
SUPPLEMENTARY MATERIALS

Smartphone-based sensitive detection of SARS-CoV-2 from saline gargle

samples via flow profile analysis on a paper microfluidic chip

Patarajarin Akarapipad1,†, Kattika Kaarj2,†, Lane E. Breshears1,†, Katelyn Sosnowski1,†, Jacob

Baker1, Brandon T. Nguyen1, Ciara Eades3, Jennifer L. Uhrlaub4, Grace Quirk5, Janko Nikolich-

Žugich4, Michael Worobey5, and Jeong-Yeol Yoon1,2,3,*

1Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721,

United States
2Department of Biosystems Engineering, The University of Arizona, Tucson, Arizona 85721,

United States
3Department of Chemistry & Biochemistry, The University of Arizona, Tucson, Arizona 85721,

United States
4Department of Immunobiology and Arizona Center on Aging, The University of Arizona College

of Medicine, Tucson, Arizona 85724, United States
5Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, Arizona

85721, United States

†These authors contributed equally.
*Corresponding author. E-mail: jyyoon@arizona.edu.

Supplementary Methods

Pendant Droplet Experiment for Surface Tension Analysis

Surface tension of sample droplets was found using the optical pendant droplet method. Sample

aliquots were loaded into a syringe fitted with a blunt needle tip (catalog #80086-154, VWR

International, Radnor, PA, USA). The syringe was depressed as far as possible without completely

discharging the sample. Photos were taken of the droplet shape at 0, 2, 4, 6, 8, and 10 seconds after

depressing the syringe. The stabilized final value was chosen. This was accomplished by bolting

a 3D-printed smartphone camera holder to the table, then fixing a lamp behind the droplet to assure

consistent ambient illumination. Photos were uploaded to ImageJ for pendant drop analysis using

a plugin (https://github.com/adaerr/pendent-drop). Photos were converted to the monochromatic

8-bit type, and a line segment was drawn across the length of the needle tip to set the scale to the

known 1.27 mm tip diameter. A rectangle was drawn around the droplet before selecting the

Pendant Drop plugin. The plugin was allowed to fit for the capillary length, tip x coordinate, tip y

coordinate, and tip radius of curvature parameters, then the user selected “preview” and chose a

starting capillary length between 1.0 and 3.0 before starting the analysis. The parameters were

fitted automatically, and a surface tension value was displayed. The surface tension value was

accepted as long as the pendant droplet fit was judged to be accurate (i.e. the red line generated

around the droplet represented a close fit).

Bradford Assay for Total Protein Analysis

The Bradford Assay was used to determine the overall protein content of the saliva samples. A 96-

well microwell plate (Cellstar 96 Well Cell Culture Plate, Greiner Bio-One, Frickenhausen,

Germany) was used to conduct the Bradford Assay. The standard curve was developed using stock

bovine serum albumin (BSA) concentrations from the Quick Start Bradford Protein Assay (Bio-

Rad Laboratories, Inc., Hercules, CA, USA). Two additional higher concentrations of BSA were

manually diluted into deionized water, which were later discarded as they did not form a linear

trend and the sample protein contents were much lower. The microwell plate (Supplementary

Figure S4) was loaded from rows A-C and columns 1-10 with 150 µL per well of the Bradford

assay reagent. In rows A-C of column 1, 5µL of deionized water per well was added and mixed

with a micropipette. Rows A-C of columns 2-10 were filled with 5 µL per well of the BSA

standards and mixed. Then, 5 µL of the tested samples were placed in separate wells with 150 µL

of the Bradford assay reagent and mixed. Due to the lack of saliva sample volume after running

flow rate assays, the tested samples were able to fill between 1 and 3 wells (5-15 µL) while some

samples did not have enough volume remaining to fill any wells. The analysis of this assay was

done using an optical probe (BIF600-2, Ocean Insight, Orlando, FL, USA) connected to a

spectrometer (USB400, Ocean Insight). The microwell plate was placed on a white background

and the probe was used to measure the intensity of each well at 595 nm. Absorbance of each well

was calculated using A = log10 (I0 / I), where A is absorbance, I0 represents the average intensity

of the wells with deionized water, and I represents the average intensity of the target wells of the

same concentration. When using the probe, the intensity values fluctuated substantially, which led

https://github.com/adaerr/pendent-drop

to inconclusive results. Therefore, it was decided to use an alternative method based on smartphone

images analyzed using ImageJ. A photo in ambient lighting of the microwell plate against a white

background was taken with a Samsung S10 (Samsung, San Jose, CA, USA) smartphone and

uploaded into ImageJ. This photo type was changed to RGB stacking and only the red image was

analyzed, as the Bradford dye emits a blue color for high protein content and therefore absorbs

red. By using the ellipse tool, a circle with a diameter of 25 pixels was made. This circle was placed

within each well in two different locations and the average intensity measurements over these two

circles were taken. Intensities were further averaged between two researchers’ results. From here,

the absorbance was calculated as described above. A standard curve was made using the known

BSA concentrations graphed against their absorbances. Then this standard curve was used to

estimate the overall protein concentration in each saliva sample.

Supplementary Figure S1. Confirmation of immunoagglutination on microscope glass

slides. (A) Fluorescence microscopic images of mAb-particles pre-mixed with DI water (without

saliva), 0, 10, and 1,000 fg/µL SARS-CoV-2 in 1% v/v human pool saliva diluted in DI water.

(B) Normalized pixel areas of immunoagglutinated particles using mAb- and pAb-particles.

Supplementary Table S1. The clinical samples’ IDs, Ct values, optical intensities (taken from

Supplementary Figure S2), normalized intensities, last oral intake data (LOI), surface tension

analysis, and protein concentration. Ct values are not available for negative samples. The optical

intensities are the modes against the black background. The normalized intensities higher than

1.41 were deemed turbid (refer to Figure 4C), indicated by the orange-colored cells. Not all

samples had LOI data provided. Surface tension was calculated using pendant drop analysis and

not all samples had enough volume for this assay. Protein concentration was determined using

Bradford assay analysis and not all samples had enough volume for this analysis.

ID Ct Mode of the

optical intensities

Normalized

intensities

Last Oral

Intake

(LOI)

Surface Tension

Analysis

(mN/mm)

Protein

Concentration

(mg/mL)

CVG0

0004
-

71 1.06 60 50.31 x

CVG0

0005
-

93 1.39 120 x x

CVG0

0011
-

143 2.13 30 x x

CVG0

0013
-

89 1.33 120 51.68 0.3109

CVG0

0014
-

85 1.27 60 x x

CVG0

0015
-

82 1.22 120 45.42 0.1904

CVG0

0016
-

80 1.19 120 64.91 0.0871

CVG0

0017
-

108 1.61 120 x x

CVG0

0018
-

97 1.45 120 x 0.0713

CVG0

0024
-

101 1.51 15 52.86 0.1608

CVG0

00104
-

80 1.19 120 x -0.0269

CVG0

00105
-

91 1.36 20 x x

CVG0

00106
-

122 1.82 10 49.53 0.2127

CVG0

00114
-

89 1.33 10 x 0.209

CVG0

0001
26

73 1.09 60 x x

99002

02
35

115 1.72 x x 0.0206

99002

08
29

110 1.64 x 51.05 0.4837

99002

09
35

73 1.09 x 63.43 0.0444

99002

17
31

93 1.39 x 52.92 0.4141

99002

34
22

80 1.19 x x x

99002

38
26

74 1.10 x x 0.1939

99002

39
31

139 2.07 10 45.67 0.4694

99002

40
34

87 1.30 x 61.44 0.2572

99002

44
33

130 1.94 x 45.19 0.304

99002

46
36

80 1.19 x 53.09 0.2523

99002

47
34

89 1.33 x 57.11 x

99002

49
31

117 1.75 x x x

99002

53
27

87 1.30 x x x

Empty

tube

67 1.00 N/A N/A N/A

Supplementary Figure S2. Photographs of (A) positive and (B) negative

clinical saline gargle samples, from left to right and top to bottom,

organized in the same ID order as that shown in Supplementary Table S1.

Red boxes indicate turbid samples, while blue boxes indicate relatively

clear samples. (C) Empty tube used as a reference for normalization.

Supplementary Figure S3. Example image of a clinical sample suspended from the blunt needle

tip and analyzed in ImageJ. The red outline around the droplet was adjusted to fit as perfectly as

possible around the droplet, and then the surface tension was automatically calculated. Results

from this method can be seen in Figure 4 and in Supplementary Table S1.

Supplementary Figure S4. Example Bradford assay microwell plate. Values are expressed in

mg/mL BSA. Samples and standards become visibly blue with Bradford reagent for high protein

concentrations. A new standard curve was generated each day of experiments (one per microwell

plate). Due to low sample volume remaining after flow rate assays, some samples could only be

tested 1-2 times (5µL sample per well).

Supplementary Figure S5. Assay optimization experiments with varying types and

concentrations of SARS-CoV-2 antibodies. NC indicates negative control and * shows p<0.05

between sample and NC using one-tailed student's t-test with unequal variance. A general

increasing trend can be observed for mAb-particles at 0.02 µg/µL with increased virus

concentration, but the error bars also amplify (A). With pAb-particles at 0.02 µg/µL, however, a

bell-shaped curve behavior is seen (B). Initially there is an increase in signal with virus

concentration, reaching a maximum signal at 10 fg/µL before decreasing. The error bars are

substantially smaller with the pAb-particles than with the mAb-particles. For both assays, the

limit of detection (LOD) is 10 fg/µL or approximately 10 copies/µL. With mAb-particles at 0.04

µg/µL (C), the linear range shifted to higher concentrations, which is expected due to the higher

number of antibodies available in this assay. The LOD is compromised to 100 fg/µL or

approximately 100 copies/µL. The simulated saline gargle samples that are more similar to the

clinical samples (15% saliva and 0.9% saline) show significantly compromised results, with the

negative control samples showing slightly higher flow distances and compromised LODs (D-F).

However, the addition of Tween 20 (0.5% w/v) significantly improved the results for mAb-

particles (D: with Tween 20; E: without Tween 20). As shown in Figure 3 of the manuscript, the

optimal conditions were determined to be 0.04 µg/µL pAb-particles with 0.5% w/v Tween 20.

Supplementary Figure S6. Time to constant velocity graphs of (left) all clinical samples and

(right) just clear samples.

Supplementary Figure S7. Example photos showing more (left) and less (right) particle

aggregation. Particles appear green under 460 nm (blue) excitation.

Supplementary Code S1. Python script to recognize the flow distance profiles from the

smartphone video clips.

#!/usr/bin/python

'''

Analyze flow of liquid on wax bound paper-based microfluidic chip

Authors:

 - Patarajarin Akarapipad as Biomedical Engineering M.S. Student

 patarajarina@email.arizona.edu

 - Jacob Clay Baker as Biomedical Engineering undergraduate student

 jacobbaker@email.arizona.edu

Created in Yoon Biosensors Lab, University of Arizona, 2020-present

Note: save the code in [file name].py and video in the same folder, and to execute the code, enter

 “[file name].py [video name].mp4" in the terminal

'''

import sys

import cv2

import numpy as np

import math

import time

from skimage import data# For Otsu's thresholding

from skimage.filters import threshold_multiotsu###########

import matplotlib###### If we are gonna do more stuff with improving image processing, use m

atplotlib for image might be interesting. However, right now I think this part is working pretty w

ell

import matplotlib.pyplot as plt########

import pathlib

import pandas as pd

import xlsxwriter

import openpyxl

from openpyxl.utils import get_column_letter

import operator

from scipy import integrate

###for slope

from statistics import mean

from matplotlib import style

def flow_measure(bw_channel_crop, pix_chann_width, count_time):#function that finds the begi

nning of the channel, measures three flow lines until hitting the flow front, then averages flow di

stance and returns time and distance.

 global frame_num, pixel_conversion, act_chann_width, flow_front_ch

 check = 0 #used to decide whether to enter flow measurement

 white = 255

 black = 0

 avg_distance=-1

 #derive dimension of crop image

 crop_hight, _ = bw_channel_crop.shape

 zero_start = 0

 y_distance = 1

 x_distance = 1

 x_distance_center =pix_chann_width/2

 vals = bw_channel_crop[y_distance, x_distance]#starts looking at coordinate (1,1)

 while(vals == white): #moves y coordinate to top of channel marker

 y_distance = y_distance + 1

 vals = bw_channel_crop[y_distance,x_distance]

 if vals == black:

 check = check +1

 while (vals == black): #moves y coordinate back to white part in the middle of the channel

 vals = bw_channel_crop[y_distance, x_distance]

 y_distance = y_distance + 1

 if vals == white:

 check = check +1

 flow_start = y_distance #now that we have found the beginning of the channel, we can set the

flow start position

 ##########3 let's make new x based on the actual channel width not the random crop

 ######### Identify the channel width (find x_channel_center)

 find_x_center = bw_channel_crop[math.floor(y_distance/2),x_distance]

 while(find_x_center == white):

 x_distance = x_distance + 1

 find_x_center = bw_channel_crop[math.floor(y_distance/2),x_distance]

 if find_x_center == black:

 chann_width_pixel = act_chann_width*pixel_conversion

 x_distance_center = x_distance + chann_width_pixel/2

 #print(x_distance)

 x_distance = math.floor(x_distance_center)

 x_distance_2 = math.floor(x_distance_center + (0. * pixel_conversion)) #pixel column 0.2mm

 to the right of the middle

 x_distance_3 = math.floor(x_distance_center - (0.5 * pixel_conversion)) #pixel column 0.2m

m to the left of the middle

 #begin flow is the number of pixels in the negative y direction

 flowing, flowing2, flowing3 = flow_start, flow_start,flow_start

 vals = bw_channel_crop[flowing,x_distance]

 vals_2 = bw_channel_crop[flowing2,x_distance_2]

 vals_3 = bw_channel_crop[flowing3,x_distance_3]

 # initializing

 middle_pix, right_pix, left_pix = 0, 0, 0

 if (check == 2): #only triggers if the flow_start position has been found

 while(vals == black):

 flowing = flowing+1

 zero_start = zero_start+1

 vals = bw_channel_crop[flowing,x_distance]

 if (vals == white):

 count_time = count_time + 0.2 #tracks flow time

 middle_pix = zero_start #tracks flow distance

 break

 zero_start=0

 while(vals_2 == black and flowing2 < (crop_hight - 1)):

 flowing2 = flowing2 + 1

 vals_2 = bw_channel_crop[flowing2, x_distance_2]

 zero_start = zero_start+1

 if (vals_2 == white):

 right_pix = zero_start

 break

 zero_start=0

 while(vals_3 == black and flowing3 < crop_hight - 1):

 flowing3 = flowing3+1

 vals_3 = bw_channel_crop[flowing3,x_distance_3]

 zero_start = zero_start+1

 if (vals_3 == white):

 left_pix = zero_start

 break #************

 if left_pix > 0 and right_pix > 0 and middle_pix > 0 : #************

 if left_pix > middle_pix and right_pix > middle_pix and flow_front_ch == 0:# See time a

nd distance at concavity change

 flow_front_ch = 1

 print('Concavity changes at (time, center distance in pix, anddis/time:)', count_time, m

iddle_pix, count_time/middle_pix)

 #avg_distance = (left_pix + middle_pix + right_pix) / 3 #************ #averages three

flow distance markers

 avg_distance = middle_pix

 if avg_distance > 0 : #only returns time and distance if any progress has been made

 return (round(count_time,2), round(avg_distance,2))

def best_fit_slope_and_intercept(xs,ys):

 m = (((mean(xs)*mean(ys)) - mean(xs*ys)) /

 ((mean(xs)*mean(xs)) - mean(xs*xs)))

 b = mean(ys) - m*mean(xs)

 return m, b

def single_channel_data(channel_num, channel_position, count_time, flow_array):

 threshTune = 0 # change here (~+-5) if the threshold is still not good

 global imageFrame, pixel_conversion, stop_time, frame_num, act_chann_width, act_chann_le

n, act_top_chann

 #Define channel

 pix_chann_width = act_chann_width * pixel_conversion

 pix_chann_len = act_chann_len * pixel_conversion

 pix_top_chann = math.floor(act_top_chann * pixel_conversion)

 top_chann = math.floor(pix_chann_len + pix_top_chann)

 left_chann = math.floor(channel_position - pix_chann_width/2) # dimension is not very precis

e, so move to the left by 10

 right_chann = math.ceil(channel_position + pix_chann_width/2)

 #Cropping the channel and automatically derive threshold values

 channel_crop = imageFrame[pix_top_chann: top_chann, left_chann : right_chann]

 gray_channel_crop = cv2.cvtColor(channel_crop, cv2.COLOR_BGR2GRAY) #Turn the chan

nel to gray scale

 blur = cv2.GaussianBlur(gray_channel_crop,(9,9),cv2.BORDER_DEFAULT) #Gaussian filter

ing

 thresholds = threshold_multiotsu(blur) # figure out Otsu thresholding values automatically

 thresh_1 = thresholds[1] # use the higher value

 thresh_2 = thresh_1 + threshTune # in case it needs to be adjusted, default of threshTune is 0

 bw_channel_crop = cv2.threshold(blur, thresh_2, 255, cv2.THRESH_BINARY)[1]

 # Create the name of each cannel

 name_channel = "Channel_Number_"

 name_channel = name_channel + str(channel_num)

 cv2.imshow(name_channel, bw_channel_crop)

 # Collect data every 0.2 s

 if(count_time <= stop_time and frame_num % 6 == 0): # 0.2s

 flow = flow_measure(bw_channel_crop, pix_chann_width, count_time)

 if flow is not None:

 count_time = flow[0]

 flow_array.append(flow)

 return flow_array, count_time

Display results and graph after the flow of each channel reaches the stop_time for considering i

f the results look make sense

Will return distance and time of each flow (at the stop time)

def display_results(channel_num, count_time, flow_array, run_one_time):

 global stop_time# write_xl

 lines_intersection_x, lines_intersection_y =0,0

 DiffSlope, DisSlope1, DisSlope2 = 0,0,0

 plot_x_time, plot_y_dist = [], [] # Define temporary arrays for plotting

 deriv_data = []#initializing

 if count_time == stop_time and run_one_time == 1:

 run_one_time = 2

 for each_data_set in flow_array:

 plot_x_time.append(each_data_set[0])

 plot_y_dist.append(each_data_set[1])

 last_distance = plot_y_dist[-1]

 # Create the name of each cannel

 name_channel = "Channel_Number_"

 name_channel = name_channel + str(channel_num)

 print("\n", name_channel,": Time (s)\n", plot_x_time, "\n",name_channel, ": Distance\n", pl

ot_y_dist) #************

 plt.plot(plot_x_time, plot_y_dist, 'bo')

 plt.xlabel('Time (s)')

 plt.ylabel('Distance (pix)')

 plt.suptitle(name_channel)

 plt.show()

 #write_xl = write_xl + 1 #Keep track and until it turns to 4, start writing in excel

 ##dev

 time_in_sec = []

 dist_each_sec = []

 i=0

 newx = []

 for i in range(0,len(plot_x_time)-1):

 if i % 5 == 0:

 time_in_sec.append(plot_x_time[i])

 dist_each_sec.append(plot_y_dist[i])

 newx.append((plot_x_time[i] + plot_x_time[i+5]) / 2)

 dydx = np.diff(dist_each_sec)/np.diff(time_in_sec)

 ########### Slope of the first 3 ponints of Diff1

 xs = np.array(time_in_sec[0:3], dtype=np.float64)

 ys = np.array(dydx[0:3], dtype=np.float64)

 DiffSlope, y_intercept = best_fit_slope_and_intercept(xs,ys)

 print('\nSlope is ', DiffSlope)

 print('Vel: ', ys)

 print('time: ', xs)

 ###Plot

 regression_line = [(DiffSlope*x)+y_intercept for x in xs]

 style.use('ggplot')

 plt.scatter(time_in_sec[:-1],dydx,color='#003F72')

 plt.plot(xs, regression_line)

 plt.show()

 #for excel

 deriv_excel_time = ['Time(s)']

 #deriv_excel_time.append(time_in_sec[:-1])

 deriv_excel_time=deriv_excel_time+time_in_sec[:-1]

 deriv_excel_vel = ['Vel(pix/s)']

 #deriv_excel_vel.append(dydx)

 deriv_excel_vel=deriv_excel_vel+list(dydx)

 deriv_data=[deriv_excel_time,deriv_excel_vel]

 ##

 ######## 2nd Diff

 dy2d2x = np.diff(dydx)/np.diff(time_in_sec[:-1])

 plt.plot(time_in_sec[:-2], dy2d2x, 'bo')

 plt.xlabel('Time (s)')

 plt.ylabel('Diff2 (pix/s2)')

 name_channel_dif=name_channel+'dif'

 plt.suptitle(name_channel_dif+'2')

 plt.show()

 ########## Intersection baby style

 dxdy10_15s = dydx[-5:] # vel at last 5 second

 avgdxdy10_15s = sum(dxdy10_15s)/len(dxdy10_15s)

 ChangeAtTime =0

 for x in dydx:

 ChangeAtTime=ChangeAtTime+1

 if x >= avgdxdy10_15s + 3:

 break

 print('Time is ',ChangeAtTime)

 #Got the time, next look at distance data

 element_number=0

 for time_point in plot_x_time:

 if time_point <= ChangeAtTime:

 element_number =element_number+1

 ##############

 element_number_shift = element_number

 bestFit_distance1st = plot_y_dist[0:element_number_shift]

 bestFit_time1st = plot_x_time[0:element_number_shift]

 bestFit_distance2nd = plot_y_dist[element_number_shift:] # ignore 5 points

 bestFit_time2nd = plot_x_time[element_number_shift:]

 #let's plot them!

 # get slopes and intersections

 xs1 = np.array(bestFit_time1st, dtype=np.float64)

 ys1 = np.array(bestFit_distance1st, dtype=np.float64)

 xs2 = np.array(bestFit_time2nd, dtype=np.float64)

 ys2 = np.array(bestFit_distance2nd, dtype=np.float64)

 DisSlope1, y_intercept1 = best_fit_slope_and_intercept(xs1,ys1)

 DisSlope2, y_intercept2 = best_fit_slope_and_intercept(xs2,ys2)

 print('\nSlope are ', DisSlope1, DisSlope2)

 print('Vel: ', ys1, ys2)

 print('time: ', xs1, xs2)

 ###Plot

 regression_line1 = [(DisSlope1*x)+y_intercept1 for x in plot_x_time[0:len(xs1)+8]]

 regression_line2 = [(DisSlope2*x)+y_intercept2 for x in plot_x_time]

 style.use('ggplot')

 plt.scatter(plot_x_time,plot_y_dist,color='#003F72')

 plt.plot(plot_x_time[0:len(xs1)+8], regression_line1)

 plt.plot(plot_x_time, regression_line2)

 plt.show()

 ###Alright, get the intersection

 lines_intersection_x = (y_intercept2-y_intercept1)/(DisSlope1-DisSlope2)

 lines_intersection_y = DisSlope2*lines_intersection_x +y_intercept2

 print('The intersection point is (s, pix) ', lines_intersection_x, lines_intersection_y/pixel_con

version)

 return deriv_data, run_one_time, lines_intersection_x, lines_intersection_y, DiffSlope, DisSlo

pe1, DisSlope2

def orientation_correction():

 global imageFrame

 global sq_A, sq_B, sq_C, old_sqA, old_sqB, old_sqC, angle_off_deg, r_x, r_y, r_w, r_h

 ##33

 # Set range for red color and define mask

 hsvFrame = cv2.cvtColor(imageFrame, cv2.COLOR_BGR2HSV)

 red_lower = np.array([2, 100, 110], np.uint8) #[136, 87, 111]----------2, 100, 110

 red_upper = np.array([30, 255, 255], np.uint8)

 red_mask = cv2.inRange(hsvFrame, red_lower, red_upper)

 kernal = np.ones((5, 5), "uint8")

 # For red color

 red_mask = cv2.dilate(red_mask, kernal)

 res_red = cv2.bitwise_and(imageFrame, imageFrame,

 mask = red_mask)

 # Creating contour to track red color

 contours, hierarchy = cv2.findContours(red_mask, cv2.RETR_TREE, cv2.CHAIN_APPROX

_SIMPLE)

 i =1# counting squares

 for pic, contour in enumerate(contours):

 area = cv2.contourArea(contour)

 #print(area)

 if(area > 200 and area < 500):

 #if(area > 600 and area < 900):

 x, y, w, h = cv2.boundingRect(contour)

 imageFrame = cv2.rectangle(imageFrame, (x, y), (x + w, y + h), (0, 0, 255), 2)

 r_x = x

 r_y = y

 r_w = w

 r_h = h

 # label each

 if ((0.5<r_w/r_h < 2 or 0.5<r_h/r_w <2)): #and thisFrame ==checkCurrentFrame

 cX = r_x + r_w/2

 cY = r_y + r_h/2

 if i == 1:

 if len(sq_A) != 0:

 old_sqA = sq_A

 sq_A = [cX, cY]

 i = i+1

 elif i == 2:

 if len(sq_B) != 0:

 old_sqB = sq_B

 sq_B = [cX, cY]

 i = i+1

 elif i == 3:

 if len(sq_C) != 0:

 old_sqC = sq_C

 sq_C = [cX, cY]

 i = i+1

 #thisFrame = thisFrame+1

 cv2.putText(imageFrame, "Check", (r_x, r_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5

, (0, 0, 255))

 if i != 4:

 sq_A = old_sqA

 sq_B = old_sqB

 sq_C = old_sqC

 if len(sq_A) != 0 and len(sq_B) != 0 and len(sq_C) != 0 and sq_A != sq_B and sq_B!=sq_C

 and sq_C!=sq_A:

 lineAB = math.sqrt((sq_A[0] - sq_B[0])**2 +(sq_A[1] - sq_B[1])**2)

 lineBC = math.sqrt((sq_B[0] - sq_C[0])**2 +(sq_B[1] - sq_C[1])**2)

 lineAC = math.sqrt((sq_A[0] - sq_C[0])**2 +(sq_A[1] - sq_C[1])**2)

 DictLine = {'AB':lineAB, 'BC':lineBC, 'AC':lineAC}

 hypotenuse = max(DictLine.items(), key=operator.itemgetter(1))[0]

 DictLine.pop(hypotenuse)

 adjacent = max(DictLine.items(), key=operator.itemgetter(1))[0]

 opposite = min(DictLine.items(), key=operator.itemgetter(1))[0]

 for char1 in hypotenuse:

 for char2 in adjacent:

 if char1 == char2:

 topleft = char2

 for char3 in opposite:

 for char4 in adjacent:

 if char3 == char4:

 topright = char4

 if topleft == 'A':

 topleft = sq_A

 elif topleft == 'B':

 topleft = sq_B

 elif topleft == 'C':

 topleft = sq_C

 if topright == 'A' and topleft != 'A':

 topright = sq_A

 elif topright == 'B' and topleft != 'B':

 topright = sq_B

 elif topright == 'C' and topleft != 'C':

 topright = sq_C

 tanX = 0

 if topleft[0] != topright[0]:

 tanX = (topleft[1] - topright[1])/(topleft[0] - topright[0])

 angle_off_rad = math.atan(tanX)# return in radians, best case scenario is 0

 # get angle in degree

 row,col,ht = imageFrame.shape

 scale = 1

 old_angle = angle_off_deg # store previous data to produce less extra movement

 angle_off_deg = angle_off_rad*360/(2*math.pi)

 if abs(old_angle-angle_off_deg) < 0.5 or abs(old_angle-angle_off_deg) > 30:

 angle_off_deg =old_angle

 #print(angle_off_deg)

 matrix = cv2.getRotationMatrix2D((col/2,row/2), angle_off_deg, scale)

 imageFrame = cv2.warpAffine(imageFrame,matrix,(col,row))

def write_xl_fn(FILE_NAME,data_val1, data_val2, data_val3, data_val4, data_val5, data_val6,d

ata_val7,data_val8,data_deriv):

 global write_xl, text

 data_n_1 = text

 data_n_2 = 'Deri_slope_3pts'

 data_n_3 = 'Slope1'

 data_n_4 = 'Slope2'

 data_n_5 = 'Intersection_time_point'

 data_n_6 = 'Intersection_dist_point'

 data_n_7 = 'Time(s)'

 data_n_8 = 'Dist(pix)'

 plot_x_time,plot_y_dist =[],[]

 for each_data_set in data_val8:

 plot_x_time.append(each_data_set[0])

 plot_y_dist.append(each_data_set[1])

 ## deriv append

 data_derivX = data_deriv[0]

 data_derivY = data_deriv[1]

 plot_x_time = plot_x_time + data_derivX

 plot_y_dist =plot_y_dist +data_derivY

 ######

 file = pathlib.Path(FILE_NAME)

 if not file.exists ():

 workbook = xlsxwriter.Workbook(FILE_NAME)

 worksheet = workbook.add_worksheet()

 workbook.close()

 if file.exists ():

 book = openpyxl.load_workbook(FILE_NAME)

 sheet = book.active

 cell_num = 1

 column_let1 = get_column_letter(1)

 next_column = get_column_letter(2)

 cell_loc = column_let1 + str(1)

 cell_value = sheet[cell_loc]

 while cell_value.value != None: #move to the next column until found empty cell

 column_let1 = get_column_letter(cell_num)

 cell_loc = column_let1 + str(1)

 next_column = get_column_letter(cell_num+1)

 cell_value = sheet[cell_loc]

 cell_num = 1 + cell_num

 for i in range(1,8):

 if i != 7:

 nameit = 'data_n_' + str(i)

 input_data = 'data_val' + str(i)

 sheet[column_let1 + str(i)] = locals()[nameit]

 sheet[next_column + str(i)] = locals()[input_data]

 elif i == 7:

 nameit = 'data_n_' + str(i)

 sheet[column_let1 + str(i)] = locals()[nameit]

 nameit8 = data_n_8#'data_n_' + str(i)

 sheet[next_column + str(i)] = nameit8

 i = i+1

 curr_row_time = i

 curr_row_dist = i

 for time_dat in plot_x_time:

 sheet[column_let1 + str(curr_row_time)] = time_dat

 curr_row_time = curr_row_time+1

 for dist_dat in plot_y_dist:

 sheet[next_column + str(curr_row_dist)] = dist_dat

 curr_row_dist = curr_row_dist+1

 book.save(FILE_NAME)

 write_xl=write_xl+1

Hopefully, we can find a way to store large data base and somehow derive the flow pattern mo

del and info

https://www.youtube.com/watch?v=3fOXIbycAmc

def flow_math_model()

def main():

 if len(sys.argv) < 2:

 video_capture = cv2.VideoCapture("12_8_20covidflowkk/20201208_121849.mp4") #****

 else:

 video_capture = cv2.VideoCapture(sys.argv[1])

 video_name = sys.argv[1]

 #derive frame rate

 framespersecond= int(video_capture.get(cv2.CAP_PROP_FPS))

 print("The total number of frames in this video is ", framespersecond)# 30frames/sec

 first_frame_length = 1

 global text

 ###### For orieantation correction

 global sq_A, sq_B, sq_C, old_sqA, old_sqB, old_sqC, angle_off_deg, r_x, r_y, r_w, r_h, imag

eFrame

 sq_A, sq_B, sq_C = [], [], []

 old_sqA, old_sqB, old_sqC = [], [], []

 angle_off_deg =0# initialized

 r_x, r_y, r_w, r_h = 0,0,1,1

 #####

 actual_width = 34

 actual_height = 28 # might not need but keep it just in case

 actual_edge_distance = 8 #distance from edge of device to first channel

 actual_channel_distance = 6 #distance from one channel to the next

 global act_chann_width, act_chann_len, act_top_chann # actual distances based on the channe

l model

 act_chann_width, act_chann_len, act_top_chann = 5.4, 20, 4

 #mm to pixels converstion rate: 15.56 pixels/mm

 global imageFrame, frame_num, pixel_conversion, stop_time, write_xl, flow_front_ch

 flow_front_ch=0

 frame_num, write_xl = 0, 0

 stop_time = 15 # Specify time that data should be collected

 # initialize count_time for each channel

 count_time1, count_time2, count_time3, count_time4 = 0, 0, 0, 0

 # Define array for collecting flow in each channel

 flow_array1, flow_array2, flow_array3, flow_array4 = [(0,0)], [(0,0)], [(0,0)], [(0,0)]

 deriv_data1,deriv_data2,deriv_data3,deriv_data4 = [],[],[],[]

 #Define number of channel

 channel_num1, channel_num2, channel_num3, channel_num4 = 1,2,3,4

 # for displaying results only once when the flow reaches stop_time

 run_one_time1, run_one_time2,run_one_time3, run_one_time4 = 1,1,1,1

 while True:

 ret, imageFrame = video_capture.read()

 if not ret:#VDO exists or not

 break

 frame_num = frame_num + 1

 orientation_correction() # correct orientation based on 3 red squares

 if first_frame_length == 1:

 initial_im_w, initial_im_h, initial_im_color = imageFrame.shape

 first_frame_length = 2

 print("initial_im_dim",initial_im_w, initial_im_h)

 # Width and height of the vdo

 g_x = 0

 g_y = 0

 g_w = initial_im_h

 g_h = initial_im_w

 # Convert the imageFrame in BGR(RGB color space) to HSV(hue-saturation-

value) color space

 hsvFrame = cv2.cvtColor(imageFrame, cv2.COLOR_BGR2HSV)

 # Set range for green color and define mask

 green_lower = np.array([25, 70, 100], np.uint8) #25, 52, 72

 green_upper = np.array([102, 255, 255], np.uint8) #102,255,255

 green_mask = cv2.inRange(hsvFrame, green_lower, green_upper)

 kernal = np.ones((5, 5), "uint8")

 # For green color

 green_mask = cv2.dilate(green_mask, kernal)

 # Creating contour to track green color

 contours, hierarchy = cv2.findContours(green_mask,

 cv2.RETR_TREE,

 cv2.CHAIN_APPROX_SIMPLE)

 for pic, contour in enumerate(contours):

 area = cv2.contourArea(contour)

 #print(area)

 #if(area > 150000 and area < 199000):

 if(area > 195000 and area < 229000): #************** #defines the border of the chip i

f the green rectangle is within a certain area boundary.

 #if(area > 440000 and area < 500000):

 x, y, w, h = cv2.boundingRect(contour)

 #******************

 g_x = x

 g_y = y

 g_w = w+x

 g_h = h+y

 imageFrame = cv2.rectangle(imageFrame, (x, y),

 (x + w, y + h),

 (0, 255, 0), 2)

 cv2.putText(imageFrame, "Green Colour", (x, y),

 cv2.FONT_HERSHEY_SIMPLEX,

 1.0, (0, 255, 0))

 imageFrame = imageFrame[g_y : g_h, g_x : g_w] #crops the rectangleq

 pixel_conversion = ((g_w - g_x) / actual_width)

 pixel_edge_distance = pixel_conversion * actual_edge_distance

 pixel_channel_distance = pixel_conversion * actual_channel_distance

 # pixel_width = (g_w - g_x) pixel_height = (g_h - g_y)

 channel1_position = pixel_edge_distance +3 #*************

 channel2_position = pixel_edge_distance + pixel_channel_distance - 1 #*************

 channel3_position = pixel_edge_distance + (pixel_channel_distance * 2) - 3 #***********

**

 channel4_position = pixel_edge_distance + (pixel_channel_distance * 3) - 5 #**********

 # This function will provide distance and current time of the flow for each frame

 flow_array1, count_time1 = single_channel_data(channel_num1, channel1_position, count

_time1, flow_array1)

 flow_array2, count_time2 = single_channel_data(channel_num2, channel2_position, count

_time2, flow_array2)

 flow_array3, count_time3 = single_channel_data(channel_num3, channel3_position, count

_time3, flow_array3)

 flow_array4, count_time4 = single_channel_data(channel_num4, channel4_position, count

_time4, flow_array4)

 # Data set can be access here, trigger after each channel meets it stop_time

 # Derive the final distance and displaying data and graph

 if run_one_time1 == 1:

 deriv_data1, run_one_time1, time_intersect1, dist_intersect1,DiffSlope1, DisSlope11, Di

sSlope21 = display_results(channel_num1, count_time1, flow_array1, run_one_time1)

 if run_one_time1 !=1:

 write_xl =7

 if run_one_time2 == 1:

 deriv_data2, run_one_time2, time_intersect2, dist_intersect2,DiffSlope2, DisSlope12, Di

sSlope22 = display_results(channel_num2, count_time2, flow_array2, run_one_time2)

 if run_one_time2 !=1:

 write_xl =5

 if run_one_time3 == 1:

 deriv_data3, run_one_time3, time_intersect3, dist_intersect3,DiffSlope3, DisSlope13, Di

sSlope23 = display_results(channel_num3, count_time3, flow_array3, run_one_time3)

 if run_one_time3 !=1:

 write_xl =3

 if run_one_time4 == 1:

 deriv_data4, run_one_time4, time_intersect4, dist_intersect4,DiffSlope4, DisSlope14, Di

sSlope24 = display_results(channel_num4, count_time4, flow_array4, run_one_time4)

 if run_one_time4 !=1:

 write_xl=1

 # Print the whole chip

 cv2.imshow("Chip found", imageFrame)

 ######name the file

 FILE_NAME = "6-8_Turbidity.xlsx"

 if write_xl == 1:

 text = 'First result'

 write_xl_fn(FILE_NAME,video_name, DiffSlope4, DisSlope14, DisSlope24, time_inters

ect4, dist_intersect4/pixel_conversion,count_time4,flow_array4,deriv_data4) #dist_intersect4/pix

el_conversion

 if write_xl ==3:

 text = 'Second result'

 write_xl_fn(FILE_NAME,video_name, DiffSlope3, DisSlope13, DisSlope23, time_inters

ect3, dist_intersect3/pixel_conversion,count_time3,flow_array3,deriv_data3)

 if write_xl ==5:

 text = 'Tird result'

 write_xl_fn(FILE_NAME,video_name, DiffSlope2, DisSlope12, DisSlope22, time_inters

ect2, dist_intersect2/pixel_conversion,count_time2,flow_array2,deriv_data2)

 if write_xl == 7:

 text = 'Forth result'

 write_xl_fn(FILE_NAME,video_name, DiffSlope1, DisSlope11, DisSlope21, time_inters

ect1, dist_intersect1/pixel_conversion,count_time1,flow_array1,deriv_data1)

 ######## Jacob, put Excel stuff here

 if cv2.waitKey(10) & 0xFF == ord('q'):

 cap.release()

 #cv2.destroyAllWindows()

 break

 video_capture.release()

 # cv2.destroyAllWindows()

if __name__ == "__main__":

 # execute only if run as a script

 main()

