.79$  | 0.84 | 1  | $4 \; \texttt{ribotricer}$   |
| S. ]         | S. Typhimurium and using overlap of 0.7 |                |                |       |        |       |       |                |      |    |                              |
| 10           | 68                                      | 1              | 21             | 0.32  | 0.99   | 0.68  | 0.91  | $0.09\ 0.48$   | 0.78 | 0  | 0 REPARATION_blast           |
| 2            | 68                                      | 1              | 29             | 0.06  | 0.99   | 0.94  | 0.67  | $0.33\ 0.12$   | 0.70 | 0  | 0  Ribo-TISH                 |
| 26           | 64                                      | 5              | 5              | 0.84  | 0.93   | 0.16  | 0.84  | $0.16\ 0.84$   | 0.90 | 1  | $0 \; {\tt DeepRibo}$        |
| 5            | 58                                      | 11             | 26             | 0.16  | 0.84   | 0.84  | 0.31  | $0.69\ 0.21$   | 0.63 | 0  | 0 IRSOM                      |
| 3            | 64                                      | 5              | 28             | 0.10  | 0.93   | 0.90  | 0.38  | $0.62\ 0.15$   | 0.67 | 0  | 0  SPECtre                   |
| 9            | 68                                      | 1              | 22             | 0.29  | 0.99   | 0.71  | 0.90  | $0.10\ 0.44$   | 0.77 | 0  | 0 PRICE                      |
| 29           | 58                                      | 11             | 2              | 0.94  | 0.84   | 0.06  | 0.72  | $0.28\ 0.82$   | 0.87 | 0  | $0 \; {\tt ribotricer}$      |
| S. ]         | [yp]                                    | him            | uri            | um a  | nd usi | ng ov | erlap | of <b>0.9</b>  |      |    |                              |
| 10           | 68                                      | 1              | 21             | 0.32  | 0.99   | 0.68  | 0.91  | $0.09\ 0.48$   | 0.78 | 0  | $0 \text{ REPARATION_blast}$ |
| 1            | 68                                      | 1              | 30             | 0.03  | 0.99   | 0.97  | 0.50  | $0.50\ 0.06$   | 0.69 | 0  | 0  Ribo-TISH                 |
| 24           | 65                                      | 4              | $\overline{7}$ | 0.77  | 0.94   | 0.23  | 0.86  | $0.14\ 0.81$   | 0.89 | 0  | $0 \; {\tt DeepRibo}$        |
| 5            | 58                                      | 11             | 26             | 0.16  | 0.84   | 0.84  | 0.31  | $0.69\ 0.21$   | 0.63 | 0  | 0 IRSOM                      |
| 3            | 64                                      | 5              | 28             | 0.10  | 0.93   | 0.90  | 0.38  | $0.62\ 0.15$   | 0.67 | 0  | 0  SPECtre                   |
| 2            | 68                                      | 1              | 29             | 0.06  | 0.99   | 0.94  | 0.67  | $0.33\ 0.12$   | 0.70 | 0  | 0 PRICE                      |
| 29           | 58                                      | 11             | 2              | 0.94  | 0.84   | 0.06  | 0.72  | $0.28\ 0.82$   | 0.87 | 0  | 0  ribotricer                |

#### D.5 Novel sORF detection

**Table S16:** Numbers of novel sORFs detected for all tools. The study of Weaver *et al* [4] experimentally identified **31** novel sORFs. The novel sORF detection power for each tool was evaluated by applying our benchmark pipeline on the *E. coli* Ribo-seq library described in [4]. Note: DeepRibo predicted in total 17 sORFs, but using a cutoff 18 sORFs remain. Since no RNA library is available we could not test novel sORF detection for IRSOM.

| Tool        | DeepRibo | REPARATION_blast | Ribo-TISH | SPECtre | smORFer | PRICE | ribotricer |
|-------------|----------|------------------|-----------|---------|---------|-------|------------|
| Novel sORFs | 17       | 0                | 0         | 0       | 28      | 0     | 0          |

### E Evaluation of key results

To follow the good practice for benchmarking as proposed by Mangul *et al.* [5] we adapted one of their example summary figures [6] for our benchmark scenario. Here, we propose a straightforward evaluation system to summarize the performance of all evaluated tools. The evaluation results are visualized in Figure 5 of the main text. The evaluation system reveals the performance of each tool for several categories. We rate the tools as follows: a violet circle for superior performance, a light blue circle for satisfactory performance, and a dark blue circle for unsatisfactory performance. How each tool is rated for each category is described in the following.

#### E.1 Predictive power for the translatome set

To evaluate the predictive power of each tool, we averaged the AUC values of the PRC of all *translatome* benchmark sets. Ribo-TISH, IRSOM, PRICE and ribotricer achieved unsatisfactory results, with average AUCs of 0.69, 0.70, 0.76 and 0.72, respectively.REPARATION\_blast, with an average AUC of 0.88, were satisfactory. Since smORFer only has an AUC for *E.coli* of 0.82 was also satisfactory and DeepRibo achieved a superior predictive power, with AUCs of 0.94. The AUC values can be found in Table 3 of the main document.

Superior : AUC higher on average 0.90 Satisfactory : AUC higher on average 0.80 Unsatisfactory : AUC lower on average 0.80

#### E.2 Predictive power inside and outside of operons

Averaging the AUCs for the detection of ORFs inside or outside of operons, respectively, led to the following results: Ribo-TISH 0.67 and 0.72, DeepRibo

26 Gelhausen, Müller et al

0.93 and 0.95, REPARATION\_blast 0.91 and 0.91, IRSOM 0.68 and 0.75, SPECtre 0.53 and 0.7, smORFer 0.81 and 0.84, PRICE 0.76 and 0.79, ribotricer 0.66 and 0.63.

Superior : AUC higher on average 0.90 Satisfactory : AUC higher on average 0.80 Unsatisfactory : AUC lower on average 0.80

### E.3 Prediction of novel sORFs

The predictive power of finding novel ORFs was tested using 33 verified novel ORFs outside of the annotation([7], see main text). Only DeepRibo was able to find 18/19 of the 33 novel ORFs and has therefore a Satisfactory predictive power. REPARATION\_blast with only two and Ribo-TISH and IRSOM with which found non of the novel ORFs show a unsatisfactory performance.

Superior : 20 novel ORFs detected Satisfactory : 10 novel ORFs detected Unsatisfactory : less than 10 novel ORFs detected

#### E.4 Runtime

The runtime comparison can be found in the main document (Table 7). We evaluated tools using single- and multithreading. Since not every tool supports multithreading, we took the minimum runtime for each tool for either single- or multithreading. Be aware that the original REPARATION tool should be faster than REPARATION\_blast because of the use of ublast in REPARATION\_blast.

Superior if test data was computed in less than 30 minutes Satisfactory if test data was computed in less than 2 hours Unsatisfactory if test data was computed in more than 2 hours

#### E.5 Memory

The memory comparison can be found in the main document (Table 7). We evaluated tools using single- and multithreading. Since not every tool supports multithreading, we take the minimum run time for each tool from either approach.

Superior : 2 or less GB Satisfactory : 4 or less GB Unsatisfactory : more than 4 GB

#### E.6 Applicability

The applicability describes how universally the tool can be applied. In the following we list several applicability criteria. If a tools fulfills the criteria it gets one point. Based on the amount of points each tool achieved the applicability is evaluated:

- 1. Can use replicates
- 2. Is deterministic
- 3. Outputs a standard file format (gff/bed/ ...)
- 4. Uses unit testing or some other correctness declaration
- 5. Stable results throughout different organisms

In the following, we describe how each tool was rated for applicability:

**Table S17:** Applicability scoring table showing: (1) Can use replicates, (2) Is deterministic, (3) Outputs a standard file format, (4) Uses unit testing or some other correctness declaration, (5) Stable results throughout different organisms.

| tool             | 1 | 2 | 3 | 4 | 5 | total |
|------------------|---|---|---|---|---|-------|
| Ribo-TISH        | 1 | 1 | 0 | 0 | 1 | 3     |
| DeepRibo         | 0 | 1 | 1 | 0 | 1 | 3     |
| REPARATION_blast | 0 | 0 | 0 | 0 | 1 | 1     |
| IRSOM            | 0 | 1 | 0 | 0 | 1 | 2     |
| SPECtre          | 0 | 1 | 0 | 0 | 0 | 2     |
| smORFer          | 0 | 1 | 1 | 0 | - | 2     |
| PRICE            | 0 | 0 | 1 | 1 | 0 | 2     |
| ribotricer       | 0 | 1 | 0 | 0 | 1 | 2     |

Superior : 4 or more points fulfilled Satisfactory : 2 or more points fulfilled Unsatisfactory : 1 or less points fulfilled

#### E.7 Usability

User friendliness or usability is one of the key factors on how convenient it is for the users to apply the tool. In the following, we describe several usability criteria, each giving a single point if it is fulfilled by the tested tool.

- 1. Hosting software on a website with predicted long-term accessibility (e.g., GitHub)
- 2. Installation via package managers (e.g., Bioconda)
- 3. Provides an example dataset for testing
- 4. Version control (changelog)
- 5. Documentation: parameters

- 28 Gelhausen, Müller et al
- 6. Documentation: input
- 7. Documentation: output
- 8. Documentation: dependencies
- 9. Open source

In the following, we describe the rating of the tools' usability:

**Table S18:** Usability scoring table showing: (1) Long-term accessible website, (2) Package managers, (3) Example data, (4) Version control, (5) Documentation: parameter, (6) Documentation: input, (7) Documentation: output, (8) Documentation: dependencies, (9) Open source. \* *REPARATION* was using a proprietary, closed source sequence search tool that we replaced with the free and open source tool blast, to make the software usable without fee. This version is called **REPARATION\_blast**.

| tool               | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9       | total |
|--------------------|---|---|---|---|---|---|---|---|---------|-------|
| Ribo-TISH          | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1       | 8     |
| DeepRibo           | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1       | 7     |
| $REPARATION_blast$ | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | $1^{*}$ | 7     |
| IRSOM              | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1       | 5     |
| SPECtre            | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1       | 8     |
| smORFer            | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1       | 5     |
| PRICE              | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1       | 7     |
| ribotricer         | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1       | 8     |

Superior : 8 or more points fulfilled Satisfactory : 4 or more points fulfilled Unsatisfactory : 3 or less points fulfilled

# **F** Adapter sequences used for trimming

### F.1 E. coli

#### AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC

#### F.2 L. monocytogenes

#### AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC

#### F.3 P. aeruginosa

#### AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC

#### F.4 S. Typhimurium

#### CTGTAGGCACCATCAATAGATCGGAAGA

#### References

- Jeremy Weaver, Fuad Mohammad, Allen R Buskirk, and Gisela Storz. Identifying small proteins by ribosome profiling with stalled initiation complexes. *mBio*, 10(2):e02819–18, 2019.
- Rondine J Allen, Evan P Brenner, Caitlin E VanOrsdel, Jessica J Hobson, David J Hearn, and Matthew R Hemm. Conservation analysis of the CydX protein yields insights into small protein identification and evolution. *BMC genomics*, 15(1):946, 2014.
- 3. Chelsea R Lloyd, Seongjin Park, Jingyi Fei, and Carin K Vanderpool. The small protein SgrT controls transport activity of the glucose-specific phosphotransferase system. *Journal of bacteriology*, 199(11):e00869–16, 2017.
- 4. Jeremy Weaver, Fuad Mohammad, Allen R Buskirk, and Gisela Storz. Identifying small proteins by ribosome profiling with stalled initiation complexes. *MBio*, 10(2):e02819–18, 2019.
- 5. Serghei Mangul, Lana S Martin, Eleazar Eskin, and Ran Blekhman. Improving the usability and archival stability of bioinformatics software, 2019.
- Keegan Korthauer, Patrick K Kimes, Claire Duvallet, Alejandro Reyes, Ayshwarya Subramanian, Mingxiang Teng, Chinmay Shukla, Eric J Alm, and Stephanie C Hicks. A practical guide to methods controlling false discoveries in computational biology. *Genome biology*, 20(1):118, 2019.
- Lukas M Weber, Wouter Saelens, Robrecht Cannoodt, Charlotte Soneson, Alexander Hapfelmeier, Paul P Gardner, Anne-Laure Boulesteix, Yvan Saeys, and Mark D Robinson. Essential guidelines for computational method benchmarking. *Genome biology*, 20(1):125, 2019.