Supplemental Online Content

Byrne P, Demasi M, Jones M, Smith SM, O'Brien KK, DuBroff R. Evaluating the association between low-density lipoprotein cholesterol reduction and relative and absolute effects of statin treatment: a systematic review and meta-analysis. *JAMA Intern Med.* Published online March 14, 2022. doi:10.1001/jamainternmed.2022.0134

eFigure 1. PRISMA Flow Diagram

eFigure 2. PICOTTS format

eTable 1. Included trials & references

eTable 2. Excluded trials & reasons for exclusion

eFigure 3. ROB of included trials for all outcomes

eTable 3. GRADE Table

eFigure 4. Meta-analysis of relative effects of treatment on all-cause mortality, all trials

eFigure 5. Meta-analysis of absolute effects of treatment on all-cause mortality, all trials

eFigure 6. Meta-analysis of relative effects of treatment on myocardial infarction, all trials

eFigure 7. Meta-analysis of absolute effects of treatment on myocardial infarction, all trials

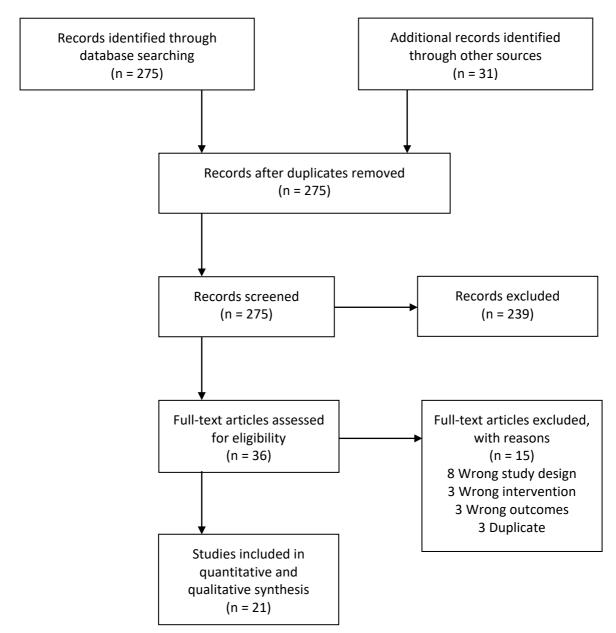
eFigure 8. Meta-analysis of relative effects of treatment on stroke, all-trials

eFigure 9. Meta-analysis of absolute effects of treatment on stroke, all trials

eFigure 10. Meta-analysis of relative effects of treatment on all-cause mortality in primary and secondary prevention trials

eFigure 11. Meta-analysis of absolute effects of treatment on all-cause mortality in primary and secondary prevention trials

eFigure 12. Meta-analysis of relative effects of treatment on myocardial infarction in primary and secondary prevention trials


eFigure 13. Meta-analysis of absolute effects of treatment on myocardial infarction in primary and secondary prevention trials

eFigure 14. Meta-analysis of relative effects of treatment on stroke from primary and secondary prevention trials

eFigure 15. Meta-analysis of absolute effects of treatment on stroke from primary and secondary prevention trials

eTable 4. Meta-regression results of outcomes by mean difference in LDL-C (unadjusted)

This supplemental material has been provided by the authors to give readers additional information about their work.

Supplementary Figure e1 PRISMA Flow diagram

Supplementary Figure e2 PICOTTS (Patients, Interventions, Comparators, Outcomes, Timing, Setting and Study Design) Format

Patients

• Adults ≥ 18 years of age

Interventions

• Statins (HMG-CoA reductase inhibitors)

Comparators

- Placebo
- No treatment
- Usual care

Primary outcomes

• All-cause mortality

Secondary outcomes

- Myocardial infarction (MI)
- Stroke

Timing

• Studies whose intended duration is greater than two years

Setting and Study Design

- Systematic reviews of randomised controlled trials
- Systematic reviews of individual patient data

Table e1: Included trials & references

Trial Year	Duration of follow- up (years)*	Treatment	Control	Participants	Primary or secondary prevention	Primary endpoint	Achieved LDL-C difference (mmol/L)		Control group event rate (100 patient- years)	
								All cause mortality	MI	Stroke
48 1994	5.4	Simvastatin 10-40 mg/d	Placebo	4,444 angina or s/p MI	Secondary	All cause mortality	1.75	2.13	4.4	0.53
WOSCOPS 1995	4.9	Pravastatin 40 mg/d	Placebo	6,595 men hypercholesterolemia	Primary	CHD death or nonfatal MI	0.98	0.84	1.83	0.32
CARE 1996	5	Pravastatin 40 mg/d	Placebo	4,159 s/p MI	Secondary	CHD death or nonfatal MI	0.96	1.89	2.59	0.75
LIPID 1998	6.1	Pravastatin 40 mg/d	Placebo	9,014 history CHD	Secondary	CHD death	9.97	2.3	1.69	0.74
AFCAPS/TexCAPS 1998	5.2**	Lovastatin 20-40 mg/d	Placebo	6,605 average cholesterol	Primary	First acute coronary event	1.08	NR	0.55	1.49
LIPS 2002	3.9	Fluvastatin 80 mg/d	Placebo	1,677 s/p PCI	Secondary	Cardiac death, nonfatal MI or reintervention procedure	1.08	1.51	NR	NR
HPS 2002	5	Simvastatin 40 mg/d	Placebo	20,536 high risk	Both	All cause mortality	1	2.94	2.36	1.14
PROSPER 2002	3.2	Pravastatin 40 mg/d	Placebo	5,804 elderly	Both	CHD death, nonfatal MI or any stroke	1.03	6.79	7.9	3
ALLHAT-LLT 2002	4.8	Pravastatin 40 mg/d	Usual care	10,355 moderate hypercholesterolemia HBP	Primary	All cause mortality	0.44	2.58	1.69	0.93
ASCOT-LLA 2003	3.3**	Atorvastatin 10 mg/d	Placebo	10,305 HBP average cholesterol	Primary	CHD death or nonfatal MI	1.2	1.28	0.94	0.74
ALERT 2003	5.1	Fluvastatin 40 mg/d	Placebo	2,104 renal transplant recipients	Both	Cardiac death, nonfatal MI or coronary intervention procedure	1	2.57	1.96	1.17
CARDS 2004	3.9**	Atorvastatin 10 mg/d	Placebo	2,838 T2DM	Primary	Acute coronary event, coronary revascularization or stroke	1.2	1.49	1.11	0.71
4D 2005	4	Atorvastatin 10-20 ng/d	Placebo	1,255 T2DM haemodialysis	Both	Cardiac death, nonfatal MI or stroke	1.08	12.58	4.4	2.32
ASPEN 2006	4	Atorvastatin 10 mg/d	placebo	2,410 T2DM	Both		0.79	1.43	1.38	0.79
MEGA 2006	5.3	Pravastatin 10-20 mg/d	Usual care	7,832 hypercholesterolemic	Primary	CV death, nonfatal MI, recanalization, CABG, resuscitated cardiac arrest or angina requiring hospitalization	0.61	0.38	0.16	0.29
SPARCL 2006	4.9	Atorvastatin 80 mg/d	Placebo	4,731 s/p stroke or TIA	Secondary	Fatal or nonfatal stroke	1.4	1.82	1.04	2.68
CORONA 2007	2.7	Rosuvastatin 10 mg/d	Placebo	5,011 systolic HF	Secondary	CV death, nonfatal MI or nonfatal stroke	1.56	11.26	2.28	2.05
JUPITER 2008	1.9**	Rosuvastatin 20 mg/d	Placebo	17,802 elevated hs CRP	Primary	CV death, MI, stroke, arterial revascularization angina requiring hospitalization	1.43	1.46	0.4	0.38
GISSI-HF 2008	3.9	Rosuvastatin 10 mg/d	Placebo	4,574 chronic heart failure	Both	All cause mortality	0.75	7.21	0.78	0.74
AURORA 2009	3.8	Rosuvastatin 10 mg/d	Placebo	2,776 hemodialysis	Both	CV death, nonfatal MI or nonfatal stroke	0.73	12.55	6.01	1.54
HOPE-3 2016	5.6	Rosuvastatin 10 mg/d	Placebo	12,705 intermediate risk	Primary	CV death, nonfatal MI or nonfatal stroke or CV death, nonfatal MI,nonfatal stroke, revascularization, heart failure or resuscitated cardiac arrest	0.89	1	0.19	0.28

Note: All included trials were commercially funded by pharmaceutical companies. *mean or median

** premature termination

eREFERENCES

- a. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet. 1994 Nov 19;344(8934):1383-9.
- Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med. 1995 Nov 16;333(20):1301-7. doi: 10.1056/NEJM199511163332001.
- c. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med. 1996 Oct 3;335(14):1001-9. doi: 10.1056/NEJM199610033351401.

- d. Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels. N Engl J Med. 1998 Nov 5;339(19):1349-57. doi: 10.1056/NEJM199811053391902.
- e. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA. 1998 May 27;279(20):1615-22. doi: 10.1001/jama.279.20.1615.
- f. Serruys PW, de Feyter P, Macaya C, et al; Lescol Intervention Prevention Study (LIPS) Investigators. Fluvastatin for prevention of cardiac events following successful first percutaneous coronary intervention: a randomized controlled trial. JAMA. 2002 Jun 26;287(24):3215-22. doi: 10.1001/jama.287.24.3215.
- g. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002 Jul 6;360(9326):7-22. doi: 10.1016/S0140-6736(02)09327-3.
- Shepherd J, Blauw GJ, Murphy MB, et al; PROSPER study group. PROspective Study of Pravastatin in the Elderly at Risk. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet. 2002 Nov 23;360(9346):1623-30. doi: 10.1016/s0140-6736(02)11600-x.
- i. The ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major Outcomes in Moderately Hypercholesterolemic, Hypertensive Patients Randomized to Pravastatin vs Usual Care: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT-LLT). JAMA.2002;288(23):2998–3007. doi:10.1001/jama.288.23.2998
- j. Sever PS, Dahlöf B, Poulter NR, et al; ASCOT investigators. Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial--Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet. 2003 Apr 5;361(9364):1149-58. doi: 10.1016/S0140-6736(03)12948-0.
- k. Holdaas H, Fellström B, Jardine AG, et al; Assessment of LEscol in Renal Transplantation (ALERT) Study Investigators. Effect of fluvastatin on cardiac outcomes in renal transplant recipients: a multicentre, randomised, placebo-controlled trial. Lancet. 2003 Jun 14;361(9374):2024-31. doi: 10.1016/S0140-6736(03)13638-0.
- Colhoun HM, Betteridge DJ, Durrington PN, et al; CARDS investigators. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebocontrolled trial. Lancet. 2004 Aug 21-27;364(9435):685-96. doi: 10.1016/S0140-6736(04)16895-5.
- Manner C, Krane V, März W, et al; German Diabetes and Dialysis Study Investigators. Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N Engl J Med. 2005 Jul 21;353(3):238-48. doi: 10.1056/NEJMoa043545. Erratum in: N Engl J Med. 2005 Oct 13;353(15):1640.
- n. Knopp RH, d'Emden M, Smilde JG, Pocock SJ. Efficacy and safety of atorvastatin in the prevention of cardiovascular end points in subjects with type 2 diabetes: the Atorvastatin Study for Prevention of Coronary Heart Disease Endpoints in non-insulindependent diabetes mellitus (ASPEN). Diabetes Care. 2006 Jul;29(7):1478-85. doi: 10.2337/dc05-2415.
- Nakamura H, Arakawa K, Itakura H, et al; MEGA Study Group. Primary prevention of cardiovascular disease with pravastatin in Japan (MEGA Study): a prospective randomised controlled trial. Lancet. 2006 Sep 30;368(9542):1155-63. doi: 10.1016/S0140-6736(06)69472-5.
- p. Amarenco P, Bogousslavsky J, Callahan A 3rd, et al; Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) Investigators. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med. 2006 Aug 10:355(6):549-59. doi: 10.1056/NEJMoa061894. Erratum in: N Engl J Med. 2018 Jun 13::null.
- q. Cheng VC, Lau SK, Woo PC, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev. 2007;20(4):660-694. doi:10.1128/CMR.00023-07
- r. Ridker PM, Danielson E, Fonseca FA, et al; JUPITER Study Group. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008 Nov 20;359(21):2195-207. doi: 10.1056/NEJMoa0807646.
- s. Tavazzi L, Maggioni AP, Marchioli R, et al; Gissi-HF Investigators. Effect of rosuvastatin in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008 Oct 4;372(9645):1231-9. doi: 10.1016/S0140-6736(08)61240-4.
- t. Fellström BC, Jardine AG, Schmieder RE, et al; AURORA Study Group. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N Engl J Med. 2009 Apr 2;360(14):1395-407. doi: 10.1056/NEJMoa0810177. Epub 2009 Mar 30. Erratum in: N Engl J Med. 2010 Apr 15;362(15):1450.
- u. Yusuf S, Bosch J, Dagenais G, et al; HOPE-3 Investigators. Cholesterol Lowering in Intermediate-Risk Persons without Cardiovascular Disease. N Engl J Med. 2016 May 26;374(21):2021-31. doi: 10.1056/NEJMoa1600176.

Short title	Title	Author	Year of publicati on	Journal	DOI	Exclusion reason
GISSI-P ^a	Dietary supplementation with n-3 polyunsaturated fatty acids vitamin E after myocardial infarction: results of the GISSI- Prevenzione trial	Gruppo Italiano per lo Studio della Sopravvive nza nell'Infarto miocardico,	1999	The Lancet	<u>10.1016/S0140-6736(99)07072-5</u>	Wrong study design
WOSCOPS ^b (follow-up analysis)	Low-Density Lipoprotein Cholesterol Lowering for the Primary Prevention of Cardiovascular Disease Among Men With Primary Elevations of Low- Density Lipoprotein Cholesterol Levels of 190 mg/dL or Above: Analyses From the WOSCOPS	Vallejo- Vaz AJ; Robertson M; Catapano AL; Watts GF; Kastelein JJ; Packard CJ; Ford I; Ray KK	2017	Circulation	10.1161/CIRCULATIONAHA.11 7.027966	Wrong study design
ALLIANCE	Clinical outcomes in managed-care patients with coronary heart disease treated aggressively in lipid- lowering disease management clinics: the alliance study.	Koren MJ; Hunningha ke DB	2004	J Am Coll Cardiol	10.1016/j.jacc.2004.07.053	Wrong study design
TNT ^d	Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets) study	Shepherd, James; Kastelein, John JP; Bittner, Vera; Deedwania, Prakash; Breazna, Andrei; Dobson, Stephen; Wilson, Daniel J; Zuckerman, Andrea; Wenger, Nanette K; TNT Investigator s	2008	Journal of the American College of Cardiology	10.1016/j.jace.2007.11.072	Wrong study design
Na	The effect of fluvastatin on cardiac events in patients with symptomatic coronary artery disease during one year of treatment.	s Riegger G; Abletshaus er C; Ludwig M; Schwandt P; Widimsky J; Weidinger G; Welzel D	1999°	Atheroscler osis	10.1016/s0021-9150(99)00062-3	Wrong study design
AFCAPS/Tex CAPS ^f	Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TEXCAPS	Downs JR; Clearfield M; Tyroler HA; Whitney	2001	Am J Cardiol	10.1016/s0002-9149(01)01464-3	Wrong study design

Table e2: Excluded trials & reasons for exclusion

): additional perspectives on	EJ; Kruyer W;				
	tolerability of long- term treatment with lovastatin.	Langendorf er A; Zagrebelsk y V; Weis S; Shapiro DR; Beere PA; Gotto AM				
SEARCH ^g	Study of the effectiveness of additional reductions in cholesterol and homocysteine (SEARCH): characteristics of a randomized trial among 12 064 myocardial infarction survivors	SEARCH Study Collaborati ve Group,	2007	American Heart Journal	<u>10.1016/j.ahj.2007.06.034</u>	Wrong interventio n
MARS ^h	The Monitored Atherosclerosis Regression Study (MARS). Design, methods and baseline results.	Cashin- Hemphill L; Kramsch DM; Azen SP; DeMets D; DeBoer LW; Hwang I; Vailas L; Hirsch LJ; Mack WJ; DeBoer L; et al.	1992	Online J Curr Clin Trials	na	Wrong outcomes
TECOS ⁱ	Low-density lipoprotein cholesterol treatment and outcomes in patients with type 2 diabetes and established cardiovascular disease: Insights from TECOS.	De Ferrari GM; Stevens SR; Ambrosio G; Leonardi S; Armstrong PW; Green JB; Wamil M; Holman RR; Peterson ED	2020	Am Heart J	10.1016/j.ahj.2019.11.005	Wrong interventio n
na	Efficacy and safety of cerivastatin 0.8 mg in patients with hypercholesterolaemi a: the pivotal placebo-controlled clinical trial. Cerivastatin Study Group.	Insull W Jr; Isaacsohn J; Kwiterovic h P; Ra P; Brazg R; Dujovne C; Shan M; Shugrue- Crowley E; Ripa S; Tota R	2000 ^j	J Int Med Res	10.1177/147323000002800201	Wrong outcomes
CHORUS ^k	The CHORUS (Cerivastatin in Heart Outcomes in Renal Disease: Understanding Survival) protocol: a double-blind, placebo-controlled trial in patients with esrd.	Keane WF; Brenner BM; Mazzu A; Agro A	2001	Am J Kidney Dis	10.1053/ajkd.2001.20739	Wrong study design
na	Efficacy and safety of pravastatin in the long-term treatment of elderly patients with hypercholesterolemia.	Santinga JT; Rosman HS; Rubenfire M; Maciejko JJ; Kobylak	1994 ¹	Am J Med	10.1016/0002-9343(94)90090-6	Wrong outcomes

		L; McGovern ME; Behounek BD				
St Francis ^m	Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St. Francis Heart Study randomized clinical trial	Arad, Yadon; Spadaro, Louise A; Roth, Marguerite; Newstein, David; Guerci, Alan D	2005	Journal of the American College of Cardiology	<u>10.1016/j.jacc.2005.02.089</u>	Wrong interventio n
na	Pitavastatin demonstrates long- term efficacy, safety and tolerability in elderly patients with primary hypercholesterolaemi a or combined (mixed) dyslipidaemia.	Stender S; Budinski D; Hounslow N	2013 ⁿ	Eur J Prev Cardiol	10.1177/2047487312437326	Wrong study design

na – not available

eREFERENCES

- a. Hopper L, Ness A, Higgins JP, et al. GISSI-Prevenzione trial. Lancet. 1999 Oct 30;354(9189):1557. doi: 10.1016/s0140-6736(05)76587-9.
- b. Kashef MA, Giugliano G. Legacy effect of statins: 20-year follow up of the West of Scotland Coronary Prevention Study (WOSCOPS). Glob Cardiol Sci Pract. 2016;2016(4):e201635. Published 2016 Dec 30. doi:10.21542/gcsp.2016.35
- c. Koren MJ, Hunninghake DB; ALLIANCE Investigators. Clinical outcomes in managed-care patients with coronary heart disease treated aggressively in lipid-lowering disease management clinics: the alliance study. J Am Coll Cardiol. 2004 Nov 2;44(9):1772-9. doi: 10.1016/j.jacc.2004.07.053.
- d. Shepherd J, Kastelein JJ, Bittner V, et al; TNT (Treating to New Targets) Investigators. Intensive lipid lowering with atorvastatin in patients with coronary heart disease and chronic kidney disease: the TNT (Treating to New Targets) study. J Am Coll Cardiol. 2008 Apr 15;51(15):1448-54. doi: 10.1016/j.jacc.2007.11.072.
- e. Riegger G, Abletshauser C, Ludwig M, et al. The effect of fluvastatin on cardiac events in patients with symptomatic coronary artery disease during one year of treatment. Atherosclerosis. 1999 May;144(1):263-70. doi: 10.1016/s0021-9150(99)00062-3.
- f. Downs JR, Clearfield M, Tyroler HA, et al. Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TEXCAPS): additional perspectives on tolerability of long-term treatment with lovastatin. Am J Cardiol. 2001 May 1;87(9):1074-9. doi: 10.1016/s0002-9149(01)01464-3.
- g. SEARCH Study Collaborative Group, Bowman L, Armitage J, Bulbulia R, Parish S, Collins R. Study of the effectiveness of additional reductions in cholesterol and homocysteine (SEARCH): characteristics of a randomized trial among 12064 myocardial infarction survivors. Am Heart J. 2007 Nov;154(5):815-23, 823.e1-6. doi: 10.1016/j.ahj.2007.06.034. Epub 2007 Sep 6.
- Cashin-Hemphill L, Kramsch DM, Azen SP, et al. The Monitored Atherosclerosis Regression Study (MARS). Design, methods and baseline results. Online J Curr Clin Trials. 1992 Oct 23;Doc No 26:[9897 words; 83 paragraphs]. Erratum in: Online J Curr Clin Trials 1992 Nov 14;Doc No 29.
- De Ferrari GM, Stevens SR, Ambrosio G, et al. Low-density lipoprotein cholesterol treatment and outcomes in patients with type 2 diabetes and established cardiovascular disease: Insights from TECOS. American Heart Journal. 2020 Feb;220:82-88. DOI: 10.1016/j.ahj.2019.11.005. PMID: 31790905.
- j. Insull W Jr, Isaacsohn J, Kwiterovich P, et al. Efficacy and safety of cerivastatin 0.8 mg in patients with hypercholesterolaemia: the pivotal placebo-controlled clinical trial. Cerivastatin Study Group. J Int Med Res. 2000 Mar-Apr;28(2):47-68. doi: 10.1177/14732300002800201.
- k. Keane WF, Brenner BM, Mazzu A, Agro A. The CHORUS (Cerivastatin in Heart Outcomes in Renal Disease: Understanding Survival) protocol: a double-blind, placebo-controlled trial in patients with esrd. Am J Kidney Dis. 2001 Jan;37(1 Suppl 2):S48-53. doi: 10.1053/ajkd.2001.20739.
- Santinga JT, Rosman HS, Rubenfire M, et al. Efficacy and safety of pravastatin in the long-term treatment of elderly patients with hypercholesterolemia. Am J Med. 1994 Jun;96(6):509-15. doi: 10.1016/0002-9343(94)90090-6.
- M. Arad Y, Spadaro LA, Roth M, et al. Treatment of asymptomatic adults with elevated coronary calcium scores with atorvastatin, vitamin C, and vitamin E: the St. Francis Heart Study randomized clinical trial. J Am Coll Cardiol. 2005 Jul 5;46(1):166-72. doi: 10.1016/j.jacc.2005.02.089. Erratum in: J Am Coll Cardiol. 2011 Oct 18;58(17):1832.
- N. Stender S, Budinski D, Hounslow N. Pitavastatin demonstrates long-term efficacy, safety and tolerability in elderly patients with primary hypercholesterolaemia or combined (mixed) dyslipidaemia. Eur J Prev Cardiol. 2013 Feb;20(1):29-39. doi: 10.1177/2047487312437326.

Supplementary Figure e3 - Risk of bias of included studies for all outcomes

Study ID	<u>Trial ID</u>	Outcome	<u>D1</u>	<u>D2</u>	<u>D3</u>	<u>D4</u>	<u>D5</u>	Overall
1	4D	All cause mortality	+	+	+	+	+	+
1	4D	Cardiac mortality	+	+	+	+	+	+
1	4D	Non-fatal MI	+	+	+	+	+	+
1	4D	Fatal Stroke	+	+	+	+	<u> </u>	
2	CARDS	All cause mortality	+	<u> </u>	+	+	+	
2	CARDS	Stroke	+	!	+	+	+	!
3		All cause mortality	•		+	+	<u>+</u>	+
3		Death from all CV causes		+	+	+	+	+
3 3		Definate non-fatal MI	•	+	+	+	-	+
3 4	GISS-HF	Fatal or non fatal stroke _ All cause mortality	+ +	+	+	•	2	+
4	GISS-HF	Cardiac mortality	—	+	+	+	+	+
4	GISS-HF	Fatal and non-fatal MI	—	+	+	+	+	+
4	GISS-HF	Fatal and non-fatal stroke		•	÷	$\overline{\mathbf{+}}$	Ť	$\overline{+}$
5		All Cause mortaility	+	1	+	+	•	
5		CV mortality	+	1	+	+	+	
5	ASCOT-LL	Fatal and non fatal stroke	e 🕂	•	+	+	+	
6	ASPEN	All cause mortality	+	+	+	+		
6	ASPEN	CV mortality	+	+	+	+	•	
6	ASPEN	Fatal and non-fatal MI	+	+	+	+	!	
6	ASPEN	fatal and non-fatal stroke	e 🕂	+	+	+	!	!
7	LIPID	All cause mortality	+	+	+	+	+	+
7	LIPID	CVD mortality	+	+	+	+	+	+
7	LIPID	Any MI	•		+	+	+	+
7	LIPID	Any stroke	•	-	+	+	<u>+</u>	+
8	JUPITER	All cause mortality	•		+	+	-	
8	JUPITER	Any MI	•		+	+	+	
8	JUPITER	Any stroke	•		+	+	-	
9 9		Fatal CV events	•	<u> </u> 	•	+	-	
9 10	CARE	Death from CHD	+ +	+ +	+	+	+	+
10	CARE	Fatal MI	+	•	+	+	+	+
10	ALERT	All cause Mortality	+	+	+	+	+	+
11	ALERT	Cardiac mortality	H	÷	•	$\overline{\mathbf{+}}$	Ť	
11	ALERT	Defininate non-fatal MI	H	—	•	•	H	+
12	MEGA	All cause mortality	+	+	+	+	•	+
12	MEGA	CVD death	+	+	+	+	+	+
12	MEGA	MI	+	+	+	+	+	+
12	MEGA	Stroke	+	+	+	+	+	+
13	LIPS	All cause mortality	+	+	+	+	+	+
13	LIPS	Cardiac mortality	+	+	+	+	+	+
14	AURORA	All cause mortality	+	•	+	+	+	+
14		CV mortality	+	+	+	+	+	+
14		Non-fatal MI	•	•	+	+	•	+
14		Non-fatal stroke	•	+	+	+	•	+
15		All cause mortality	•	+	•	•	•	+
15		CV mortality	•	+	+	+	+	+
15 16		Any stroke	•	+	+	+	+	+
16 16	HPS HPS	All cause mortality cardiovascular mortality	•	-		•	-	+
16 16	HPS	Non-fatal MI	+ +	+ +	+	+	+ + +	+
16	HPS	Any stroke	+	+	+	+	+	+
10	SPARCL	All cause mortality	•	•	+	+	+	+
17	SPARCL	Cardiovascular mortality		•	•	$\overline{\mathbf{+}}$	÷	+
17	SPARCL	Non-fatal MI	•	•	•	+	•	+
17	SPARCL	Any stroke	+	+	+	+	•	+
18	4S	All cause mortality	+	+	+	+	+	+
18	4S	Cardiovascular mortality	+	+	+	+	+	+
18	4S	Any major coronary even		+	+	+	+	+
19		All cause mortality	+	+	+	+	+	+
19	CORONA	Cardiovascular mortality	+	+	+	+	+	+
19		Non-Fatal MI	+	+	+	+	+	+
19		Any stroke	+	+	+	+	+	+
20	HOPE	All cause mortality	+	+	+	+	+	+
20	HOPE	Cardiovascular mortality		+	+	+	+	+
20	HOPE	Non-fatal MI	•	+	+	+	+	+
20	HOPE	Any stroke	+	•	+	•	•	+
		Alga MerchitaltAsso			nt + ese		+	+
21		Non-fatal MI	•	+	•	•	-	+
21	FNUSPER	Any stroke	+	+	+	+	+	+

Note: All trials were funded partly or wholly by the pharmaceutical industry.

Table e3: GRADE Table

			Certainty as	sessment			№ of pa	tients	Effect		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	statin induced reductions in LDL-C	placebo or usual care	Relative (95% CI)	Certainty	Importance
All caus	e mortality - p	rimary pr	evention trials								
6	randomised trials	serious ^a	not serious	not serious	serious ^b	none	29,028	29,099	RR 0.87 (0.78 to 0.97)	Hoderate	CRITICAL
All caus	e mortality - s	econdary p	prevention trials							÷	
5	randomised trials	not serious	serious ^c	not serious	serious ^d	none	12,227	12,209	RR 0.86 (0.73 to 1.02)		CRITICAL
All caus	e mortality -A	ll trials	ļ			<u>!</u>	ļ			<u> </u>	<u>!</u>
19	randomised trials	serious ^e	serious ^f	not serious	serious ^g	none	56,331	56,375	RR 0.91 (0.86 to 0.95)	Low/Moderate	CRITICAL
Myocar	dial Infarction	- primary	prevention trial	s							
6	randomised trials	serious ^h	not serious	not serious	not serious	none	27,162	27,215	RR 0.62 (0.54 to 0.71)	Moderate/High	CRITICAL
Myocar	dial Infarction	- seconda	ry prevention tri	als	<u>.</u>	ļ	ļ			<u> </u>	<u>!</u>
5	randomised trials	not serious	not serious	not serious	not serious	none	13,464	13,457	RR 0.73 (0.65 to 0.82)		CRITICAL
Myocar	dial infarction	- All trials	6				l				l
18	randomised trials	serious ⁱ	not serious	not serious	serious ^j	none	31,989	32,040	RR 0.71 (0.66 to 0.78)	Moderate	CRITICAL
Stroke -	primary prev	ention tria	ls								•
6	randomised trials	serious ^k	serious ¹	not serious	serious ^m	none	29,028	29,099	RR 0.76 (0.63 to 0.91)	DO Low/Moderate	CRITICAL
Stroke -	secondary pro	evention tr	ials			1	1				1
4	randomised trials	not serious	serious ⁿ	not serious	seriousº	none	11,383	11,376	RR 0.93 (0.80 to 1.08)	Dev/Moderate	CRITICAL
Stroke -	All trials		;	-	-	•				•	•
18	randomised trials	serious ^p	seriousq	not serious	serious ^r	none	61,656	61,594	RR 0.86 (0.78 to 0.95)	⊕⊕⊖O Low/Moderate	CRITICAL

CI: confidence interval; RR: risk ratio

Explanations

Note: We have marked some items down by 0.5 points when we considered that the issue was but not worthy of a 1-point reduction. This method is suggested by Dr Paul Glasziou (Pers. Comm. Glasziou, P.)

a. Marked down by 0.5 points as 2 out of 6 trials were stopped early (CARDS and JUPITER)b. Marked down by 0.5 points. For 5 out of 6 trials the CIs cross 1 (more than half the trials), however for the pooled estimate the CI does not cross 1.

c. Marked down by 1 point because estimates range from 0.71 to 1.02 and the 1 squared value is 81.75%
 d. Marked down by 1 point because for 3 out of 5 trials (more than half the trials) and for the pooled estimate the CIs crosses 1

e. Marked down by 0.5 points as 3 out of 19 trials were stopped early (JUPITER, CARDS and ASCOT). There were some concerns with ROB2 for ASPEN trial.

f. Marked down by 0.5 points as the point estimates range from 0.72 to 1.02. and the I squared value 51.96%

g. Marked down by 0.5 points as in 15 out of 19 trials the CIs cross 1 (more than half the trials), however, for the pooled estimate the CI does not cross 1. h. Marked down by 0.5 points as 3 of the trials were stopped early (JUPITER, CARDS, AFCAPS/TexCAPS)

i. Marked down by 0.5 points as 3 out of 18 trials were stopped early (JUPITER, CARDS and ASCOT). There were some concerns with ROB2 for ASPEN trial

j. Marked down by 0.5 points as 8 out of 18 trials (almost half the trials) the CIs cross 1, however, the pooled estimate CI is quite tight and does not cross 1.

k. Marked down by 0.5 points as 2 of the 6 trials were stopped early 1. Marked down by 0.5 points as the point estimates range from 0.52 to 0.91, however, I2 is 41%.

m. Marked down by 0.5 as in 3 out of 6 trials (half the trials) the CIs cross 1, however, the CI of the pooled estimate does not cross 1. n. Marked down 0.5 points as the point estimates range from 0.64 to 1.24 and the 1^2 is 57.5%

o. Marked down by 1 point because in 3 out of 4 trials (three quarters of the trials) the CIs cross 1, as does the pooled estimate.
 p. Marked down by 0.5 points as three of the trials were stopped early and there were 'some concerns' regarding two trials on ROB2 (4D and ASPEN).

© 2022 American Medical Association. All rights reserved.

q. Marked down by 0.5 points as the point estimates for the trials ranged from 0.52 to 1.17 and the I² is 49.1%.
 r. Marked down by 0.5 points as in 12 out of 18 trials (two thirds of the trials) the confidence intervals cross 1, however, the Cl of the pooled estimate does not cross 1.

Study		Relative risk with 95% Cl	Weight (%)
JUPITER 2008r		0.80 [0.66, 0.96]	4.39
ASPEN 2006n		1 .02 [0.73, 1.43]	1.79
ASCOT-LLA 2003j		0.87 [0.71, 1.06]	4.06
WOSCOPS 1995b		0.78 [0.60, 1.01]	2.76
ALERT 2003k	·	1.03 [0.82, 1.30]	3.22
4D 2005m		0.95 [0.85, 1.06]	7.50
CARDS 2004I		0.73 [0.52, 1.03]	1.77
GISSI-HF 2008s	-		8.47
LIPID 1998d		0.79 [0.70, 0.88]	7.47
MEGA 2006o		0.72 [0.51, 1.02]	1.72
LIPS 2002f		0.72 [0.46, 1.13]	1.09
AURORA 2009t	-	0.96 [0.89, 1.04]	9.15
ALLHAT-LLT 2002i		— 0.99 [0.89, 1.10]	7.75
HPS 2002g		0.88 [0.82, 0.94]	9.77
SPARCL 2006p		1.02 [0.85, 1.22]	4.52
4S 1994a		0.71 [0.59, 0.85]	4.43
CORONA 2007q		0.95 [0.87, 1.04]	8.85
HOPE-3 2016u		0.93 [0.80, 1.08]	5.78
PROSPER 2002h		0.98 [0.84, 1.14]	5.52
Overall	•	0.91 [0.86, 0.95]	
Heterogeneity: $\tau^2 = 0.01$, $I^2 = 51.96\%$, $H^2 = 2.08$			
Test of $\theta_i = \theta_i$: Q(18) = 37.47, p = 0.00	Favors intervention	Favors control	
Test of θ = 0: z = -3.87, p = 0.00			
	1/2	1	
Random-effects DerSimonian-Laird model			

Supplementary Figure e4: Meta-analysis of relative effects of treatment on all-cause mortality, all trials

Study		Risk difference with 95% CI	Weight (%)
JUPITER 2008r		-0.06 [-0.12, -0.00]	0.42
ASPEN 2006n	_	0.00 [-0.02, 0.02]	3.46
ASCOT-LLA 2003j	-	-0.01 [-0.01, 0.00]	11.19
WOSCOPS 1995b		-0.01 [-0.02, 0.00]	9.94
ALERT 2003k		0.01 [-0.02, 0.03]	1.53
4D 2005m		-0.02 [-0.08, 0.03]	0.45
CARDS 2004I		-0.01 [-0.03, 0.00]	4.14
GISSI-HF 2008s		0.01 [-0.02, 0.03]	1.99
LIPID 1998d		-0.03 [-0.04, -0.02]	5.67
MEGA 2006o		-0.01 [-0.01, -0.00]	15.79
LIPS 2002f		-0.02 [-0.04, 0.00]	2.92
AURORA 2009t		-0.02 [-0.06, 0.02]	0.98
ALLHAT-LLT 2002i		-0.00 [-0.01, 0.01]	7.04
HPS 2002g		-0.02 [-0.03, -0.01]	8.84
SPARCL 2006p		0.00 [-0.02, 0.02]	4.14
4S 1994a		-0.00 [-0.02, 0.01]	3.78
CORONA 2007q		-0.01 [-0.04, 0.01]	1.99
HOPE-3 2016u		-0.00 [-0.01, 0.00]	11.19
PROSPER 2002h		-0.00 [-0.02, 0.01]	4.55
Overall	•	-0.01 [-0.01, -0.00]	
Heterogeneity: $\tau^2 = 0.00$, $I^2 = 29.33\%$, $H^2 = 1.42$			
Test of $\theta_i = \theta_i$: Q(18) = 25.47, p = 0.11	Favors intervention Favors of	control	
Test of θ = 0: z = -4.07, p = 0.00		_	
	105 0 .	.05	
Random-effects DerSimonian-Laird model			

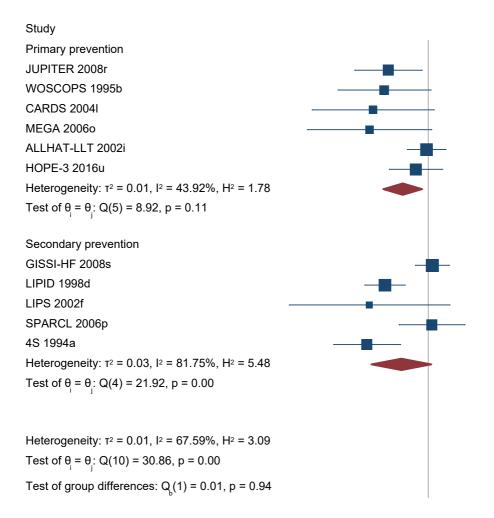
Supplementary Figure e5: Meta-analysis of absolute effects of treatment on all-cause mortality, all trials

Study		Relative risk with 95% Cl	Weight (%)
AFCAPS/TexCAPS 1998e		0.60 [0.43, 0.84]	4.55
JUPITER 2008r	_	0.46 [0.29, 0.71]	2.95
ASPEN 2006n		0.73 [0.50, 1.07]	3.85
WOSCOPS 1995b		0.70 [0.56, 0.87]	8.19
ALERT 2003k		0.69 [0.47, 1.01]	3.75
CARE 1996c		0.78 [0.62, 0.98]	7.80
4D 2005m		- 0.91 [0.67, 1.25]	5.10
CARDS 2004I		0.53 [0.34, 0.83]	3.02
GISSI-HF 2008s		- 0.87 [0.61, 1.24]	4.28
LIPID 1998d		0.73 [0.63, 0.83]	12.02
MEGA 2006o		0.52 [0.29, 0.94]	1.82
AURORA 2009t		0.85 [0.64, 1.12]	6.01
HPS 2002g		0.62 [0.54, 0.71]	12.06
SPARCL 2006p	_	0.52 [0.35, 0.77]	3.58
4S 1994a		0.70 [0.21, 2.36]	0.46
CORONA 2007q		0.81 [0.63, 1.04]	6.94
HOPE-3 2016u		0.65 [0.44, 0.96]	3.66
PROSPER 2002h		0.88 [0.74, 1.05]	9.95
Overall	•	0.71 [0.66, 0.78]	
Heterogeneity: $\tau^2 = 0.01$, $I^2 = 35.83\%$, $H^2 = 1.56$			
Test of $\theta_i = \theta_i$: Q(17) = 26.49, p = 0.07	Favors intervention F	avors control	
Test of $\theta = 0$: z = -7.89, p = 0.00			
	1/4 1/2 1	2	
Devidence offecto DevCincension Leind medial			

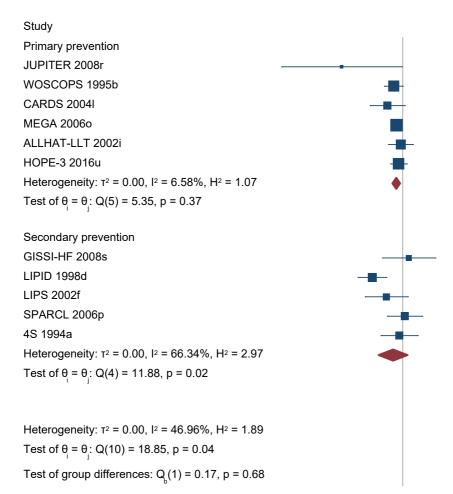
Supplementary Figure e6: Meta-analysis of relative effects of treatment on myocardial infarction, all trials

Study		Risk difference with 95% Cl	Weight (%)
AFCAPS/TexCAPS 1998e	- 	-0.01 [-0.02, -0.00]	7.14
JUPITER 2008r		-0.00 [-0.01, -0.00]	9.67
ASPEN 2006n		0.01 [-0.03, 0.00]	3.37
WOSCOPS 1995b		-0.02 [-0.03, -0.01]	6.20
ALERT 2003k		-0.02 [-0.04, 0.00]	3.14
CARE 1996c		-0.02 [-0.03, -0.00]	3.89
4D 2005m		-0.01 [-0.05, 0.03]	1.08
CARDS 2004I		-0.02 [-0.03, -0.01]	5.34
GISSI-HF 2008s	-	-0.00 [-0.01, 0.01]	6.20
LIPID 1998d		-0.03 [-0.04, -0.02]	5.34
MEGA 2006o		-0.00 [-0.01, -0.00]	9.40
AURORA 2009t		-0.01 [-0.03, 0.01]	3.14
HPS 2002g		-0.02 [-0.03, -0.01]	8.11
SPARCL 2006p	-	-0.00 [-0.01, 0.01]	6.66
4S 1994a		-0.07 [-0.09, -0.04]	2.39
CORONA 2007q		-0.01 [-0.02, 0.00]	5.34
HOPE-3 2016u		-0.00 [-0.01, -0.00]	9.40
PROSPER 2002h		-0.01 [-0.03, 0.01]	4.20
Overall	•	-0.01 [-0.02, -0.01]	
Heterogeneity: T ² = 0.00, I ² = 81.59%, H ² = 5.43	· ·		
Test of $\theta = \theta$: Q(17) = 92.33, p = 0.00	Favors intervention	Favors control	
Test of $\theta = 0$: z = -6.11, p = 0.00			
	105 () .05	
Random-effects DerSimonian-Laird model			

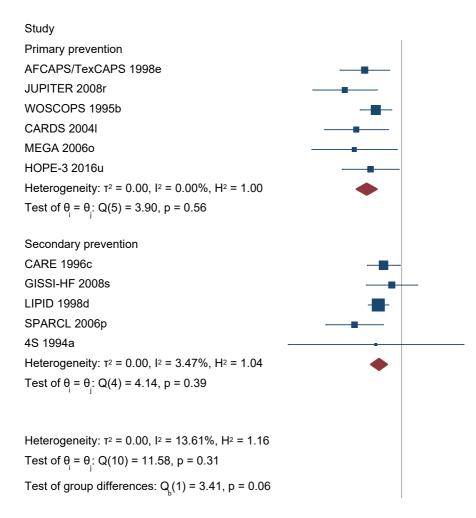
Supplementary Figure e7: Meta-analysis of absolute effects of treatment on myocardial infarction, all trials

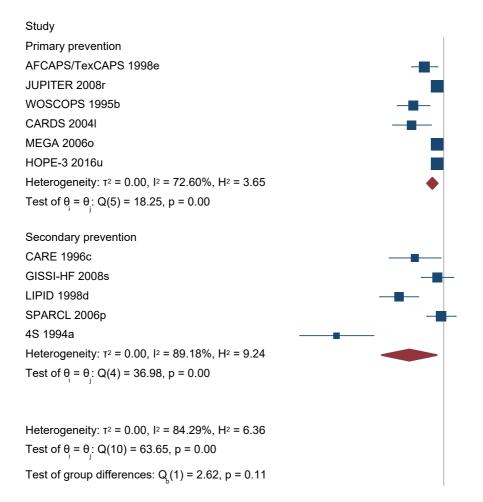

Study			Relative risk with 95% Cl	Weight (%)
JUPITER 2008r			0.52 [0.33, 0.80]	3.37
ASPEN 2006n			0.89 [0.55, 1.43]	2.96
ASCOT-LLA 2003j			0.73 [0.55, 0.97]	6.03
WOSCOPS 1995b			0.90 [0.59, 1.36]	3.67
ALERT 2003k			1.17 [0.84, 1.63]	4.97
4D 2005m			1.16 [0.85, 1.59]	5.31
CARDS 2004I			0.53 [0.30, 0.93]	2.32
GISSI-HF 2008s			1.24 [0.89, 1.73]	4.97
LIPID 1998d		-	0.83 [0.67, 1.02]	8.01
MEGA 2006o			0.83 [0.57, 1.21]	4.24
AURORA 2009t			1.17 [0.78, 1.76]	3.80
ALLHAT-LLT 2002i			0.91 [0.75, 1.10]	8.38
HPS 2002g			0.76 [0.67, 0.86]	10.62
SPARCL 2006p		-	0.85 [0.72, 1.00]	9.25
4S 1994a	_		0.64 [0.43, 0.95]	3.90
CORONA 2007q			0.85 [0.64, 1.13]	5.94
HOPE-3 2016u			0.70 [0.51, 0.97]	5.27
PROSPER 2002h	—		1.04 [0.82, 1.32]	6.98
Overall	•		0.86 [0.78, 0.95]	
Heterogeneity: T ² = 0.02, I ² = 49.10%, H ² = 1.96	· ·			
Test of $\theta_i = \theta_i$: Q(17) = 33.40, p = 0.01	Favors intervention	Favors co	ntrol	
Test of $\theta = 0$: z = -3.10, p = 0.00				
	1/2	1		

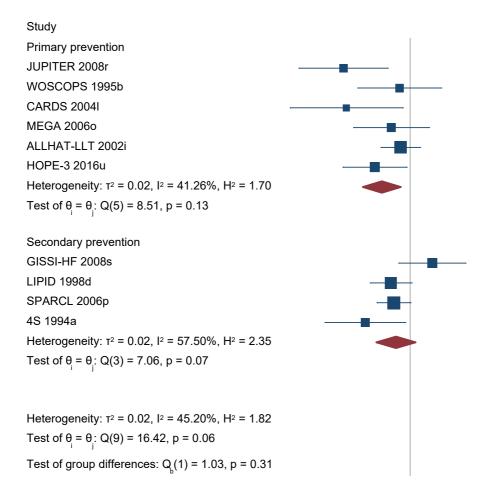
Supplementary Figure e8: Meta-analysis of relative effects of treatment on stroke, all trials

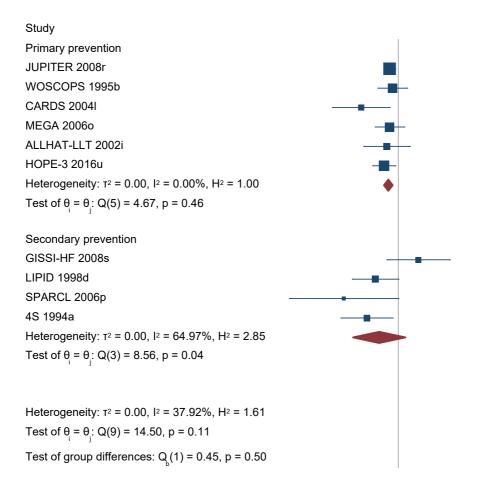

Study		Risk difference with 95% Cl	Weight (%)
JUPITER 2008r		-0.00 [-0.00, -0.00]	21.32
ASPEN 2006n		-0.00 [-0.02, 0.01]	2.33
ASCOT-LLA 2003j		-0.01 [-0.01, 0.00]	8.06
WOSCOPS 1995b		-0.00 [-0.01, 0.00]	10.15
ALERT 2003k		0.01 [-0.01, 0.03]	0.86
4D 2005m		0.02 [-0.02, 0.06]	0.29
CARDS 2004I		-0.01 [-0.02, -0.00]	3.69
GISSI-HF 2008s		0.01 [-0.00, 0.02]	3.13
LIPID 1998d		-0.01 [-0.02, 0.00]	5.30
MEGA 2006o		-0.00 [-0.01, 0.00]	10.15
AURORA 2009t		0.01 [-0.01, 0.02]	1.76
ALLHAT-LLT 2002i		-0.00 [-0.01, 0.00]	5.30
HPS 2002g		-0.01 [-0.03, -0.00]	2.33
SPARCL 2006p		-0.02 [-0.04, 0.00]	1.13
4S 1994a		-0.01 [-0.02, -0.00]	4.39
CORONA 2007q		-0.01 [-0.02, 0.00]	3.13
HOPE-3 2016u		-0.01 [-0.01, -0.00]	13.55
PROSPER 2002h		0.00 [-0.01, 0.01]	3.13
Overall	•	-0.00 [-0.01, -0.00]	
Heterogeneity: T ² = 0.00, I ² = 26.88%, H ² =	= 1.37		
Test of $\theta_{i} = \theta_{i}$: Q(17) = 23.25, p = 0.14	Favors intervention Favors control		
Test of θ = 0: z = -3.97, p = 0.00			
	05 0	05	
Random-effects DerSimonian-Laird model			

Supplementary Figure e9: Meta-analysis of absolute effects of treatment on stroke, all trials


Supplementary Figure e10: Meta-analysis of relative effects of treatment on all-cause mortality in primary and secondary prevention trials


Supplementary Figure e11: Meta-analysis of absolute effects of treatment on all-cause mortality in primary and secondary prevention trials


Supplementary Figure e12: Meta-analysis of relative effects of treatment on myocardial infarction in primary and secondary prevention trials


Supplementary Figure e13: Meta-analysis of absolute effects of treatment on myocardial infarction in primary and secondary prevention trials

Supplementary Figure e14: Meta-analysis of relative effects of treatment on stroke from primary and secondary prevention trials

Supplementary Figure e15: Meta-analysis of absolute effects of treatment on stroke in primary and secondary prevention trials

Supplementary Table e4:	Meta-regression results of outcomes by mean difference in LDL-C
(unadjusted)	

Outcome	Number of trials	Coefficient	95% CI	p-value	R ²
All death logRR	19	-0.12	-0.28, 0.03	0.11	14%
All death ARD	19	-0.004	-0.019, 0.01	0.54	0%
MI logRR	18	-0.19	-0.61, 0.23	0.35	0%
MI ARD	18	-0.014	-0.036, 0.008	0.19	0%
Stroke logRR	18	-0.26	-0.58, 0.05	0.098	4%
Stroke ARD	18	-0.004	-0.011, 0.003	0.24	0%

logRR = log relative risk; ARD = absolute risk difference; coefficient = estimate of slope in meta-regression model; R² = proportion of between-study variance explained by mean difference in LDL-C; R² values of zero imply that the mediator variable explains none of the observed heterogeneity