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1 Properties and Estimation of CARTs and Ran-
dom Forests

The CART algorithm generates a binary tree where each internal node consists of one
binary rule that involves exactly one of the features, e.g., y3 < 10. The feature space
is split recursively at the internal nodes according to the binary rules, thereby creating
a partition of the feature space consisting of hyperrectangles aligned along the feature
axes. Each terminal node or leaf contains all the observations in the training sample
which fall into the associated hyperrectangle. The hyperrectangle region of the feature
space associated to a leaf is defined by the binary rules in the nodes leading to that
leaf. For a classification tree, the class label which is assigned to a particular region
of the feature space is determined by majority vote of the training samples in the
corresponding leaf. The class proportions of the training samples in a leaf can be used
to obtain crude estimates of the posterior class probabilities for observations falling into
the associated feature space region.

Trees are constructed recursively beginning at the root. Each leaf contains those train-
ing samples that meet all the conditions leading down the path from the root to that
leaf. If no stopping criterion is met and the leaf’s sample contains more than one dis-
tinctive feature value, the leaf is split into two daughter nodes and becomes an internal
node. To that end, the binary rule that splits the sample at the node into two subsets
for the two new leaves has to be determined. The feature variable and the split point
are selected such that a given criterion is minimised across all subsets. For classifica-
tion, the default criterion of node impurity used for growing the tree is the Gini index
25:1 Pm(1 — Pm), where p,, is the proportion of training samples from class m in the
node.

As noted for example by Hastie et al. (2009), fully grown trees, where no further splits
are possible, usually overfit the data. Therefore, one might stop earlier and define a
minimum size of a node or a parent node. More preferably, one can grow a full tree
and prune it afterwards according to a cost-complexity criterion that incorporates the
node impurities and the number of terminal nodes. For an efficient algorithm to find
the optimal pruned tree see Breiman et al. (1984). The optimal choice of the minimum
node size or the tuning parameters for cost-complexity pruning can be determined by
cross-validation.

Exploiting the similarities between trees and nearest neighbour classifiers, Breiman
et al. (1984) show that the misclassification error rate of a fully grown tree is bounded
above by twice the Bayes error rate, which has been shown for 1-nearest neighbour
classification by Cover and Hart (1967). It also follows from Breiman et al. (1984) that
the misclassification error rate of a classification tree attains the Bayes error rate as the
sample size tends to infinity.

The CART algorithm automatically assumes equal prior class probabilities, even if the
training sample is not balanced. This is achieved by dividing the class counts in the



leaves by the overall class counts in the training sample. Therefore, a given leaf is

classified as
N, (leaf)
arg max ————=
me%l,...,K}Nm(TOOt)

(1.1)

where N,,(leaf) and N,,(root) are the number of observations from class m in the leaf
and in the entire training sample, respectively. One may switch off this mechanism
if the training sample reflects the true prior class probabilities. It is also possible to
provide user-defined prior class probabilities. In that case the fractions in (1.1) are
multiplied by these user-defined prior probabilities.

Due to the recursive nature of their construction, trees exhibit a high variance. A
suboptimal split at a top node affects the whole tree structure below that node, so
slight changes in the data might lead to widely different trees. To reduce the variance,
an ensemble method called bagging was proposed by Breiman (1996).

Bagging means to draw B bootstrap samples from the training sample and to apply
the classification method to each bootstrap sample. As a result, one obtains B different
classifiers trained on the B bootstrap samples. The class of a new observation y, is
predicted by casting a majority vote among the class predictions returned by the B
classifiers. Bagging has been shown to be particularly useful for classification methods
that are unstable and exhibit a high variance such as trees and neural networks, where
bagging can lead to a substantial reduction of the variance.

An ensemble of bagged trees might be highly correlated, which has a negative effect on
the variance of the bagged predictor. To reduce the variance further, random forests
(Breiman, 2001) seek to de-correlate the trees by considering only a random subset of
the feature variables for splitting the tree at each node when the trees are grown. For
classification, the default setting is to consider |,/p] variables at each node, where p is
the total number of feature variables. The random selection of feature subsets reduces
the correlation between the trees but it also increases the bias of the trees. On the
other hand, the trees used in random forests are normally not pruned, and unpruned
trees have less bias than pruned trees.

Random forests are able to account for overfitting when computing the misclassification
error rate without the need to employ cross-validation or to generate a separate test set.
Each tree is constructed from a bootstrap sample of the training set. The bootstrap
samples are drawn from the training set with replacement. It follows that about one
third of the training set is omitted in each bootstrap sample. It is therefore possible
to make predictions for each training sample y, based on those trees where y, does
not appear. These out-of-bag class predictions can then be used to estimate the mis-
classification error rate. Out-of-bag estimation is qualitatively similar to leave-one-out
cross-validation.

Random forests also provide estimates for the posterior model probabilities p(m|y, d).
The estimates are formed by simply averaging the posterior model probability estimates
obtained from the trees in the forest. Due to the averaging, the posterior model proba-
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bility estimates of the random forest are much more stable than those given by a single
tree.

Unfortunately, there are some difficulties when trying to estimate the expected multi-
nomial deviance loss by classification trees or random forests using cross-validation,
independent test samples or out-of-bag class predictions. For a single tree, the lack of
smoothness of its posterior model probability estimates means that in an independent
test sample there are almost certainly some observations for which the estimated pos-
terior model probability of the true model is 0. Therefore, minus the logarithm of the
posterior model probability is co and the expected multinomial deviance loss is also
00. When evaluating a random forest on a test sample or when using out-of-bag class
predictions, it is also very likely that some probability estimates are 0. In our exam-
ples, we therefore set the estimated posterior model probability to a value of € = 0.001
whenever the posterior model probability is estimated to be 0. The lower the value of ¢,
the higher the variance of the expected loss estimate, because it becomes very sensitive
to the number of posterior model probabilities estimated to be 0. In our experience,
setting € to 0.001 was striking a good balance between being reasonably close to 0 while
not exhibiting excessive variability.

For all our examples except the spatial extremes example, we use the Matlab functions
fitctree and TreeBagger to train classification trees and random forests, respectively.
We mostly use the default settings of those functions. That is, for classification trees
the maximum number of splits is set to the sample size — 1, the minimum leaf size is 1
and the minimum internal node size is 10. This leads to rather deep trees. The trees
are not pruned. The default settings of TreeBagger amount to following the standard
methodology of random forests as outlined in this section. The random forests we
employ are generally made up of 100 trees and utilise out-of-bag class predictions.
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Modification of Coordinate Exchange Algorithm

Algorithm 1: Modification of coordinate exchange algorithm (one parallel in-
stance)
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Input: Set of available design points .4; initial design d = {d1,...,d,} consisting of
n = card(d) design points; function estimate loss(d) that estimates the expected loss
for a given design d; numbers p and ¢: for the last (at most) p designs visited, the
expected loss is estimated ¢ times.

Output: Set Vgp containing the last designs visited; set £ containing ¢ expected loss value
estimates for each design in Vgp; preliminary optimal design d¢g after running one
instance of the modified coordinate exchange algorithm and the corresponding
expected loss value I{g.

swaps = true;

loss = estimate_loss(d);

No designs visited so far: V = {};

while swaps do

swaps = false;

fort:=1tondo

Determine the set of candidate design points C C A;

m = card(C);

Clear lossvec;

for j =1 tom do

d™ = d;
Replace element i of ™Y with element j of C;
lossvec[j] = estimate_loss(d"™Y);

end for

Let minloss = min(lossvec) and k be the index for which lossvec[k] is equal to

minloss;

if minloss < loss then

Replace element i of d with element & of C;

loss = minloss;

swaps = true;

Add d to V, the history of designs visited so far;
end if

end for

end while
Let h = card(V) be the number of designs visited, where V = {d1, ..., dp};
Let r = min(h, p);
Let £ ={} and AL = {};
for i=1tor do
Clear lossvec;
for j =1 to q do
| lossvec[j] = estimate_loss(dy—it1);
end for
Add lossvec as ith element to L;
Add mean(lossvec) as ith element to AL;
end for
Let s be the index of the smallest element in AL and (&g be the corresponding value;
Return déE = dh,s+1, léE’ VGP = {dh, dhfl, ey dh7r+1}7 C;




Algorithm 2: Gaussian process regression post-processing step

Input: Sets of visited designs Vgp ; and sets of corresponding expected loss estimates £; (g

values for each design in Vgp ;) for i = 1,..., I parallel runs of the modified coordinate
exchange algorithm (Algorithm 1); preliminary optimal designs d*CEJ- and
corresponding estimated expected loss values I¢ ; for i = 1,..., I parallel runs of
Algorithm 1; function estimate_loss(d) that estimates the expected loss for a given
design d.
Output: Overall optimal design d*.
1 Combine sets of visited designs Vgp,; for all i = 1,..., I parallel runs into one set Vgp. Do the

same for the sets of expected loss estimates £; and combine them into £;

2 Train Gaussian process with the expected loss values in £ as (univariate) response variable and
the visited designs Vgp as predictors (each design is repeated ¢ times);

3 Find the minimum value of the predictive mean function of the Gaussian process over the
design space using some generic optimisation function. Let the design at the minimum be
denoted by d¢p;

a4 Set dgy to the design d¢p ; from parallel run ¢ with the lowest value for I¢y ,;

Clear lossvec_CE, lossvec_GP;

for j =1 to 100 do
lossvec_CE[j] = estimate_loss(d(g);
lossvec_GP[j] = estimate_loss(dp);

end for

10 if mean(lossvec_GP) < mean(lossvec_CE) then

11| Return d* = dp;

12 else

13 | Return d* = dgg;

14 end if

© W N O w

In all our examples we set p = 6 and ¢ = 10.

Algorithm 1 can be run in parallel for different initial designs d to account for multi-
modality and local optima. We conduct 20 parallel runs in all our examples.

The selection of the candidate design points in Line 7 of Algorithm 1 depends on the
example. For the logistic regression and the macrophage example, there is no restriction
and C = A. For the other examples, the current design points dy, ..., d, in d have to be
excluded since each design point can only be selected once. Furthermore, for the spatial
extremes example we only consider design points with the same x- or y-coordinate as
the current design point.

The sets of best designs found in each of the parallel runs of Algorithm 1 and their asso-
ciated estimated expected loss values are combined and used as inputs for Algorithm 2.
In Algorithm 2, a Gaussian process (GP; see, e.g., Rasmussen and Williams, 2006) is
trained on the combined data from all the parallel runs in order to obtain a smooth
estimate of the expected loss surface by means of the predictive mean function of the
GP. The predictive mean function is minimised and a new candidate for the optimal
design is obtained. Since the predictive variance is relatively high in our examples,
we compare this design to the best design found through Algorithm 1 without the GP
post-processing step of Algorithm 2. To reduce the uncertainty for this comparison,
we estimate the expected loss 100 times at each of the two designs and take the design



with the lower average expected loss value as the overall optimal design. We do not
perform the GP post-processing step for the spatial extremes example.

For Gaussian process regression, we use the default settings of the Matlab function
fitrgp except that all the predictors are standardised. The default kernel function
used is the squared exponential kernel and a constant GP prior mean is assumed.
To find the optimal value for the initial value of the prior noise variance parameter,
Bayesian optimisation is conducted with respect to the cross-validation loss.

For finding the minimum of the GP’s predictive mean function, we use the Nelder-
Mead simplex algorithm (Nelder and Mead, 1965). Restrictions of the design space are
considered by employing suitable transformations. For example, design points with the
restriction d; € (a, b] are transformed by the logit transformation to d; = log{z;/(1—z)},
where z; = (d; —a) /(b — a).

3 Computational Performance Measures for Exam-
ples in Main Paper

In this section, we provide some measures of computational performance for the design
search algorithms used for the three examples in Section 4 of the main paper. As
explained in Section 2, we ran Algorithm 1 twenty times in parallel, so there is a
distribution of runtimes to consider. We focus on the exchange part of Algorithm 1
(lines 4 to 23), because this is usually the most time-consuming part. However, it is not
sensible to just compare the distributions of runtimes of the exchange part because the
number of sweeps through the design grid until the algorithm converges (i.e., the number
of passes through the while-loop) is random. Therefore, in Tables 1 to 4 we provide the
distributions for the runtimes per sweep for all the examples in Section 4.1 of the main
paper. More precisely, we state the mean and the standard deviation of the runtime per
sweep over the parallel runs. As expected, one can see that these distributions exhibit
little variation. The reason is that the number of calls of the estimate_loss function in
a sweep through the design grid is fixed for any given example and design configuration.
Within any call to estimate_loss, the simulated sample sizes are fixed (for details see
the example settings for the respective models in Section 4 of the main paper). The
sample sizes for trees and random forests are always the same, so differences in runtimes
can solely be attributed to the classification method. In general, for all our examples
simulation is rather efficient, so the simulation effort is only a minor fraction of the
total runtime. This is also true for ABC, where sorting the reference table for each
draw from the outer sample is much more time-consuming than creating the reference
table itself (see also Section 4.1.4 in the main paper).

It is interesting to note that there do not seem to be any systematic differences between
the distributions of the number of sweeps between the different methods. Therefore,
it is entirely sufficient to consider the runtimes per sweep or runtimes per call when



analysing the differences between the methods.

In our examples, it was about four to five times faster to use cross-validated trees
than to use random forests when the data dimension is small. However, as the data
dimension increases, the tree method loses some of that advantage (see Tables 3 and
4). Note that in the macrophage example the data consist of the various observed
cell proportions at each design point and are therefore quite high-dimensional despite
the low dimensionality of the designs. Furthermore, the higher the dimension, the
bigger the advantage of the designs found through random forest classification in terms
of discriminatory performance (see, e.g., Figure 5 in this document). Therefore, for
higher dimensions the recommendation is to use random forests.

Both classification approaches are many times faster than the other approaches inves-
tigated in Table 1 (ABC) and Table 2 (likelihood-based). Note that this is despite
the relatively small simulation sizes for the outer Monte Carlo samples from the prior
predictive distribution that we used for ABC (sample size 2000) as well as for the
likelihood-based approach (sample size 800) to keep the runtimes within a tolerable
range. These small outer sample sizes led to a considerably larger noise in the expected
loss estimates for those two approaches compared to the classification approaches (see
Figure 1 in the main paper and Figure 3 in this document).

Runtimes are machine- and implementation-specific and should therefore be taken with
caution. However, Tables 1 to 4 can still give some clues on the relative efficiency of
the different methods. All our examples were run on an SGI UV 3000 global shared
memory system from Hewlett Packard Enterprises. It uses 12-core processors of type
Intel Xeon E5-4650V3 that operate on 2.8 GHz and have an L3 cache of 30 MB.

We do not further analyse Algorithm 2.



Table 1: Several performance indicators for the infectious disease example of Sec-
tion 4.1 from the main paper: number of sweeps (s) of coordinate exchange algorithm
through design grid (minimum, median, maximum over 20 parallel runs), calls (¢) to
loss estimation procedure per sweep (s), mean and standard deviation of runtime (r)
per sweep (s) over all parallel runs (in minutes).

n  Method min(s) med(s) max(s) ¢/s mean(r/s) std(r/s)
Tree CV 01L 1 2 4 39 0.8 0.03
Tree CV MDL 2 2 4 39 0.3 0.01

1 RF 01L 2 2 4 39 3.3 0.18
RF MDL 2 2 3 39 3.1 0.16
ABC 01L 1 2 3 39 33.2 1.75
ABC MDL 2 2 4 39 33.6 1.92
Tree CV 01L 2 2 5 76 1.6 0.05
Tree CV MDL 2 3 4 76 0.8 0.04

9 RF 01L 2 3 6 76 8.1 0.30
RF MDL 2 3 6 76 7.4 0.30
ABC 01L 2 3 5 76 95.2 4.88
ABC MDL 2 2.5 5 76 92.7 6.57
Tree CV 01L 2 2.5 6 111 2.7 0.10
Tree CV MDL 2 2 ) 111 1.5 0.05

3 RF 01L 2 2.5 6 111 12.1 0.51
RF MDL 2 3 5 111 12.1 0.27
ABC 01L 2 3 ) 111 179.0 5.81
ABC MDL 2 3 5 111 176.9 5.50
Tree CV 01L 2 3 ) 144 4.0 0.18
Tree CV MDL 2 3 5 144 2.3 0.08

4 RF 01L 2 2.5 4 144 17.1 1.18
RF MDL 2 3 4 144 16.4 1.39
ABC 01L 2 2 4 144 283.9 7.94
ABC MDL 2 3 ) 144 281.4 8.88
Tree CV 01L 2 2 ) 175 2.5 0.32
Tree CV MDL 2 3 7 175 3.0 0.16

5 RF 01L 2 3 5 175 25.9 2.39
RF MDL 2 3 ) 175 23.8 1.09
ABC 01L 2 3 ) 175 414.6 13.36
ABC MDL 2 3 ) 175 408.4 16.98
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Table 2: Several performance indicators for the two-model infectious disease example
of Section 4.2 from the main paper (lower-dimensional designs): number of sweeps (s)
of coordinate exchange algorithm through design grid (minimum, median, maximum
over 20 parallel runs), calls (¢) to loss estimation procedure per sweep (s), mean and
standard deviation of runtime (r) per sweep (s) over all parallel runs (in minutes).

ng q Method min(s) med(s) max(s) ¢/s mean(r/s) std(r/s)

Tree CV 2 2 2 19 0.2 0.01

1 RF 1 2 2 19 0.9 0.05

ML 1 2 3 19 4.9 0.07
 TreeCV 1 3 438 05 002

2 RF 2 3 5 38 2.2 0.12
LML L343 170 02

Tree CV 2 3 5 57 0.9 0.03

3 RF 2 3 5 57 3.8 0.16

ML 2 3 5 57 36.0 0.46
 TreeCV 2 3 5 76 1.3 005

4 RF 2 2 4 76 5.6 0.22

ML 2 2.5 8 76 61.4 1.08

Tree CV 1 2 4 36 0.4 0.02

1 RF 2 2.5 5 36 2.0 0.12

ML 1 2 5 36 15.3 0.26
 TreeCV 2 3 5 72 12 004

2 RF 2 3 5 72 5.2 0.14
, ML > 35 7 563 043

Tree CV 2 3.5 6 108 2.3 0.06

3 RF 2 3 6 108 10.1 0.47

ML 2 3 5 108 119.0 1.59
 TreeCV 2 3 7 144 35 007

4 RF 2 3 6 144 13.6 0.54

ML 2 3 5 144 214.8 1.89

Tree CV 2 3 4 51 0.7 0.03

1 RF 2 2.5 6 51 3.1 0.15
s ML 2 25 4 5L 292 033

Tree CV 2 3 4 102 2.0 0.07

2 RF 2 3 9 102 9.5 0.34

ML 2 3 5 102 111.7 1.07

Tree CV 2 3 5 64 1.0 0.04

1 RF 2 2 5 64 4.2 0.26
LML > 3 6 64 466 043

Tree CV 2 3 6 128 2.8 0.10

2 RF 2 4 6 128 11.8 0.35

ML 2 3 5 128 180.9 1.26
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Table 3: Several performance indicators for the two-model infectious disease example
of Section 4.2 from the main paper (higher-dimensional designs): number of sweeps (s)
of coordinate exchange algorithm through design grid (minimum, median, maximum
over 20 parallel runs), calls (¢) to loss estimation procedure per sweep (s), mean and
standard deviation of runtime (r) per sweep (s) over all parallel runs (in minutes).

ng q¢ Method min(s) med(s) max(s) ¢/s mean(r/s) std(r/s)

19 Tree CV 2 3 6 228 7.5 0.19

RF 2 3 8 228 25.5 0.71
;ifoefefCV”*i 77777 3 8 456 253  0.50
R 2 35 6 456 631 147

36 Tree CV 2 2.5 9 684 61.4 1.26

RF 2 4 8 684 110.8 4.10
’ ;Lé " TreeCV. 2 3 7 912 1147 252

RF 2 3 6 912 169.8 5.30

6 Tree CV 2 3 7 216 7.1 0.27

RF 2 4 7 216 23.7 0.66
’712”Tfefef(f\f*"27””§.5 77777 5 432 240 081
, L RE 2 3 6 432 1 191

18 Tree CV 2 3 7 648 51.6 1.04

RF 2 3 6 648 100.8 3.57
;ifoeéfCV*”i””Q.B 77777 5 864 ¢ 94.7 294

RF 2 3 7 864 153.4 6.85

4 Tree CV 2 3 5 204 6.5 0.30

RF 2 3 7 204 22.2 0.62
Wé”TfeéfCV”*i 77777 3 6 408 213 041
s O RE > 47Tl 58 L5

12 Tree CV 2 3 7 612 44.0 1.27

RF 2 4 7 612 93.4 3.26
’71(;”T17e7e*Cf\/””27 77777 3 4 816 ¢ 784  1.68

RF 2 3.5 5 816 138.9 5.88

5 Tree CV 2 3 6 192 5.9 0.10

RF 2 3 8 192 20.7 0.60
Wé*Trfeé*CV”*i 77777 3 6 384 179 058
, CRE > 4% 3 490 159

9 Tree CV 2 3 5 576 35.0 1.14

RF 2 4 7 576 85.4 2.78
’7127”Tfeéf(f\/”"27””§.5 77777 6 768 61.8  1.36

RF 2 3.5 6 768 127.4 5.16
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Table 4: Several performance indicators for the macrophage example of Section 4.3
from the main paper: number of sweeps (s) of coordinate exchange algorithm through
design grid (minimum, median, maximum over 20 parallel runs), calls (¢) to loss esti-
mation procedure per sweep (s), mean and standard deviation of runtime (r) per sweep
(s) over all parallel runs (in minutes).

n  Method min(s) med(s) max(s) ¢/s mean(r/s) std(r/s)
95

1 Tree CV 2 3 6 10.4 0.6
RF 2 4 5 55 18.6 9.5
5 Tree CV 2 3 4 95 40.5 8.1
RF 2 3 6 95 53.4 194
3 Tree CV 2 3 5 135 72.6 18.5
RF 2 3 6 135 82.0 14.0
4 Tree CV 2 3 6 175 108.9 24.4
RF 2 3 8 175 159.0 33.2
5 Tree CV 2 3 5 215 156.1 57.1
RF 2 3 4 215 176.3 37.0
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4 Additional Details and Results for Epidemiologi-
cal Example

4.1 Prior Distributions

The prior distributions for the four epidemiological Markov process models of Section 4.1
are given in Table 5.

Table 5: The prior distributions considered for the infectious disease example of Sec-
tion 4.1. Here LN (i1, 0) denotes the lognormal distribution with location p and scale
o. £(n) denotes the exponential distribution with rate 7.

Model Number Parameter Prior
Model 1 btV LN (—0.48,0.09)
Model 2 b\ LN(—1.1,0.16)

by LN (—4.5,0.4)
Model 3 p\Y LN (—0.54,0.15)
7B £(0.01)
Model 4 p\Y LN (—1.34,0.41)
bSY LN (—4.26,0.25)
A £(0.01)

4.2 Optimal Designs for n =4 and n =5

Table 6: Optimal designs obtained by tree classification (cross-validated), random
forest classification (using out-of-bag class predictions), and ABC approaches under
the 0-1 loss (01L) or multinomial deviance loss (MDL) (n = 4 and 5) for the infectious
disease example. The equidistant designs are also shown.

Method/Loss n=4 n=>5

Tree 01L 0.750 4.250 9.750 10.000 | 0.910 4.304 8.671 10.000 10.000
RF 01L 0.750 4.250 8.500 9.750 | 0.750 4.250 &8.250  9.000  9.250
ABC 01L 0.047 0.599 2.265 4.943 | 0.250 1.000 3.000  5.500  7.500
Tree MDL 0.750 5.000 9.791 10.000 | 0.750 4.750 9.566  9.750 10.000
RF MDL 0.720 4.000 6.268 10.000 | 0.750 4.250 9.566  9.750 10.000
ABC MDL 0.222 0.703 3.120 5.753 | 0.500 1.500 3.000  4.750  7.250
Equidistant 2.000 4.000 6.000  8.000 | 1.667 3.333 5.000 6.667 8.333
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4.3 Misclassification Matrices

The random forest classifiers and the corresponding random samples which we use to
compute the misclassification error rates in Table 3 of the main paper can also be used to
compute misclassification matrices for the various optimal designs. A misclassification
or confusion matriz contains for each combination of true model m; (in the rows) and
predicted model m; (in the columns) the proportions of samples from true model m;
that were classified as model m;. In the case of random forests, the misclassification
matrix is computed using out-of-bag class predictions. It provides a comprehensive
picture of the classification accuracy at a given design.

For the optimal design obtained by the tree classification approach with cross-validation
under the 0-1 loss, the misclassification matrices for 1 — 4 time points are shown in
Figure 1. The figure suggests that it is difficult to discriminate between models 1 and
3 and also models 2 and 4. This is not surprising given that we do not observe the
exposed population. Especially model 3 is most often misclassified as model 1. The
misclassification matrices for the other machine learning classification approaches and
loss functions are qualitatively all very similar to Figure 1.

In Figure 2, the misclassification matrices for the ABC approach under the 0-1 loss
are depicted. The ABC approach leads to designs with generally lower values for the
design points than the machine learning approaches (see Table 2 in the main paper and
Table 6 in this document). The overall misclassification error rates are similar, but one
can see that the pattern is a bit different from Figure 1. At 4 design points, model 3 is
more likely to be correctly classified, but the misclassification error of models 1 and 2
increases.

15
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Figure 1: Misclassification matrices obtained for the tree classification designs (using
cross-validation) under the 0-1 loss for the infectious disease example. Designs for 1 —

4 observations are considered.
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Figure 2: Misclassification matrices obtained for the ABC' designs under the 0—1 loss
for the infectious disease example. Designs for 1 — 4 observations are considered.
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5 Additional Details and Results for the Two-model
Epidemiological Example

5.1 Model Description and Likelihood Functions

Let the design for realisation i (i = 1,...,q) be given by d; = (d;1,...,d;,,) and
the overall design be given by d = (d,...,d,), where d;; is the j™ observation time
for realisation 7. Denote the observed number of infected and susceptible subjects
for realisation ¢ at time d;; by I(d;;) = I,; and S(d;;) = S;;, respectively, where
S;; = N —1; ;. Collect all the §; ; in the vector S in the same way as the design times
d; j have been collected in the vector d. Each S; ; is a discrete random variable that can
assume the N 41 values 0 to N. The parameters are denoted by 8 = (log(by), log(bs)).

Since the death and SI models are continuous-time Markov processes, their likelihood
functions have the form

q N4q

p(S‘H, d) = H H Pr (Si,j| Si,jfla 3, d@j,l, di,j) s (51)

i=1j=1

where S; o = N is the number of susceptible individuals at time d; o = 0 Vi (see, e.g.,
Cook et al., 2008).

Let the (N+1)-dimensional vector v; jis, ,_,— contain the probabilities of all the possible
states of the random variable S; ; when the value of S; ;_; is known to be k. The mh
element of v; jis, ;= gives the probability that S; ; = m —1 when S; ;1 = k. Since the
value of S; j_; is known and therefore certain, the state probability vector at observation
time d; j_1 reduces to ey, where e,, denotes a vector for which the m™ element is 1
and the remaining elements are 0.

Given the vectors and notation introduced above, the transition probabilities can be
written as
Pr (S| Sij-1,0,d;;_1,d;;) = vl e = el Ag;je
4,j1 Pi,g—1, Y G515 %i,5) — Y4 4|8 Sij+l = €8, ,_1+1426,i,5 €55 ;+1)

i,j—1 i

where the matrix Ag;; has dimension (N + 1) x (N + 1) and contains the transition
probabilities for all pairs of states between observation times d; ;_; and d; ;. This matrix
follows from the solution of the Kolmogorov forward equations and can be calculated
using the matrix exponential (see Higham, 2008),

AO,i,j = exp[(di,j — di,jfl) Ge], (52)

where Gy is the infinitesimal generator matrix that is constructed from the transition
rates given in Table 1 of the main paper, see, e.g., Grimmett and Stirzaker (2001), pp.
258.
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Let the N +1 rows of the generator matrix be numbered from 0 to N. For the ST model,

row ¢ (i =0,..., N) of the generator matrix is given by
[Goli =( O . [b +bg(vN—z‘)]z', =[b +b2;EN—z')]é, ).
X max{O,i—l} X mln{l,z} x1 X(N—l)

Setting by = 0 for the death model, the transition probabilities can be simplified to a
binomial probability mass function (see Cook et al., 2008):

Pr(8;,;| Sij-1,01,dij-1, dij) = B{Si;| Si,j-1, exp[=bi(di; — dijj—1)]}-

Therefore, there is no need to numerically compute the matrix exponential for the death
model, and so the likelihood function can be evaluated very quickly. However, for the
SI model each of the ¢ - nq matrices Ag;; in the likelihood function (5.1) is obtained
by numerical computation of the matrix exponential (5.2).

5.2 Approximating the Marginal Likelihood

To obtain
p(m|S,d) < p(S|m,d) p(m),

we need to compute the marginal likelihood

p(S|m, d):/ p(S10,m, m,d) p(0,,|m)da,,. (5.3)

m

We pursue two different approaches to approximating this integral. During the opti-
misation procedure, we use a comparatively quick Laplace-type approximation to the
marginal likelihood, see Gelman et al. (2013), p. 318. Let

0,, = arg max (S0, m, d) p(6,,|m) (5.4)

be the posterior mode of model m. Performing a second-order Taylor expansion of
p(S|6.,, m, d) p(0,,|m) around 6, and integrating out 6,, yields

p(S|m.d) = 27"/ (S5 4> p(S|0m, m, d) p(B,|m), (5.5)

where p,, is the number of parameters of model m and
~—1

Ys6,.a=—Vo,Ve, [10gp(S]0,, m,d) +log p(0,,|m)] ; (5.6)

is the Hessian of the negative log-posterior evaluated at the posterior mode.

When validating the optimal designs found by the different methods, we employ gener-
alised Gauss-Hermite quadrature (Kautsky and Elhay, 1982; Elhay and Kautsky, 1987)
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with ) sample points to compute the integral (5.3). As weighting kernel we use a
multivariate normal density with mean and variance-covariance matrix given by the
mean and twice the variance-covariance matrix, respectively, of the normal Laplace
approximation to the posterior,

w(0,) = N(60,,]0,,,2 Es,ém,d)v

where 0, is given by (5.4) and is,ém,d is given by (5.6). Using this weighting kernel,
we expect that many sample points are in relevant regions where the integrand has
high mass. In the bivariate case, determining the sample points involves two steps,
see Jéckel (2005). First, all combinations of sample points resulting from applying the
standard univariate Gauss-Hermite quadrature rule to each dimension are considered.
The sample weights are simply computed by multiplying the univariate weights. To
account for the correlation and different scaling and location implied by the multivariate
normal weighting kernel, the sample points are then transformed accordingly based
on a spectral decomposition of the variance-covariance matrix, seeking to align the
diagonals of the rectangle of sample points to the principal axes of the confidence
ellipsoid. Furthermore, for the two-parameter SI model we drop sample points below
a weight of wy - w|(/gi1y/2)/ VQ, where /@ is the number of univariate sample points
of the Gauss-Hermite quadrature rule and w; denotes the weight for the ¢th ordered
univariate sample point.

After obtaining the () sample points 6,,; and quadrature weights w; (i = 1,...,Q)
according to the quadrature rule, the marginal likelihood can be approximated by

Q
p(Stm, d) s 3w, P10 7 &) DO
=1 N(0m7z|0m, 2 Es,ém,d)

m)‘

(5.7)

5.3 Further Results

Figure 3 shows the estimated expected 0-1 loss surface for the one-dimensional design
obtained by the different approaches using the simulation sizes we used for the design
search. The comparatively high volatility of the expected 0—1 loss under the likelihood-
based approach is evident from Figure 3. To create Figure 3 on our computer, it
took about 17 seconds for the tree classification approach, about 2.7 minutes for the
random forest classification approach, but more than 18 minutes for the likelihood-
based approach despite the low data dimension and the much smaller prior predictive
sample size.

Figures 4 (lower-dimensional designs) and 5 (higher-dimensional designs) display the
distributions of posterior model probabilities for samples of size 2K (1K per model)
from the prior predictive distribution at the various optimal designs found for all the
dimension settings and the different methods. We also include equispaced designs

20



0.5

% O 45 B 'y M
o : "'vﬁ
Yy A s AN A
= 04 %"’*Y‘A’-.,\M,w'/
GJ o
0
@
53
® 0.35 —tree cv
....... rf
likelihood
0.3 ' ' ' '
0 2 4 6 8 10

observation time

Figure 3: Plots of the approximated expected 01 loss functions produced by the tree
classification approach with cross-classification (solid), the random forest classification
approach (dotted), and the likelihood-based approach using a Laplace-type approxima-

tion to the marginal likelihood (dashed) for the infectious disease example with two
models.
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for comparison. The marginal likelihoods are computed using the generalised Gauss-
Hermite quadrature approximation (5.7) with Q = 30 quadrature points for the death
model and up to @ = 30% quadrature points for the SI model.

Figure 4 shows that for lower-dimensional designs all methods lead to designs with a
very similar classification accuracy as measured by the distribution of the posterior
model probabilities of the true model. For the higher-dimensional designs, Figure 5
indicates that the designs found using random forests are performing slightly better
than the designs found using cross-validated trees. This comes at the cost of a higher
computing time.
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Figure 4: Distributions of posterior model probabilities of the correct model for 2K
prior predictive simulations (1K from each of the two models) for the infectious disease
example with two models. The data are all simulated at the respective optimal designs
for the different approaches. The 0-1 loss is used as criterion. Settings with ¢ = 1 to

= 4 realisations and ngy = 1 to ng = 4 observations per realisation are considered
(¢ < 2 for ng = 3 and ny = 4). For each setting, from left to right the boxplots
are for the cross-validated tree classification design (Tr; magenta), the random forest
classification design (RF; blue), the design found using the Laplace approximations to
the marginal likelihoods (ML; red), and the equispaced design (Eq; black).
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Figure 5: Distributions of posterior model probabilities of the correct model for 2K
prior predictive simulations (1K from each of the two models) for the infectious disease
example with two models. The data are all simulated at the respective optimal designs
for the different approaches. The 0-1 loss is used as criterion. Settings with various
numbers of realisations and 1 < ng < 4 observations per realisation are considered.
The number of realisations were chosen such that the total number of observations
n = q-ng is equal to n = 12, 24, 36, or 48. For each setting, from left to right the
boxplots are for the cross-validated tree classification design (Tr; magenta), the random
forest classification design (RF; blue), and the equispaced design (Eq; black).
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6 Additional Details and Results for Macrophage
Example

6.1 Models and Prior Distributions

In all three models, a macrophage can acquire a new bacterium with a constant rate
¢ while there is no antibiotic in the medium (¢ < ¢.,,); this rate then drops to 0 for
the remainder of the simulations. In model 1, we assume that a proportion p > 0 of
available bacteria are non-replicating, so these are acquired by macrophages at rate
¢ p, while replicating bacteria are acquired at rate ¢(1 — p). Intracellular bacteria
are degraded at rate d for replicating bacteria and rate e for non-replicating bacteria.
Within permissive macrophages containing R > 1 replicating bacteria, the number of
replicating bacteria increases by one every time one of these bacteria divides, but this
division rate is assumed to be a decreasing function of R (due to limited resources for
bacterial growth within a macrophage), expressed as a e *f, where a is the maximum
division rate of bacteria and b is a dimensionless scaling parameter. Finally, in model
(1), replicating bacteria within permissive macrophages become non-replicating at rate
0. All these transitions are listed in Table 7.

Table 7: Three competing models considered in the macrophage example. R(t) repre-
sents the number of replicating bacteria and D(t) the number of non-replicating bacteria
within a macrophage. In model 2, a proportion ¢ of macrophages are refractory and
1 — g permissive.

Model Number | Event Type Update Rate
(1) Acquisition of R | R(t) + 1 o(1 —p)
Acquisition of D | D(t) + 1 op
Division R(t)+1 ae PO R(t)
Loss of R R(t)—1 d R(t)
Loss of D D(t) —1 e D(t)
Switch of Rto D | R(t) — 1, D(t) + 1 | d R(¢)
(2) Refractory | Acquisition of D | D(t) + 1 o)
Loss of D D(t)—1 e D(t)
(2) Permissive | Acquisition of R | R(t) + 1 o)
Loss of R R(t) —1 d R(t)
Division R(t)+1 ae PO R(t)
(3) Acquisition of R | R(t) + 1 o
Loss of R R(t)—1 d R(t)
Division R(t)+1 ae B R(t)

For each macrophage, numerical simulations of the three models are produced using
the Gillespie algorithm (Gillespie, 1977). In line with the general experimental setup,
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each macrophage is initially uninfected, but in model 2 it has a probability ¢ of be-
ing refractory. This state is set at the start of each simulation and does not change
thereafter. To reproduce the data collection process described above, we produce two
independent sets of simulations for each observation time ¢, in a given experimental
design. First, we run S simulations of individual macrophages and record the propor-
tion 7(t.ps) of infected macrophages. Second, we run another set of simulations for the
same duration until S infected macrophages are obtained, from which we record the
proportions {/u(tos), k& > 0} of infected macrophages containing k& bacteria. This can
be repeated multiple times to generate multiple sets of observations from each model m,
parameter vector 0, and experimental design d. Importantly, the simulations’ results
do not distinguish between replicating and non-replicating bacteria (model 1) or be-
tween refractory and permissive macrophages (model 2), as these cannot be told apart
by microscopy alone.

The number of infected macrophages at time t.,, has the binomial distribution
Bin(S; E[m(tes)]). Likewise, the vector of numbers of infected macrophages containing
k=1,..., K, bacteria has the multinomial distribution

Mult(S; {E[p1(tops)]s - - - B[, (tops)] }). The last category Ky contains all macrophages
with at least K, bacteria.

The most involved part is to obtain the expected proportions E[7(ts)] and
Elpa(tovs)], - - - Elpx, (toprs)] for any particular set of parameters. A system of linear
differential equations consisting of the Kolmogorov forward equations for the models in
Table 7 has to be solved to determine the expected proportions of macrophages that
contain a certain number of replicating and non-replicating bacteria (see Restif et al.
(2012)). The solution of this system can be computed using matrix exponentials. Con-
sidering only the total number of bacteria in a macrophage, the expected proportions
E[m(tops)] Elpa (tovs)], - - - s E[prc, (tops)] can then be derived.

The prior distributions for each model were driven by the analysis of the experimental
system in Restif et al. (2012). We assume truncated multivariate normal distributions,
where the mean vector and variance-covariance matrix are based on the maximum
likelihood estimates (MLEs) and the inverse of the Hessian obtained from the optimi-
sation routine, respectively. All parameters are truncated below at 0. The proportion
parameters p and ¢ are additionally truncated above at 1.

In model 1, all macrophages are permissive, so ¢ = 0. The mean vector and the
variance-covariance matrix of the truncated normal prior for the remaining parameters
of model 1 are given by

a b d 0 € D 10)
Iqu:(6.46 1.54 0.073 2.529-1071% 0.035 0.097 0.25)

and
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a b d ) € P 10)
a /32.8310
b 0.6224  0.0696
d 0.1991 —0.0017  0.0487
g=§ 0.1258  0.0218 —0.0164 0.0153
€ 0.0166  0.0048 —0.0069 0.0052 0.0024
P 0.2142 0.0252 —0.0061 0.0102 0.0039 0.0192
¢ \—0.0101 0.0001 —0.0029 0.0018 0.0011 0.0018 0.0030

(The upper triangular part of the variance-covariance matrices is omitted.)

For model 2, where all bacteria are replicating and hence § = p = 0, the mean vector
and the variance-covariance matrix are selected to be

a b d € [0) q
MzT:(8.54221 1.450254 0.09111 0.03 0.25948 0.266837)

and

a b d € 0] q
a / 33.5250
b 1.1380  0.3586
d 0.8252 —0.1213  0.0952
€ 0.0253  0.0077 —0.0023  0.1067
¢ | —0.1471 —0.0511 0.0197 —0.0001 0.0355
q 0.9048  0.1962 —0.0658  0.0097 —0.0284 0.2765

Finally, model 3 assumes that all macrophages are permissive and all bacteria are
replicating, so 0 = € = p = ¢ = 0. For this model the truncated normal prior’s mean
vector and variance-covariance matrix are

a b d 0]
M;:(0.8161965 0.52672325 0.20740975 0.3203258)

and
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a b d ¢
0.7518

0.1172  0.0506

0.0720 —0.0090 0.0228
0.0008 —0.0106 0.0100 0.0287

& o e

6.2 Optimal Designs

Tables 8 and 9 show the optimal designs for each classification method and for the
different numbers of observation times. The tree and the random forest classification
approaches lead to very similar designs.

Table 8: Optimal classification designs (te.p; tops) using trees or random forests under
the 01 loss and equispaced designs for the macrophage model (n =1, 2, and 3).

Method n=1 n=2 n=3

texp tobs texp tobs texp tobs
Tree 1.20 | 10.00 | 0.09 | 1.75 10.00 | 0.09 | 1.25  2.75 10.00
RF 1.11 | 10.00 | 0.10 | 1.75 10.00 | 0.10 | 1.50 10.00 10.00
Equi 0.80 | 5.00 | 0.80 | 3.33 6.67 | 0.80 | 250 5.00 7.50

Table 9: Optimal classification designs (tc.p; tobs) using trees or random forests under
the 0-1 loss and equispaced designs for the macrophage model (n = 4 and 5).

Method n=4 n=>5

te:pp tobs Zfeavp tobs
Tree 0.09 1 0.75 2.25 9.00 10.00 | 0.10 | 0.75 2.50 2.75 10.00 10.00
RF 0.10 | 1.25 2.75 10.00 10.00 | 0.09 | 1.50 2.50 9.75 10.00 10.00
Equi 0.80 | 2.00 4.00 6.00 8.000.80|1.67 3.33 5.00 6.67 833

6.3 Misclassification Matrix

We can use the same random forest classifiers and their associated samples that were
created to estimate the misclassification error rates in Table 4 of the main paper to
compute the misclassification matrices. The misclassification matrices for the optimal
designs obtained under the random forest classification approach are displayed in Fig-
ure 6. The classification power is very high for all the models. One can see that it is
slightly more difficult to detect heterogeneity between bacteria (model 1) than hetero-
geneity between macrophages (model 2). The misclassification matrices for the designs
obtained under the tree classification approach are almost identical.
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Figure 6: Misclassification matrices obtained for the random forest classification de-
signs under the 0-1 loss for the macrophage example. Designs for 1 — 4 observation
times plus the exposure duration are considered.
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7 Logistic Regression Example

We consider the logistic regression example of Overstall and Woods (2017) and Overstall
et al. (2018). The response is binary, y;; ~ B(p;;), and

4
logit(pij) = Bo + voi + Z Va(Ba + Vai) aij,
a=1
where j =1,...,ngand i =1,...,G. Here GG is the total number of groups and ng is

the number of observations per group. The total number of observations is n = G X ng.
The model parameter of interest is @ = (B, 51, B2, #3, 34) . The random effect for the
ith group is v; = (Yo, V14> Yoi, V3i> Yai) - The observed vector of responses for the ith
group is y; = (Yi1, - - -, Yine) and the total dataset is denoted y = (y;,...,ys)" . The
design vector is the concatenation of the controllable elements of the design matrix,
d={z4u;a=1,...,4,i=1,...,G,j=1,...,ng} and is of length n x 4. Each design
element is restricted, x,;; € [—1,1]. The variable v, is an indicator variable that is
equal to 1 if the ath predictor is present in the model. It may not be clear which of the
four predictors should be included in the model, so there are 2* = 16 possible models to
choose from. We aim to select the design d that maximises our ability to discriminate
between all possible models under various prior assumptions as described below.

As in Overstall et al. (2018), two different model structures are considered. The first
structure is that all random effects (RE) are set to 0, resulting in the fixed effects (FE)
structure. The second structure is that the random effects are allocated a distribu-
tion (RE structure). Within each chosen structure, there are 16 models to discrimi-
nate between. In both the FE and RE structures, we use the priors fy ~ U(—3,3),
f1 ~ U4,10), B ~ U(5,11), B3 ~ U(—6,0), By ~ U(—2.5,3.5). We assume that
all parameters are independent a priori. For the RE model we set v, ~ U(—C,, (o)
and allocate a triangular prior to (,, p(¢.) = 2(U, — ¢.)/U2, 0 < ¢, < U,, where
(Uo, Uy, U, U3, Uy) = (3,3,3,1,1). One possibility for the prior distribution placed
on each model is a prior which depends on the number of predictors present in the
model. Let (vy1, .- .,Vm4) denote the values of (vy,...,v,) for model m. A model prior
accounting for Bayesian multiplicity (Scott and Berger, 2010) is

1
m :—4. 7.1
P = 57—y (7.)

In order to estimate the misclassification error rate under the Bayes classifier (the Bayes
error rate) for some design d, we need to estimate posterior model probabilities for J
datasets simulated from the prior predictive distributions of all the models. A com-
mon approach for rapid approximation of the evidence for model m, p(y|m, d), in the
context of Bayesian optimal design is importance sampling (IS), where the importance
distribution is the prior (e.g. Ryan et al. (2014)). However, if the data is informative (as
might be the case in this example if n is large), the number of IS samples to estimate
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the evidence with reasonable precision may be prohibitively large. The situation is
significantly worse for the RE structure, as an importance distribution is required over
the space of both the parameter of interest and the random effects (see, e.g., Ryan et al.
(2015)). For the FE structure and n = 48, using 100K importance samples from the
prior and J = 800 (50 per model), the time taken to approximate the misclassification
error rate for a random design on a cluster using 24 parallel threads was almost 2.75
minutes. This is very computationally intensive considering that we need to optimise
over 48 x 4 design variables. Performing IS for the RE structure might be considered
as completely intractable. Overstall et al. (2018) propose the use of normal-based ap-
proximations to the posterior in the Bayesian design context to provide a convenient
estimate of the evidence. They consider the same logistic regression example but use
normal priors to facilitate the approximation of the evidence. In some applications, a
normal-based approximation may not be adequate.

In contrast, our classification approach avoids computing posterior quantities and re-
quires only simulation from all the models. Interestingly, moving to the RE structure
poses little additional difficulty for the classification approach as it remains trivial to
simulate from the models. This is a significant advantage of the classification approach.

For the FE structure we consider n € {6,12,24,48} and for the RE structure we
consider ng = 6 and G € 2,4,8 (to give n € {12,24,48}). Two prior distributions
on the model indicator are trialled: (1) the prior where models are equally likely a
priori and (2) the prior in (7.1) that corrects for Bayesian multiplicity. We refer to
the first as the equal prior and the second as the unequal prior. For this example, the
only design criterion that we consider is the misclassification error rate (the excepted
0-1 loss). During the design optimisation phase, we estimate the expected loss by
employing cross-validated classification trees using a sample of size 80K (5K simulations
per model). The observations are weighted within the trees according to their prior
model probabilities. We consider a discretised design space for each z,,; consisting of
the five values {—1,—0.5,0,0.5,1}.

After having obtained the optimal designs for the different scenarios regarding model
structure (FE or RE) and prior distributions (equal or unequal), we attempt to assess
the classification performance of these optimal designs using random forests. For each
optimal design, 10K simulations under each model are used to train a random forest
with 100 trees. A fresh set of 16 x 10K = 160K simulations is used to estimate the
misclassification error rate and the misclassification matrix. The model proportions of
this test sample reflect the prior model probabilities. The results for the optimal designs
of the different scenarios are shown in the rows with bold row labels in Table 10. For
each scenario, results for optimal designs under different scenarios as well as a randomly
generated design are also provided. For the randomly generated designs, each design
point z,;; equals 1 or —1 with equal probability.

The results suggest that the optimal designs found for this example are remarkably
robust with respect to the assumed model structure (FE or RE) and the assumed prior
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model probabilities (equal or unequal). The random design has the worst performance
under all scenarios. We can also see a decrease in the misclassification error rate as the
sample size is increased, as expected.

It is also of interest to see how well the optimal designs found under the tree clas-
sification approach perform in terms of posterior model probabilities. We conduct a
simulation study under the FE structure using either the equal or the unequal prior.
For each design we want to assess, we simulate a sample of 800 datasets from the
marginal distributions of all the various models, where the proportion of datasets from
a particular model in the sample corresponds to that model’s prior model probability.
For each of the 800 datasets, we approximate the posterior model probability of the
model m that generates the dataset y using IS with 100K prior simulations. As for the
classification results in Table 10, we are also interested in the performance of optimal
designs found under some wrongly assumed scenarios. We also consider a ‘random’
setup where we select designs randomly for each of the 800 datasets. Figure 7 shows
the boxplots of the estimated posterior model probabilities of the correct model for
some of the designs of interest when the true scenario is the FE structure with the
equal prior. The resulting boxplots when the true scenario is the FE structure with
the unequal prior are shown in Figure 8. It is again evident that the optimal designs
found are robust under the choice of the structure (FE or RE) and the choice of the
prior model probabilities (equal or unequal). We do not perform a simulation study
under the RE structure given the increasing difficulty of estimating the posterior model
probabilities under this structure.

It is important to note that the random forest-based validation results in Table 10 were
obtained in a small fraction of the time that it took to conduct the simulation study
used to produce the results in Figures 7 and 8.

Figures 9 and 10 show misclassification matrices for the logistic regression models under
the FE structure for the equal and unequal priors, respectively. To produce the results,
10K simulations from each model are used to train a random forest with 100 trees.
The misclassification matrices are then computed based on a fresh test dataset of size
16 x 10K = 160K with model proportions in the dataset corresponding to the prior
model probabilities (under the equal prior, 10K simulations are taken from each model).
The improvement in classification accuracy is clear as the sample size is increased.
When the unequal prior is selected, it is evident for small sample sizes that it is easier
to classify the models with higher prior probability. The misclassification matrices for
the RE structure are omitted because they are very similar.
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Table 10: Shown are the misclassification error rates obtained at various optimal tree
classification designs for the different logistic regression models. Four scenarios for the
true model are considered: (1) FE structure under the equal prior, (2) FE structure
under the unequal prior, (3) RE model under the equal prior and (4) RE model under
the unequal prior. Rows with bold labels contain the results for the optimal designs
under each scenario. Also shown, for each scenario, are the results for various designs
obtained under different wrong scenarios and the results for a random design. The
results suggest that the optimal designs found are robust to the model structure (FE or
RE) and to the prior model probabilities (equal or unequal). The random design has
the worst performance under all scenarios.

FE structure under the equal prior

Design Sample Size (n)
6 12 24 48
FE equal | 0.616 0.494 0.407 0.354
FE unequal | 0.665 0.535 0.431 0.386
RE equal NA 0497 0.413 0.359
random 0.730 0.638 0.534 0.463

FE structure under the unequal prior

Design Sample Size (n)
6 12 24 48
FE equal 0.511 0.416 0.337 0.290
FE unequal | 0.480 0.409 0.340 0.307
RE unequal NA 0410 0.341 0.313
random 0.553 0.456 0.401 0.352

RE model under the equal prior

Design Sample Size (n)
6 12 24 48
FE equal NA  0.504 0.423 0.366
RE equal NA 0.506 0.424 0.369
RE unequal | NA 0.545 0.442 0.399
random NA 0.629 0.538 0.462
RE model under the unequal prior
Design Sample Size (n)
6 12 24 48
FE unequal NA 0416 0.351 0.317
RE equal NA 0.426 0.349 0.302
RE unequal | NA 0.416 0.349 0.316
random NA 0.483 0.406 0.362
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Figure 7: Estimated posterior model probabilities for the correct model by the val-
idation study under the equal prior. Results based on sample sizes of (a) n = 6, (b)
n =12, (¢) n = 24 and (d) n = 48. Several designs are considered: optimal design
found under the correct (equal) prior, optimal design found under the wrong (unequal)
prior, optimal design found under the wrong (RE) structure (no results for n = 6) and
randomly selected designs.
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Figure 8: Estimated posterior model probabilities for the correct model by the vali-
dation study under the unequal prior. Results based on sample sizes of (a) n = 6, (b)
n =12, (¢) n = 24 and (d) n = 48. Several designs are considered: optimal design
found under the correct (unequal) prior, optimal design found under the wrong (equal)
prior, optimal design found under the wrong (RE) structure (no results for n = 6) and

randomly selected designs.
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Figure 9: Misclassification matrices obtained for the FE structures of the logistic
regression example with the equal prior.
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Figure 10: Misclassification matrices obtained for the FE structures of the logistic
regression example with the unequal prior.
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8 Spatial Extremes Example

In this example, the goal is to place a fixed number of measuring sites in space in order
to maximise the ability to discriminate between different spatial models for extreme
outcomes (e.g., maximum annual temperatures). There are many spatial models for
extreme events, see Davison et al. (2012) for an overview. For this example, we consider
to discriminate between three isotropic models: two maz-stable models and one copula
model.

8.1 Models

Max-stable processes are popular for modelling spatial extremes because they are the
only possible limits of renormalised pointwise maxima of infinitely many independent
copies of a stochastic process (de Haan and Ferreira, 2006). The advantage of working
with the limiting process is that no knowledge about the underlying true process is
necessary. Inference for extreme outcomes based on the true underlying process is
fraught with high uncertainty and most often not feasible because only the tails of the
distribution are observed. If the limiting assumption is (approximately) appropriate, it
is much easier to model the extreme data according to a max-stable process.

All the univariate marginal distributions of a max-stable process are members of the
family of generalised extreme value (GEV) distributions. We assume that all the uni-
variate marginal distributions have a wnit Fréchet distribution (Pr{Y(x) < y} =
exp{—1/y},y > 0), so the focus is on modelling the dependence structure of the pro-
cess. The assumption of unit Fréchet margins is not too restrictive from a practical
perspective since a simple transformation can be applied to the univariate margins to
make them unit Fréchet distributed, see Davison et al. (2012). The marginal parame-
ters needed for that transformation can be estimated in a separate step. Alternatively,
one may estimate the dependence and marginal parameters together.

The spectral representation of a max-stable process {Y(z),z € X C R?} with unit
Fréchet margins is given by

Y(x) = maxyg;(x), x € X, (8.1)

i>1

where the spectral functions ;(x) = (;Z;(x) are the products of the realisations {(;}22,
of a Poisson point process on the positive real line with intensity dA(¢) = (~2d¢ and
of the independent realisations {Z;(x), x € X'}$°, of a non-negative stochastic process
with continuous sample paths and E[Z(x)] = 1V x € X (see, e.g., Ribatet (2013)).

Different max-stable processes are obtained by choosing different stochastic processes
Z. We consider two very popular stationary models, the extremal-t model (Opitz,
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2013) and the Brown-Resnick model with power variogram (Brown and Resnick, 1977;
Kabluchko et al., 2009). The specifications for Z;(x) for each of the models are

Extremal-t: Zi(x) = Va2~ D2 T {(v +1)/2} " max{0, &;(x)}”, v > 0,
Brown-Resnick: Zi(x) = exp {ei(x) — Var[e;(x)]/2},

where ¢; and ¢; are independent copies of Gaussian processes.

In the case of the extremal-t model, € is a stationary Gaussian process defined by the
correlation function p(h), where h is the Euclidean distance between two points. For
our example, we assume the powered exponential or stable correlation function:

p(h) =exp[— (h/N)"], A>0,0<k<2. (8.2)

The Brown-Resnick process is defined by its semi-variogram. If the process ¢ is a frac-
tional Brownian motion centred at the origin, the Brown-Resnick process is stationary
and the semi-variogram has the form

v(h) = (h/N)*, A>0,0<k <2,
where h denotes the distance between two locations.

Both models depend on two parameters governing the dependence between two loca-
tions separated by a distance h: the range parameter A and the smoothness parameter
k. In addition, the extremal-t model has a degrees of freedom parameter denoted by v.
We assume there is no discontinuity of the correlation function at A = 0 (i.e., no nugget
effect).

The third model we consider is a copula model. Similar to the max-stable models,
the univariate marginal distributions of the copula model are unit Fréchet. However,
the extremal dependence between the locations is simply modelled by a standard (non-
extremal) copula. For an introduction to copulas see Nelsen (2006). We assume the
multivariate Student-t copula in our example. The multivariate cumulative distribution
function (CDF) at locations (@1, ..., xy) implied by the non-extremal Student-t copula
model (Demarta and McNeil, 2005) is

Pr{Y (z1) <w1,....Y(xn) <yn} = Tu{T [Fn)l, -, Ty [F(yn)]; 2},

where F(y) = exp{—1/y} is the CDF of the unit Fréchet distribution, 77,,[] is the
quantile function of the univariate Student-t¢ distribution with v degrees of freedom,
and Ty, {---; X} is the CDF of the H-variate Student-¢ distribution with v degrees
of freedom and dispersion matrix 3. The diagonal elements of 3 are 1 and the off-
diagonal elements contain the correlations between the locations. Therefore, the entries
of 3 are given by X,; = p(hy;) for i, = 1,..., H, where h;; is the distance between
locations 7 and j. As for the extremal-t model, we assume the correlation function
to be the powered exponential correlation function (8.2). This also implies that the
non-extremal Student-t copula model has the same set of parameters as the extremal-t
model: range (), smoothness (), and degrees of freedom (v).
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8.2 Summary Statistics

If a reasonable amount of observations are collected at each location, the data collected
quickly becomes very high-dimensional, while each observation is only marginally infor-
mative. This diminishes the classification power of the classifiers we use. We therefore
aim to reduce the dimension of the data by generating informative summary statistics.
Unfortunately, none of the statistics we consider guarantee consistent model choice.
This can potentially result in large biases when estimating the posterior model proba-
bilities (Robert et al., 2011), which can also affect the estimates of the misclassification
error rates. However, trees and random forests work reasonably well with a sizeable
amount of moderately informative feature variables. Therefore, we can include a wide
variety of summary statistics, where each contains some information about the process.
Considering the combined information of all the summary statistics, we expect that
only a small loss in information is incurred compared to the full dataset.

First, we include all the F-madogram estimates for all the pairs of locations. The
F-madogram (Cooley et al., 2006) is similar to the semi-variogram, but unlike the
semi-variogram it also exists if the variances or means of the random variables are not
finite. Given n observations {y;(@1),...,y.(@1)} and {yi(x2),. .., yn(x2)} collected at
locations @, as well as @5, the pairwise F-madogram between locations x; and x; is
estimated as

. 1

vp(@1, 22) = o D IF{ui(@1)} — Flyi(ms)},

i=1
where F{y} = exp{—1/y} is the CDF of the unit Fréchet distribution.

As a second set of summary statistics, we include estimates for all the pairwise ez-
tremal coefficients (Schlather and Tawn, 2003). For a max-stable process, the pairwise

extremal coefficient between locations @, and x, is defined as the value 6(x,, x2) for
which

Pr(Y (1) < 3, Y(@s) <) = Pr(Y(@1) < )@ = oxp (—W} 83

The pairwise extremal coefficient can assume values between 1 and 2. A value of
0(x1,x2) = 1 indicates complete dependence between the two locations. If 6(xq, xs) =
2, the two locations are completely independent. We estimate it using the fast estimator

of Coles et al. (1999),

~ n

) = S ). (@)}

The extremal coefficient as defined by (8.3) only exists for max-stable processes. In
general, the coefficient also depends on the level y. However, the quantities computed
by Equation (8.4) might still provide useful information about the dependence structure.

(8.4)
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For the t copula model, Lee et al. (2018) demonstrate by simulation that the estimates
given by (8.4) are indeed informative about the dependence structure.

The last set of summary statistics we consider is the set of Kendall’s T estimates between
all pairs of locations. Kendall’s 7 between locations @, and @, is estimated by

2

nn—1) > signlyi(1) — y;(w)] signlyi(wz) — y;(x2)].

1<i<j<n

7:(581, 112) =

Dombry et al. (2018) show that for max-stable processes Kendall’s 7 is equal to the
probability that the maxima at two locations occur concurrently and are therefore
attained for the same extremal function, so

T(x1, T+2) = Pr (arg max @;(x;) = arg max goi(azz)) )
i>1 i>1

All of the summary statistics we incorporate are also considered by Lee et al. (2018),
who perform ABC model selection using the summary statistic projection method of
Prangle et al. (2014) for a very similar set of models as in this example. Therefore, a
more detailed discussion of the summary statistics can be found in Lee et al. (2018).

8.3 Bayesian Inference for Spatial Extremes Models

The likelihood functions of max-stable models are practically intractable for most mod-
els for dimensions greater than two or three. Composite likelihood methods have been
the most popular way to conduct classical inference for max-stable models, so model
discrimination is usually based on the composite likelihood information criterion (CLIC)
(Padoan et al., 2010).

The observed extrema at several locations might occur at the same time, which means
that the extrema at these locations arise from the same extremal function ¢;(x) in
Equation (8.1). The locations can then be partitioned according to which extremal
functions ¢;(x) produce the extreme observations at the different locations. Stephen-
son and Tawn (2005) show that the joint likelihood of the extreme observations and
the partitions is substantially simpler than the likelihood of the extreme observations
without knowledge of the partitions. Thibaud et al. (2016) and Dombry et al. (2017)
use this property to devise a Gibbs sampler with the partitions as auxiliary variables to
conduct Bayesian inference for max-stable models. However, even the augmented like-
lihoods are expensive to evaluate for the Brown-Resnick and extremal-t model because
they include multivariate Gaussian (Brown-Resnick) and Student-t (extremal-t) CDFs.

Due to the intractability of the likelihoods, ABC has also been a popular method for
Bayesian inference of max-stable models, see, e.g., Erhardt and Smith (2012) or the
overview in Erhardt and Sisson (2015). Lee et al. (2018) present an ABC application
with the joint goal of model selection and parameter estimation for the same set of
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models we consider. Hainy et al. (2016) seek to find optimal designs for parameter
estimation for the extremal-t model with v = 1 (called the ‘Schlather model’). They
use ABC to estimate the posterior variances, which they use as design criterion. Their
design algorithm is confined to very low-dimensional design spaces in order to be able to
store the reference table for all possible designs. They sequentially select the best single
location among a small set of possible locations. With our classification approach, we
are able to overcome these limitations.

8.4 Settings and Results

In our example, we want to select H (H = 3, ..., 8) locations on a regular grid such that
the ability to discriminate between the three models as measured by the misclassification
error rate is optimised. We search the H optimal design points over a regular 6 x 6
grid laid over a square with edge length 10. The data consist of n = 10 independent
realisations of the process collected at all the locations. Due to the isotropic nature
of the processes, there are potentially many equivalent optimal solutions. With our
modification of the coordinate exchange algorithm using 20 random starts, we seek to
find one of these designs or at least a nearly optimal design.

We assume the following prior distributions:
log (A) ~ N(1, 4),
Kk ~U(0, 2),
log(v) ~ N(0, 1) truncated on [—2.5, 2.5].
Furthermore, we assume equal prior model probabilities (= 1/3) for all models.

Simulating from the ¢ copula model is straightforward. It only requires simulating from
a multivariate ¢ distribution and then transforming the margins with respect to the
univariate t CDF followed by the inverse unit Fréchet CDF. For simulating from the
max-stable models, we use the exact simulation algorithm via extremal functions of

Dombry et al. (2016).

During the design phase, we use cross-validated classification trees as well as random
forests with 500 trees using out-of-bag class predictions to estimate the misclassification
error rates. We had implemented the simulator functions for this example in R, therefore
we use the R function rpart for classification trees, for which we keep all the default
settings except for not considering any surrogate splits to speed up computing time.
For random forests, we employ the function randomForest from the R (R Core Team,
2018) package of the same name (Liaw and Wiener, 2002). The simulated sets for both
methods contain 5K simulations per model. The optimal designs obtained for these
two methods are shown in Figures 11 (trees) and 12 (random forests).

To evaluate the designs found by our classification approach, we repeat estimating the
misclassification error rate via random forests with 500 trees using out-of-bag class pre-
dictions on 100 different simulated samples of size 15K (5K simulations per model) from
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Figure 11: Optimal classification designs found using trees for design sizes from three
to eight for the spatial extremes example. Selected design points are marked by red
triangles.
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Figure 12: Optimal classification designs found using random forests for design sizes
from three to eight for the spatial extremes example. Selected design points are marked
by red triangles.

44



the prior predictive distribution. The distributions of the estimated misclassification
error rates are plotted in Figure 13. We also include the distributions of the estimated
misclassification error rates for 100 simulated samples from the prior predictive distri-
bution generated on 100 randomly selected designs. The optimal classification designs
found using random forests clearly perform best for all design sizes. Using classification
trees with cross-validation instead of random forests leads to designs which are a bit
worse. However, the average misclassification error rate of the classification tree de-
signs is still smaller than the average error rate of the random designs up until 7 design
points.
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Figure 13: Spatial extremes example: distributions of the random forest-estimated
misclassification error rates over 100 random samples of size 15K generated from the
prior predictive distribution at the optimal classification designs found using random
forests (rf) or trees (tr) for design sizes from three to eight. The distributions of the
misclassification error rates over 100 random samples of size 15K generated from the
prior predictive distribution at 100 random designs (rd) are also shown for the same
design sizes.
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In addition to the misclassification error rate, we also compute the misclassification
matrix yielded by the random forest classifier for each of the 100 simulated samples for
each evaluated design. The average misclassification matrices over the 100 samples are
depicted in Figure 14 for the optimal designs obtained by the random forest classification
approach. They show that discriminating between the two max-stable models is more
difficult than discriminating between the ¢ copula model and either of the max-stable
models.
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Figure 14: Average misclassification matrices over 100 simulated prior predictive
samples obtained for the random forest classification designs for the spatial extremes
example. Design sizes from 3 — 8 design points are considered.
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