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SI. COARSE-GRAINED IDP MODEL FOR STUDYING STRONG VS. WEAK

PROTEIN BINDING

A. Model description

In our coarse-grained (CG) model for intrisically disordered proteins (IDPs), we describe

IDPs as 39-bead polymers of Lennard-Jones beads connected by harmonic springs. The

potential energy of our CG force field is given by:

EPot = EBonds + EAngles + ELJ (S1)

where EBonds accounts for the bonding energy between two consecutive beads, EAngles for

the associated bond-angle interaction among 3 consecutive beads, and ELJ corresponds to

non-bonded interactions (i.e., interactions between beads that are not directly bonded to

each other, either from the same chain or different ones). EBonds is described by:

EBonds =
∑

Protein bonds

kbonds(r − r0)
2, (S2)

where the distance between distinct bonds is r and the equilibrium bond length is r0 = σ.

Note that σ is the bead molecular diameter and our unit of length in our CG simulations.

The spring constant is kbond = 40 ϵ/σ2, being ϵ our reduced unit of energy as it will be

explained below. The term EAngles is described by:

EAngles =
∑

Protein angles

kangle(θ − θ0)
2, (S3)

where kangle = 3ϵ/rad2, θ represents the bond-angle, and θ0 the equilibrium resting angle

(θ0 = 180). Non-bonded interactions (ELJ) are described by a Lennard-Jones potential:

ELJ = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
(S4)

where r accounts for the inter-bead distance, and ϵ defines the maximum attractive in-

teraction among different beads of a given type. The cut-off for the LJ interactions is set to

2.5 σ. Our model distinguishes two types of interactions: those belonging to strong ‘sticker-

sticker’ domains where 10ϵ = ϵS (interactions between blue and red beads, as shown in Fig.
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1A of the main text), and those belonging to weak ‘spacer-spacer’ domains, where ϵ = ϵD

(interactions between grey-grey, grey-blue, grey-red, red-red and blue-blue beads). These

distinct values of ϵS and ϵD allow the model to effectively consider dramatically different

binding interactions between distinct protein domains as those observed in our atomisitic

PMF simulations (Fig. S9 and Fig. 4 of the main text).

We have studied two different patterning of our IDP model: one in which strong longer-

lived interacting domains are located along the full sequence (Fig. S1A (Top)), and another

in which these strongly binding domains are only placed over the first half of the sequence

(Fig. S1A (Bottom)). The results for the first sequence are shown in the main text, while

those for the second one in Section SID, although as discussed in the main text and Section

SID, both predict a qualitatively similar ageing behaviour over time.

Moreover, we also test the implications of mapping strong long-lived interactions through

the Wang-Frenkel (WF) potential [1] to evaluate the impact of a different coarse-graining

approach in the condensate ageing behaviour predicted by our IDP model. In Fig. S1B, we

depict in pink the alternative potential curve for coarse-graining enhanced protein binding

via the Wang-Frenkel potential [1]. The equation and model parameters of the WF potential

leading to the pink curve employed to mimic these interactions in our CG model is given

by:

uWF =

αϵS
[
(σ
r
)2 − 1

] [
( rc
r
)2 − 1

]2
r ≤ rc

0; if r > rc

(S5)

where ϵS controls the depth of the potential, and it is 10 times larger than ϵD, and rc

controls the range of the potential, and it is set to 1.5σ. In the WF potential, α is given by

the following expression:

α = 2
(rc
σ

)2( 3

2
(
( rc
σ
)2 − 1

))3

. (S6)

In our coarse-grained simulations, we employ reduced units to refer to the following

magnitudes: temperature as T ∗ = kBT/ϵD, number density as ρ∗ =(N/V)σ3, pressure as p∗

= pσ3/ϵD, and time as σ
√

m/ϵD. The mass of all different types of beads is set to m∗ = 1.
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FIG. S1: A) Sequence patterning of strong versus weak interactions of the two studied IDP

coarse-grained models. Red and blue beads account for complementary strong binding motifs,

while grey ones for weakly interacting protein regions as described in Fig. 1A of the main text.

B) Coarse-grained potential that encodes weak-weak interactions between protein domains (grey

curve), and strong long-lived interactions among red and blue protein segments (brown curve). A

Lennard-Jones potential of different well-depth (ϵD for interactions between weakly and transient

interacting domains, and ϵS for interactions between protein domains with enhanced binding) has

been used to model different binding energies between distinct IDP segments in our CG

simulations shown in the main text. Moreover, an alternative coarse-graining approach through

the Wang-Frenkel potential [1] has been used to model ‘sticker-sticker’ interactions (pink curve)

in order to evaluate the impact of the chosen potential range in mimicking strong binding within

our IDP CG approach (see Section SIE).

We modulate the effective temperature of our simulations by keeping constant T at 300K and
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varying the interaction strength among IDP beads, ϵ/kB (i.e., ϵS/kB = 1500K=10ϵD/kB,

and therefore, ϵS=5kBT and ϵD=0.5kBT).

B. Simulation details

All our coarse-grained simulations have been carried out using LAMMPS [2] software.

The integration timestep used to numerically solve the equations of motion was ∆t∗ = 0.0004

(in reduced units). For NVT and NpT simulations, we employed the Nosé-Hoover ther-

mostat and barostat [3] with relaxation times of ∆t∗ = 0.4 and ∆t∗ = 0.401 respectively

(also in reduced units). Except where explicitly mentioned otherwise along the main text

(as in coalescence simulations, Fig. 3), system sizes were kept constant at 729 IDP replicas,

and densities for bulk systems (as those used to compute the diffusion coefficient) were

equilibrated at the droplet coexistence density of each studied protein interaction strength,

while for the rest of the simulations (i.e., droplet formation and coalescence simulations)

the system total densities were of ρ∗ ≈0.02-0.03. The initial configuration of the simulations

shown in Fig. 1B (Right panel) corresponded to a homogeneous fluid phase, composed by

729 IDPs within a cubic box of ∼100 σ per side. The same system size is employed for

the simulations shown in Fig. 2. For the droplet coalescence simulations shown in Fig.

3, we introduce the number of IDPs per droplet specified in the legend using a cubic box

of ∼110 σ per side. In our NVT simulations to evaluate the time-evolution of the protein

diffusion coefficient at bulk droplet conditions, we employ NpT short simulations (of about

10000 time steps) between consecutive NVT production runs to ensure that, despite small

changes in the condensate bulk density may occur due to the emergence of strong long-lived

contacts, the bulk condensate density corresponds to that of the droplet in contact with

the diluted phase at the studied conditions. Please note that these short equilibration NpT

simulations have not been considered for the calculation of the mean square displacement

to obtain the diffusion coefficient.
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FIG. S2: Time-evolution of the bulk condensate density (in reduced units) measured for

different interaction strengths ϵS (in kBT) between strongly-binding protein domains. The

densities plotted here correspond to the systems shown in Fig. 1B (Left Panel) of the main text.

C. Determination of strong protein contacts

To globally evaluate the number of strong (s-s) protein interactions in a given system as

a function of time, we compute the specific interaction energy between red and blue beads,

and we divide it by the depth of the s-s interaction potential (ϵS). On the other hand,

to locally identify the regions of the condensate that exhibit s-s contacts, we also use a

local order parameter which individually determines the number of IDP red and blue beads

that are engaged to other strongly binding domains for a given cut-off distance. Protein

domains with enhanced binding (red or blue beads) which are in contact with at least 3

other complementary bead pairs in a cut-off distance of 2.1σ are considered to be part of a

region of high-density long-lived interactions with low protein mobility (as depicted in green

in the spherical condensates time-evolution of Fig. 2B of the main text).
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FIG. S3: Time-evolution of the intermolecular potential energy per bead (in ϵD) measured for

different interaction strengths ϵS (in kBT) between strongly-binding protein domains Please note

that ϵS corresponds to 10ϵD. The curves plotted here correspond to the same systems shown in

Fig. 1B (Left Panel) of the main text.

D. Comparison of different IDP sequence patterning in condensate maturation

In this section, we report the ageing behaviour of condensates formed by IDPs that

possess the sequence patterning of strongly vs. weakly interacting domains depicted in Fig.

S1A (Bottom) while keeping the same LJ potential employed in the main text (brown curve

of Fig. S1B) to mimic (s-s) interactions. In this patterning, segments with strong binding

are only distributed over the first half of the sequence (Fig. S1A (Bottom)).

In Fig. S4, we show the dependence of the diffusion coefficient (D) as a function of

time for IDPs within phase-separated condensates at different protein interactions strengths

(similarly to Fig. 1B of the main text but for the sequence patterning shown in Fig. S1A

(Bottom)). As it can be seen, for ‘sticker-sticker’ interactions with binding energy ϵS ≥6kBT,

protein diffusion slows down over time indicating gradual condensate maturation. On the

contrary, for lower binding s-s interactions (i.e., ϵS=5kBT), liquid-like behaviour persists

over time with no hints of protein mobility deceleration (orange curve). Nevertheless, we

note that D for this patterning at ϵS=5kBT is moderately lower than that at the same
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ϵS for the sequence patterning shown in Fig. S1A (Top), and Fig. 1B of the main text.

Snapshots of IDP spontaneous condensation along time in the liquid-like regime (Fig. S4

Top Right) and ageing regime (Fig. S4 Bottom Right) are also included. Even though the

enhanced binding energy threshold separating liquid-like behaviour from gradual kinetic

arrest moderately depends on the IDP patterning (∆ϵS can vary ∼ 1kBT), the same quali-

tative behaviour shown in Fig. 1B of the main text is recovered here.

FIG. S4: Time-evolution of the IDP diffusion coefficient (D) in the condensed phase for different

interaction strengths ϵS (in kBT) between strongly-binding protein segments. The IDP sequence

patterning corresponds to that shown in Fig. S1A (Bottom). The same coarse-graining approach

(LJ potential) to model ‘sticker-sticker’ enhanced protein binding employed in the main text is

also used here. The horizontal black dashed line represents the kinetic threshold of our simulation

timescale that distinguishes between ergodic liquid-like behaviour and ageing (transient

liquid-to-solid) behaviour. Interaction strengths lower than 6kBT between segments displaying

strong binding permit liquid-like behaviour (up to ϵS = 3.5kBT and ϵD = 0.35kBT where LLPS is

no longer possible), while equal or higher s-s binding lead to the gradual deceleration of protein

mobility over time as shown by D. However, in absence of strongly-binding segments, where all

beads bind to one another with uniform binding strength, liquid-like behaviour can be still

observed even at ϵD values of 0.8kBT (empty blue circle) denoting the key role of enhanced

protein binding in gradual condensate rigidification. Black arrows indicate the time dependent

behaviour of condensates over time in the liquid-like (Top) and ageing regimes (Bottom). The

time evolution snapshots of the condensate corresponds to systems with ϵS = 5kBT (Top) and

ϵS = 7kBT (Bottom). Please note that these snapshots do not correspond to the NVT bulk

systems employed to compute the diffusion coefficient in the Left panel.

Moreover, we investigate whether aged condensates formed by this IDP sequence also

exhibit thermal hysteresis upon maturation. To that purpose, as in Fig. 2A of the main

text, we perform two simulations starting from two different initial configurations: 1) from

a homogeneous single phase (Fig. S5 Top), and 2) from a matured amorphous condensate
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formed under ageing conditions (Fig. S5 Bottom). As it can be seen, even though the con-

ditions of both simulations are the same (i.e., protein-protein interactions are ϵS=5kBT and

ϵD=0.5kBT), the shape of the condensates over time is different (spherical and non-spherical

respectively), thus, suggesting thermal hysteresis as also observed for the patterning illus-

trated in Fig. S1A (Top) and shown in Fig. 2B of the main text. Therefore, we acknowledge

that patterning effects on IDP sequences exhibiting long-lived vs. weak/transient contacts,

even leading to a similar qualitative ageing behaviour, can have a significant impact on the

required thermodynamic conditions to observe thermal hysteresis as well as in the threshold

of ‘sticker-sticker’ interaction strength to switch condensates from the liquid-like behaviour

to the maturation regime as shown in Figs. S4 and S5 (i.e., protein diffusion coefficient).

FIG. S5: Thermal hysteresis of the condensates probed via coarse-grained simulations with the

IDP sequence patterning shown in Fig. S1A (Bottom) and the same IDP coarse-graining LJ

potential used in the main text (brown and grey curves of Fig. S1B). Top panel: Time-evolution

starting from an homogeneous system where protein–protein interactions are moderate (i.e., ϵS=

5kBT and ϵD= 0.5kBT). Bottom panel: Time-evolution at the same conditions above, although

starting from a matured condensate that was formed under strong ageing conditions

(‘sticker-sticker’ protein interactions of ϵS= 8kBT).
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E. Comparison of distinct coarse-graining approaches in modelling enhanced pro-

tein binding interactions

In this section, we report the ageing behaviour of condensates formed by IDPs that

possess the sequence patterning of strongly vs. weakly interacting domains depicted in Fig.

S1A (Top) (the same as in the main text) but using the WF potential to model enhanced

binding interactions (pink curve in Fig. S1B).

In Fig. S6, we plot the dependence of the diffusion coefficient as a function of time for

IDPs within phase-separated condensates at different protein interactions strengths (as in

Fig. 1B of the main text but using the WF potential described in Eq. S5). As it can be

seen, for ‘sticker-sticker’ binding interactions of ϵS ≥6kBT, protein diffusion slows down over

time indicating gradual condensate rigidification. On the other hand, for lower interactions

(i.e., ϵS=5kBT), liquid-like behaviour persists over time with no hints of protein mobility

deceleration (orange curve). Snapshots of IDP spontaneous condensation along time in the

liquid-like regime (Fig. S6 Top Right) and ageing regime (Fig. S6 Bottom Right) are also

included. Even though the s-s binding energy threshold separating the liquid-like behaviour

from the gradual kinetic arrest moderately depends on the coarse-graining potential and

interaction range of the enhanced binding motifs (∆ϵS ∼ +0.7kBT compared to the same

patterning with LJ interactions for strongly-binding motifs), the same qualitative behaviour

shown in Fig. 1B of the main text is recovered here.

Moreover, we investigate whether aged condensates in which strong binding (e.g., due to

LARKS ordered-ordered interactions) is modelled through the Wang-Frenkel potential also

exhibit thermal hysteresis upon maturation. To that purpose, as in Fig. 2A of the main text

and Fig. S5, we perform two simulations starting from two different initial configurations:

1) from a homogeneous single phase (Fig. S7 Top), and 2) from a matured amorphous

condensate formed under ageing conditions (Fig. S7 Bottom). As it can be seen, even

though the conditions of both simulations are the same (i.e., protein-protein interactions

correspond to ϵS=5.8kBT and ϵD=0.58kBT), the shape of the condensates over time is

completely different (spherical and non-spherical respectively), thus, suggesting thermal

hysteresis as observed for the same IDP patterning, but using the LJ potential as shown in
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FIG. S6: Time-evolution of the IDP diffusion coefficient (D) in the condensed phase for

different interaction strengths ϵS (in kBT) between strongly-binding protein segments. The IDP

sequence patterning corresponds to that shown in Fig. S1A (Top) (as in the main text), but

using the Wang-Frenkel potential [1] to model strong binding as shown in Fig. S1B (pink curve).

The horizontal black dashed line represents the kinetic threshold of our simulation timescale that

distinguishes between ergodic liquid-like behaviour and ageing (transient liquid-to-solid)

behaviour. Interaction strengths lower than 6kBT between strongly-binding segments permit

liquid-like behaviour (up to ϵS = 3.5kBT and ϵD = 0.35kBT where LLPS is no longer possible),

while equal or higher s-s binding strengths lead to the gradual deceleration of protein mobility

over time as shown by D. However, in absence of strongly-binding interactions, where all beads

bind to one another with uniform binding strength, liquid-like behaviour can be still observed

even at ϵD values of 0.8kBT (empty blue circle) denoting the key role of strong binding motifs in

gradual condensate rigidification. Black arrows indicate the time dependent behaviour of

condensates over time in the liquid-like (Right Top) and ageing regimes (Right Bottom). The

time evolution snapshots of the condensate corresponds to systems with ϵS = 5kBT (Top) and

ϵS = 7kBT (Bottom). Please note that these snapshots do not correspond to the NVT bulk

systems employed to compute the diffusion coefficient time-evolution shown in the Left panel.

Fig. 2A of the main text. Therefore, even though we acknowledge that the coarse-graining

approach to describe enhanced peptide interactions can have a moderate impact on the re-

quired thermodynamic conditions to observe thermal hysteresis (∆ϵS ∼ 0.8kBT) as well as

in the threshold of ‘sticker-sticker’ interaction strength to switch from liquid-like behaviour

to transient rigidification (maturation regime), the same qualitative maturation behaviour

is observed independently of the chosen potential (Figs. S6 and S7).
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FIG. S7: Thermal hysteresis of the condensates probed via coarse-grained simulations with the

IDP sequence patterning shown in Fig. S1A (Top) but using the Wang-Frenkel potential [1] to

model strongly-binding interactions as shown in Fig. S1B (pink curve). Top panel:

Time-evolution starting from an homogeneous system where protein–protein interactions are

moderate (i.e., ϵS= 5.8kBT and ϵD= 0.58kBT). Bottom panel: Time-evolution at the same

conditions above, although starting from a matured condensate that was formed under strong

ageing conditions (‘sticker-sticker’ protein interactions of ϵS= 8kBT). Please note that even

though partial rearrangement of the aged condensate can occur at ϵS= 5.8kBT for longer

windows of time than those in which spherical condensates emerge from the homogeneous single

phase (Top), matured condensates remain mostly kinetically trapped (in non-spherical shapes)

over the studied windows of time.

SII. ATOMISTIC POTENTIAL OF MEAN FORCE CALCULATIONS

To quantify the interaction strength variation in the protein binding energy due to struc-

tural disorder-to-order transitions, we perform atomistic Potential of Mean Force (PMF)

simulations [4] of a Low-complexity Aromatic-Rich Kinked Segment (LARKS) of NUP-98

protein [5] before (while remaining disordered) and after undergoing the structural disorder-

to-order transition. The employed NUP-98 LARKS sequence was GFGNFGTS (Protein

Data Bank (PDB) code 6BZM). The resolved crystalline structure is a β-sheet domain of

four assembled peptides of the same sequence. We perform these simulations in two separate

manners: 1) fixing the conformation of the peptide to the one in the PDB crystalline struc-

ture (code 6BZM), and 2) allowing them to freely sample their conformational landscape

(i.e., as when they are disordered), while keeping the position of the central atom (the one
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FIG. S8: Snapshots of the time evolution (from left to the right) of a homopolymer model of

39-bead length in which all beads interact through ϵD as indicated in the left hand side of each

panel. In the top panel, a spherical condensate is formed, while in the bottom panel, the

interactions are strong enough to escape liquid-like behaviour, thus, leading to the formation of

an amorphous kinetically-arrested condensate. The timescale of these two simulations was 105

reduced timesteps.

closest to the center of mass of the initial protein conformation, structured protein) constant

to control the relative distances between different peptides.

To that end, a set of atomistic (including explicit ions and water) umbrella sampling

Molecular Dynamics simulations were carried out using GROMACS 2018 [6] and both

a99SB-disp [7] and CHARMM36m [8] force fields (results for CHARMM36m simulations

will be discussed later). For the a99SB-disp [7] force field, we include its model of water

and ions which has been proven to work well both with structured and disordered proteins

[7]. Since the peptides are relatively short, we add to them capping groups: Acetyl to the

first backbone nitrogen atom and N-methyl to the last backbone carbon atom.

For the simulations where peptide conformations are kept rigid, the reaction coordinate

is the Center of Mass (COM) distance between the dissociating peptide and the one in

front of it, whereas in the case of the disordered peptides, since the COM continuously

changes due to conformational dynamic rearrangements, we take the distance between the

central atoms in each of the chains (these are chosen as the ones closest to the original

COM of the chains in the conformation of the crystal). We place a window approximately
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every 0.3 Å along the reaction coordinate from 0.46 nm until approximately 2.5 nm where

longest (electrostatic) range interactions completely vanish (PMFs flat out). To be able to

adequately sample a steep potential such as the one found between the rigid structures, we

choose a spring constant of 8000 kJ/(mol nm2). Additionally, in the simulations in which

we keep the structured peptides rigid, we use positional restraints on the heavy atoms of

the chains (excluding hydrogens) in the three directions of space except for the dissociating

chain, whose atoms we do not restrain in the direction of the reaction coordinate. We find

that restraints of around 1000 kJ/(mol nm2) are enough to keep the molecules rigid. In the

case of the disordered peptides, we restrain the positions of the central atoms of each of the

chains in the three directions of space except for the dissociating chain whose central atom

is not restrained in the direction of the reaction coordinate (pulling atom direction).

For each simulation window, we employ a NaCl concentration of ∼ 0.1M. However,

we note that NaCl concentration variations smaller than 0.25M will have a minor impact

(probably within the uncertainty) in PMF calculations, as recently demostrated in Ref. [9].

The temperature is set to 300K. The timestep for the integration of the Verlet equations of

motion is set to 1 fs. For the rigid chain, we run simulations of about 20 ns (each Umbrella

window). Due to the higher number of degrees of freedom of the disordered peptides, each

window is run as an independent simulation 5 times to ensure adequate sampling. We run

for 25 ns each independent simulation (with a different initial velocity distribution) to com-

plete a total simulated time of 125 ns. To ensure convergence, we evaluate the distribution

function of the positions of the peptide subjected to the Umbrella potential. Once all the

distributions from the different trajectories are statistically similar, we perform averages

over the different distributions, and we carry out a reweighting analysis to extract the PMF

curve. To constrain bond lengths and angles we used the LINCS algorithm [10] with an

order of 8, and 2 iterations. The cut-off for the Coulombic and Van der Waals interactions

has been chosen at a conservative value of 1.4 nm. Particle Mesh Ewald summations for

electrostatic interactions are employed [11] with 4th interpolation order and with a fourier

spacing of 0.12 nm and Ewald tolerance of 1.5e-5. The simulations are performed in the

NpT ensemble, where temperature is kept constant using a Nose-Hoover thermostat [3]

with 1 ps relaxation time. To keep pressure constant, we employ a Parrinello-Rahman [12]

isotropic barostat at p=1 bar and with a relaxation time of 1 ps.
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For each simulation system, we use a box of approximately 12 x 4.2 x 4.2 nm (the long

side of the simulation box corresponds to that of the Umbrella Sampling pulling direction).

Thus, we typically use around 7234 water molecules and 14 NaCl ion pairs together with

4 protein peptides. All our systems are electroneutral (i.e., the total charge is zero). After

solvation of the peptides, we perform an energy minimization with a force tolerance of 1000

kJ mol–1 nm–1 followed by a short 1000 ps NPT equilibration both with 10000 kJ nm−2

mol−1 of positional restraints for the heavy atoms of the chains in all three directions of

space. The analysis of the simulations was carried out using the WHAM [13] analysis tool

implemented in GROMACS [6]. The first 10% time block of the simulations was discarded

as equilibration time, although we note that including it barely changes our PMF results.

A. PMF calculations with the CHARMM36m force field

Using similar parameters and equivalent setups as those described above for the a99SB-

disp force field [7], we repeat the simulations with a competing force field, CHARMM36m

[8], which can also provide reasonably accurate predictions for folded and disordered proteins

[7]. As it can be seen in Fig. S9, while the absolute binding interaction strength before

and after the disorder-to-order structural transition is moderately different compared to

that predicted by the amber-based force field, the ratio of interactions between structured

(blue curve) and disordered (red curve) binding strength is, similarly, of about an order of

magnitude (as shown in Fig. 4 of the main text). This result gives us confidence to believe

that our calculations for the relative binding interaction strength do not significantly depend

on the force field choice, and are a general feature of LARKS structural transitions.
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FIG. S9: Atomistic Potential of Mean Force (PMF) dissociation curve of an 8-amino acid

segment (PDB code: 6BZM) of NUP-98 protein from an aggregate of 4 segments as a function of

the center of mass distance (COM) with the CHARM36m force field [8]. Blue curve depicts the

PMF interaction strength among segments showing a well defined folded structure, kinked

β-sheet structure, while red curve represents the interaction strength among the same domains

but when they are unstructured (fully disordered). Further details of these PMF calculations are

provided in Section SII.
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[3] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The

Journal of chemical physics 81, 511 (1984).

[4] B. Roux, The calculation of the potential of mean force using computer simulations, Computer

physics communications 91, 275 (1995).

[5] M. P. Hughes, M. R. Sawaya, D. R. Boyer, L. Goldschmidt, J. A. Rodriguez, D. Cascio,

L. Chong, T. Gonen, and D. S. Eisenberg, Atomic structures of low-complexity protein seg-

ments reveal kinked sheets that assemble networks, Science 359, 698 (2018).

[6] H. J. C. Berendsen, D. van der Spoel, and R. van Drunen, Gromacs: A message-passing parallel

molecular dynamics implementation, Computer Physics Communications 91, 43 (1995).

[7] P. Robustelli, S. Piana, and D. E. Shaw, Developing a molecular dynamics force field for both

folded and disordered protein states, Proceedings of the National Academy of Sciences 115,

E4758 (2018), https://www.pnas.org/content/115/21/E4758.full.pdf.

[8] J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot, H. Grubmüller, and

J. MacKerell, Alexander D, Charmm36m: an improved force field for folded and intrinsically

disordered proteins, Nature methods 14, 71 (2017).

[9] G. Krainer, T. J. Welsh, J. A. Joseph, J. R. Espinosa, S. Wittmann, E. de Csilléry, A. Sridhar,

Z. Toprakcioglu, G. Gudǐskytė, M. A. Czekalska, et al., Reentrant liquid condensate phase of

proteins is stabilized by hydrophobic and non-ionic interactions, Nature Communications 12,

1 (2021).

[10] B. Hess, H. Bekker, H. J. Berendsen, and J. G. Fraaije, Lincs: a linear constraint solver for

molecular simulations, Journal of computational chemistry 18, 1463 (1997).

[11] T. Darden, D. York, and L. Pedersen, Particle mesh ewald: An nlog(n) method for ewald

sums in large systems, The Journal of Chemical Physics, The Journal of Chemical Physics

98, 10089 (1993).

17
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