
Supplementary information for “Confronting the water potential information gap” 

Section S1 – Water retention curves (Main Text Figure 2a-d): The water retention curves in Figure 2 of 

the main text were created using the van Genuchten model (van Genuchten 1980) relating soil water 

potential (Ψ𝑆) to soil moisture content (𝜃): 

Ψ𝑆 =
(Θ−1/𝑚−1)

1/𝑛

𝛼
    [S1] 

where n and m are dimensionless shape parameters related by 

 𝑚 = 1 − 1/𝑛.     [S2] 

The 𝛼 is a parameter linked to the inverse of the air entry values (cm-1), and Θ is relative soil moisture 

defined as: 

Θ =
𝜃−𝜃𝑟

𝜃𝑠−𝜃𝑟
,     [S3] 

where 𝜃𝑟 is the residual water content (cm3 cm-3) and 𝜃𝑠 is the saturated water content (cm3 cm-3). For each 

soil type, the 𝛼, 𝜃𝑟, and 𝜃𝑆 were selected as the mean values reported in the updated ROSETTA pedo-

transfer function (Zhang & Schaap 2017, see Supplementary Table S1). The n was allowed to vary by 

randomly selecting a value from a uniform distribution bounded by ±1 standard deviation (as reported by 

Zhang & Schaap) from the mean for each soil type, resulting in the ranges shown in Table S1. The m was 

determined for each randomly chosen n through Eq. S2. A total of 100 curves were generated this way, and 

the uncertainty illustrated in Figure 2 represents the 90% confidence interval around Ψ𝑠 at a given 𝜃.  

Supplementary Table S1: The van Genuchten parameter values or ranges used to parameterize the water 

retention curves in Figure 2 of the main text, from Zhang & Schaap (2017) and available from 

http://www.u.arizona.edu/~ygzhang/download.html. The parameter ‘m’ was derived from ‘n’ using Eq. S2.  

 𝛼 𝜃𝑟 𝜃𝑠 𝑛 

Loamy Sand 0.0246 0.058 0.383 1.45 – 1.97 

Silt 0.00604 0.065 0.47 1.40 – 1.78 

Silty Clay 0.0101 0.117 0.124 1.16 – 1.40 

 

Section S2: The HYDRUS simulations (Main text Figure 2e-g): Variability in the water retention curve 

linked to pedo-transfer uncertainty was then propagated into predictions of Ψ𝑆 and 𝜃 (at depths of 15 cm) 

and surface evapotranspiration (ET, cm day) using the HYDRUS 1D soil water dynamics model (Simunek 

et al. 2005). Fifty simulations were performed for the Bradford Woods deciduous forest site in south-central 

Indiana, where the HYDRUS 1D model had been previously calibrated as described in Naylor et al. (2016). 

In general, model settings were left unchanged, with a few exceptions. First, rooting depth was constrained 

to a constant 100 cm, and the leaf area index (LAI) was constrained to a constant value of 5 m3/m3. These 

estimates of root depth and LAI were informed by observations from the nearby Morgan-Monroe State 

Forest deciduous forest site (Roman et al. 2015), where ground-based LAI observations have been collected 

since 1998, and root depth was recently estimated from soil pits dug at two locations at the site. In Morgan-

Monroe, while some tap roots may extend to the bedrock (typically between 1-2 m deep), the majority of 

roots were constrained to the upper 100 cm of the soil. Finally, the parameters of the water stress reduction 

function were adjusted (specifically, Po = -10 cm, Po,pt = -25 cm, P2H and P2L = -1000 cm, and P3 = -55000 

cm) to allow evapotranspiration to remain positive during most of the 2012 drought event, informed by 



direct observations of ET from Morgan-Monroe (Roman et al. 2015, Sulman et al. 2016) during the same 

drought. In Morgan-Monroe, ET was decreased by the drought, but never reached zero.  

The soil at Bradford Woods is characterized by a 40 cm depth AP horizon dominated by sandy loam, and 

a BW Horizon dominated by silt loam from a depth of 40 cm to 208 cm (Naylor et al. 2016). The very 

bottom of the soil layer (depths 208 – 230 cm) was prescribed to be clay loam. The parameters of the van 

Genuchten model used in the HYDRUS simulations are shown in Table S2, where again most were held 

constant, but n and m varied for the sandy and silt loam layers by drawing n from within one standard 

deviation of its distribution as reported by Zhang & Schaap (2017). The shaded areas in Figure 2e-g thus 

illustrate the resulting variation in ET, 𝜃, and Ψ𝑆 due solely to variability in n and m. 

Table S2 The van Genuchten parameter values or ranges used in the simulations described in Figure 2e-

g. The parameter ‘m’ was derived from ‘n’ according to Equation S2.  

 Depth 𝛼 𝜃𝑟 𝜃𝑠 𝑛 

Sandy loam 0 – 40 cm 0.0016 0.061 0.381 1.29 – 1.66 

Silt loam 40 – 208 cm 0.0034 0.083 0.427 1.35 - 1.79 

Clay loam 208 – 230 cm 0.0099 0.107 0.429 1.23 

 

Section S2: The ORCHIDEE Model Simulations (main text Figure 3): The ORCHIDEE land surface 

model is the terrestrial part of the IPSL (Institute Pierre-Simon Laplace) Earth system model (Boucher et 

al. 2020, Lurton et al. 2020). In this study, the CMIP6 version of this model is used. As a complex land 

surface model, ORCHIDEE models the water, energy, and carbon cycles to simulate the interactions 

between the biosphere and atmosphere. The hydrology model in ORCHIDEE discretizes the first 2 m of 

the soil column over 11 layers which is used to solve the Richards diffusion equation. Hydraulic 

conductivity and diffusivity needed to solve this equation, as well as Ψ𝑆, are calculated in ORCHIDEE 

using the van Genuchten model described above (Eq S1-S3). For this experiment, we ran ORCHIDEE over 

three single mesh locations using local half-hourly forcing data to drive the model at each site (see Table 

S3), and used GPP modeled at a daily time-step. 

ORCHIDEE has a lot of internal parameters linked to many different processes (e.g. see Table S4). It is 

important to understand which outputs are sensitive to which parameters, especially when developing the 

model and improving through data assimilation experiments. As such, it is common practice to perform a 

sensitivity analysis of the parameters. To help sample parameter space and execute the SA algorithms in 

this study, we used the SALib python package (Herman and Usher 2017). 

The sensitivity analysis results shown in the main text are generated using Sobol’s method (Sobol 2001). 

However, this method needs lot of model simulations for it to be effective, and the number of simulations 

required scales with the number of parameters. As such, it was crucial to minimize the number of parameters 

tested. This was done in two steps. Firstly, two scaling factors were added to the code to control some of 

the model processes (namely soil thermal conductivity and heat capacity). These were used to avoid adding 

all the parameters controlling these processes in the sensitivity analysis. If the model outputs tested had 

been found to be sensitive to these scaling factors, then the internal parameters would have been considered. 

Fortunately, they were not.  

Secondly, the parameters were filtered using a Morris sensitivity analysis (Morris 1991; Campolongo et al. 

2007). Since the Morris algorithm only requires a relatively low number of simulations to highlight 

sensitive parameters, it is a useful algorithm to use as a first step. Results from this second step can be found 

in Raoult et al. 2021 for a similar experiment. Through the Morris experiment, we reduced the number of 



parameters (and scaling factors), from 38 to 29 parameters by removing all parameters that did not influence 

GPP. Using these remaining 29 parameters, a total of 60,000 simulations were performed for each site 

before calculating the Sobol Indices.  

Both sensitivity analysis algorithms (Morris and Sobol) test the sensitivity of scalar model outputs to the 

parameters. Therefore, to test the sensitivity of modelled daily GPP values, and to retain all the information 

from the full timeseries, model-data RMSE (root-mean squared error) was used. The FLUXNET2015 

database (Pastorello et al., 2020) was used to provide both the observations and the driving data for the sites 

tested. FLUXNET2015 contains flux data from a number of different networks around the globe, allowing 

us to test three sites in very diverse climates. FLUXNET2015 data are processed in a manner similar to the 

algorithms implemented in ReddyProc (Pastorello et al. 2020). The night-time partitioning algorithm 

(Reichstein et al. 2005) was selected for the GPP estimates.  

Ranges over which the parameters were allowed to vary during the experiment were either chosen from 

literature/expert knowledge, or, when no such data were unavailable, chosen as +/- 20% from their default 

value i.e., the value used in ORCHIDEE when performing a standard simulation. We also ensured that 

relationship between parameters were maintained where such restriction existed (e.g., θr < θs). 

Finally, Figure 3 in the manuscript shows the total contribution of each parameter, including both the 

independent contributions and the interactions.. The individual effect of each parameter can be seen below 

in Figure S1. When considering only the independent effects, the water retention curve parameters explain: 

9.9% of the variance over the TeBF, 7.4% of variance over the BoNF and 59.1% of the variance over 

SaS. For the wider set of soil hydrology parameters, this increases to 19.6%, 16.9% and 79.1% for TeBF, 

BoNF and SaS, respectively. The individual contribution of each parameter is therefore still significant, 

especially in the semi-arid site. 

 

 

 

 

Table S3: FLUXNET2015 sites for Figure 3. MAT and MAP are mean annual temperature (oC) and mean 

annual precipitation (mm/year), respectively. 

Site Name Site  ID Lat Lon MAT, MAP Biome Reference 

Harvard Forest 

ESM tower 

(United States) 

US-Ha1 42.538 72.172 6.62, 1071 Deciduous 

Broadleaf Forests 

(TeBF) 

Urbanski et 

al. 2007 

Sodankyla 

(Finland) 

FI-Sod 67.362 

 

26.639 

 

-1, 500 

 

Evergreen 

Needleleaf Forests 

(BoNF) 

Thum et al. 

2007 

Demokeya 

(Sudan) 
SD-Dem 13.283 30.478 26, 320 Semi-Arid Savanna 

(SaS) 

Ardö et al. 

2008 

 

 

 



 

Table S4: ORCHIDEE parameters used for Figure 3. The default values are shown, followed in brackets 

by the ranges over which they were allowed to vary for each site tested. Further details about each parameter 

can be found in Raoult at al. 2021. 

Parameter Description TeBF  

Soil: Sandy loam 

BoNF 

Soil: Loam 
SaS 

Soil: Sandy loam 

n van Genuchten water 

retention curve coefficients 

(-/mm-1) 

1.89 

[1.09, 2.69] 

1.56 

[1.10, 2.20] 

1.89 

[1.09, 2.69] 

α 0.0075 

[0.0045, 0.0105] 

0.0036 

[0.002,0.0050] 

0.0075 

[0.0045, 0.0105] 

θr Residual volumetric water 

content 

0.065 

[0.039, 0.078] 

0.078 

[0.047, 0.0936] 

0.065 

[0.039, 0.078] 

θs Saturated volumetric water 

content (m3.m-3) 

0.41 

[0.37, 0.57] 

0.43 

[0.37, 0.57] 

0.41 

[0.37, 0.57] 

Ks Hydraulic conductivity at 

saturation (mm.d-1) 

1060.8 

[636.5, 1485.1] 

249.6 

[149.8, 349.4] 

62.4 

[37.4, 87.4] 

θf Volumetric water content at 

field capacity (m3.m-3) 

0.32 

[0.19, 0.37] 

0.32 

[0.19, 0.37] 

0.32 

[0.19, 0.37] 

θw Volumetric water content at 

wilting point (m3.m-3) 

0.1 

[0.08, 0.18] 

0.1 

[0.10, 0.18] 

0.1 

[0.08, 0.18] 

%p Percentage of soil moisture 

above which transpiration is 

maximal 

0.8 

[0.3, 1] 

0.8 

[0.3, 1] 

 

0.8 

[0.3, 1] 

 

rootprofile Root profile (m-1) 0.8 

[0.2, 3] 

1 

[0.25, 4] 

1 

[0.25, 4] 

evapresistance Factor controlling bare soil 

resistance to evaporation 

1 

[0, 1.2] 

1 

[0, 1.2] 

1 

[0, 1.2] 

C Parameter controlling shape 

of waterstress curve 

1 

[0.05, 10] 

1 

[0.05, 10] 

1 

[0.05, 10] 

VCmax Maximum carboxylation 

rate (μ.molm-2.s-1) 

55 

[30, 80] 

35 

[19, 51] 

70 

[38, 102] 

b1 Empirical factor involved in 

calculating the leaf-to-air 

vapor pressure difference 

0.14 

[0.05, 0.2] 

0.14 

[0.05, 0.2] 

 

0.14 

[0.05, 0.2] 

 

LAImax Maximum lead area index 

(m2.m-2) 

4.5 

[3.0, 8.0] 

4.0 

[3.0, 8.0] 

2.0 

[1.0, 3.5] 

Lagecrit Critical leaf age (days) 180 

[120, 240] 

910 

[610, 1210] 

120 

[30, 180] 

SLA Specific leaf area (m2.g-1) 0.026 

[0.013, 0.05] 

0.00926 

[0.004, 0.02] 

0.026 

[0.013, 0.05] 

 

 

 

 



 

 
Figure S1: Same as Figure 4 in the main text, but showing only independent contributions of each model 

parameter for explaining GPP. 

 

Section S4:  The AmeriFlux GPP analysis (main text Figure 4): 

Table S5 provides details on the AmeriFlux sites used in the analysis informing Figure 4 of the main text. 

Data from these flux towers was acquired from the AmeriFlux network (ameriflux.lbl.gov) and subjected 

to a standardized quality control, gapfilling, and partitioning approach using the ReddyProc software 

(Wutzler et al. 2018). We used the “nighttime” partitioning approach (Reichstein et al. 2005) for estimating 

gross primary productivity (GPP) from the measured net ecosystem exchange.  

Table S5: AmeriFlux sites for Figure 5. MAT and MAP are mean annual temperature (oC) and mean 

annual precipitation (mm/year), respectively.  

Site Name Site  ID Lat Lon MAT, 

MAP 

Biome Reference 

Morgan-Monroe 

State Forest 

US-

MMS 

39.323 -86.413 10.9, 1032 Deciduous 

Broadleaf forest 

Roman et al. 

2015 

Santa Rita 

Mesquite 

US-SRM 31.821 -110.866 17.9, 380 Woody Savanna Scott et al. 

2009 

Tonzi Ranch US-TON 38.431 -120.966 15.8, 559 Woody Savanna Ma et al. 

2012 

Missouri Ozarks US-MOz 38.744 -92.200 12.11, 986 Deciduous 

Broadleaf Forest 

Gu et al. 2016 
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