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Supplementary Note 1. THz s-SNOM setup 

 

 

 

Supplementary Figure 1. THz s-SNOM setup for imaging polaritons in Bi2Se3 films. Schematic of 

THz s-SNOM setup equipped with detectors of bolometer (BM) and Schottky diode (SD). AFM, FPM, 

PM and BS are atomic force microscopy cantilever, parabolic mirror that can be flipped up and down, 

parabolic mirror and beam splitter (double-sided polished silicon wafer), respectively. 

 

 

Supplementary Note 2. Fitting of all near-field line profiles in the complex plane 

In Supplementary Figure 2 and 3 we show the data and analysis of all experimental s-SNOM 

line profiles reported in this work. Analysis follows the procedure demonstrated in Figure 2 of 

the main text. 
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Supplementary Figure 2. Complex-valued analysis of THz near-field line profiles of a 25 nm thick 

Bi2Se3 film. a,e,i,m Topography line profile, showing the height ℎ  as measured by AFM. b,f,j,n 

Experimental s-SNOM amplitude and phase line profiles. c,g,k,o Amplitude and phase line profiles 

obtained from the data shown in panels b,f,j,n after subtraction of the complex-valued signal offset C at 

large distances 𝑥. d,h,l,p Representation of near-field line profiles in the complex plane, after offset 

subtraction. The black solid lines show the fitting of the experimental data by a radially and 

exponentially decaying wave, 𝐴𝑒𝑖2𝑘p𝑥 √2𝑥⁄ + 𝐶, where C is a constant complex-valued offset. 
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Supplementary Figure 3. Complex-valued analysis of THz near-field line profiles of a 60 nm thick 

Bi2Se3 film. a,e,i,m Topography line profile, showing the height ℎ  as measured by AFM. b,f,j,n 

Experimental s-SNOM amplitude and phase line profiles. c,g,k,o Amplitude and phase line profiles 

obtained from the data shown in panels b,f,j,n after subtraction of the complex-valued signal offset C at 

large distances 𝑥. d,h,l,p Representation of near-field line profiles in the complex plane, after offset 

subtraction. The black solid lines show the fitting of the experimental data by a radially and 

exponentially decaying wave, 𝐴𝑒𝑖2𝑘p𝑥 √2𝑥⁄ + 𝐶, where C is a constant complex-valued offset. 
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Supplementary Note 3. Analytical equation for the dispersion of polaritons in a 

thin topological insulator (TI)  

For calculating the polariton dispersions in the main text, we modelled the TI by two 

conductive layers separated by a dielectric slab of thickness 𝑑 (see Supplementary Figure 4). 

The top and bottom layers are modelled as a two-dimensional conductive sheet of a zero 

thickness with conductivity 𝜎Dirac. The dielectric slab between the two conductive sheets is 

described by its bulk dielectric function, 𝜀bulk (see Supplementary Note 4A). Superstrate (air) 

and substrate (Al2O3) are described by the dielectric constant 𝜀air  = 1 and 𝜀sub  = 10, 

respectively. 

 

 

Supplementary Figure 4. Schematic illustration of the TI model  

 

 

The polariton dispersion relation can be derived by matching the electric and magnetic fields 

(represented in the form of plane waves) on the TI surfaces using the boundary conditions (see 

for example Ref.1). As a result, we obtain  

 

 𝑒−𝑖𝑘bulk,z𝑑 (
4𝜋𝜎Dirac

𝑐
+

𝜀air

𝑞air,z
+

𝜀bulk

𝑞bulk,z 
) (

4𝜋𝜎Dirac

𝑐
+

𝜀sub

𝑞sub,z
+

𝜀bulk

𝑞bulk,z
) 

 = 𝑒𝑖𝑘bulk,z𝑑 (
4𝜋𝜎Dirac

𝑐
+

𝜀air

𝑞air,z
−

𝜀bulk

𝑞bulk,z
) (

4𝜋𝜎Dirac

𝑐
+

𝜀sub

𝑞sub,z 
−

𝜀bulk

𝑞bulk,z
), (1) 

 

 

where 𝑘0 = 𝜔/𝑐  is the free-space wavevector, 𝑘p  is the in-plane wavevector, 𝑘𝑗,z =

√𝜀𝑗𝜔2/𝑐2 − 𝑘p
2, 𝑗 =  {air, bulk, sub} are the out-of-plane wavevectors in the superstrate, 

slab, and substrate, respectively. 𝑞𝑗,z = 𝑘𝑗,z/𝑘0  and 𝑞 = 𝑘p/𝑘0  are the normalized 

wavevectors. Considering large in-plane polariton momenta, we can approximate the out-of-

plane wavevector by 𝑘𝑗,z = √𝜀𝑗𝜔2/𝑐2 − 𝑘p
2 ≈ 𝑖𝑘p and transform Supplementary Equation 

(1): 

 

 𝑒𝑘𝑝𝑑 (
4𝜋𝜎Dirac

𝑐
−

𝜀air+𝜀bulk

𝑞
𝑖) (

4𝜋𝜎Dirac

𝑐
−

𝜀sub+𝜀bulk

𝑞
𝑖) 

 = 𝑒−𝑘𝑝𝑑 (
4𝜋𝜎Dirac

𝑐
−

𝜀air−𝜀bulk

𝑞
𝑖) (

4𝜋𝜎Dirac

𝑐
−

𝜀sub−𝜀bulk

𝑞
𝑖). (2) 
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If we consider a symmetric dielectric environment of the TI, i.e. setting 𝜀air = 𝜀sub = 𝜀 , 

Supplementary Equation (2) splits into the two independent dispersions for two modes: 

 

          𝑒𝑘p𝑑 (
4𝜋𝜎Dirac

𝑐
−

𝜀+𝜀bulk

𝑞
𝑖) ± (

4𝜋𝜎Dirac

𝑐
−

𝜀−𝜀bulk

𝑞
𝑖) = 0. (3) 

 

The sign " + " corresponds to an optical (symmetric) mode, with the charges oscillating in-

phase in both conductive layers, while " − " corresponds to an acoustic (antisymmetric) mode 

with the charges oscillating out-of-phase and electric field confined inside the slab. 

 

In the general case of the non-symmetric dielectric surrounding we can assume that the TI layer 

thickness is much smaller than the polariton wavelength (𝑘p𝑑 ≪ 1). In this case we can expand 

the exponentials 𝑒±𝑘p𝑑 into a Taylor series in 𝑘p𝑑 and retain the first nonvanishing terms, 

𝑒±𝑘p𝑑 = 1 ± 𝑘p𝑑. Additionally, taking into account that 𝜀air,sub ≪ 𝜀bulk, we can significantly 

simplify Supplementary Equation (2) for the optical mode to2 

 

 𝑞 =
𝑘p

𝑘0
= 𝑖

𝑐

4𝜋

𝜀sub+𝜀air

𝜎bulk+2𝜎Dirac
= 𝑖

𝑐

4𝜋

𝜀sub+𝜀air

𝜎
, (4) 

 

where 𝜎bulk =
𝜔𝑑𝜀bulk

4𝜋𝑖
 is the effective 2D conductivity of the slab (bulk) and 𝜎 is the total 

effective 2D conductivity of the TI3-5.  

 

Supplementary Equation (4) can also be easily obtained using Ohm’s law for parallel-

connected 2D conductive elements (two elements with 𝜎Dirac and one element with 𝜎bulk). 

Moreover, Supplementary Equation (4) can be generalized to account for a massive two-

dimensional electron gas (2DEG) on the top and bottom interfaces of the TI, which could exist 

due to surface band bending6-9. In the presence of a massive 2DEG, the total effective 

conductivity of TI is given by 𝜎 = 𝜎bulk + 2𝜎Dirac + 2𝜎2DEG , assuming that the surface 

carriers are the same on top and bottom interfaces. Importantly, Supplementary Equation (4) 

yields the same results as the equation for calculating the polariton dispersions in Bi2Se3 that 

are reported in literature 2, 7, 8, 10.  

 

The assumption 𝜀air,sub ≪ |𝜀bulk| is clearly fulfilled in our experiments, which can be seen 

in Supplementary Figure 5a, where we show 𝜀bulk, which takes into account the massive bulk 

carriers and phonons with bulk carrier concentration of 𝑛bulk= 3.72∙1018 cm-3 ( Supplementary 

Equations (5) to (7) and Table 1). The comparison between the analytically and numerically 

calculated polariton dispersion (Supplementary Figure 5b) indeed shows good agreement. We 

repeated the calculations for 𝜀bulk = 22 (close to the high-frequency permittivity of Bi2Se3 

from the contribution of the bandgap, 𝜀bg, see Supplementary Equation (5), i.e., in absence of 

bulk carriers and phonons) and find that the analytical solution is still valid. 

 

We note that the numerical simulation shown in Supplementary Figure 5 fully considers the 
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anisotropic bulk permittivity of Bi2Se3 (i.e. anisotropic optical phonons and bulk plasmons), 

whereas the analytical simulation considers only the in-plane bulk permittivity. The excellent 

agreement between numerical and analytical calculation verifies the validity of the 2D 

conductivity sheet model. Particularly, it shows that the anisotropic bulk properties (and related 

hyperbolic polariton dispersion) do not need to be considered for analyzing the polariton 

dispersion.  

 

We also note that Bi2Se3 is a quite lossy material, which can be concluded from the very short 

polariton propagation lengths. Higher order hyperbolic polariton modes (which in principle 

can exist in uniaxial materials such as Bi2Se3) are thus strongly damped and can be neglected, 

as pointed out in Refs5,11.  

 

 

 

 

Supplementary Figure 5. Comparison of analytical and numerical dispersion calculations. a 

Anisotropic bulk permittivity 𝜀bulk  of the Bi2Se3 layers of our experiments. For the in-plane 

permittivity we consider the in-plane the optical phonons and the in-plane conductivity due to massive 

carriers (Drude term) according to 𝜀bulk
⊥ = 𝜀phonon + 𝜀Drude described by Supplementary Equations 

(5)-(7) and Table 1. For the bulk carrier concentration we use 𝑛bulk= 3.72∙1018 cm-3. For the out-of-

plane permittivity we us 𝜀bulk
∥ = 17.4 +

𝜔p,1
2

𝜔0,1
2 −𝜔2−𝑖𝜔𝛾1

+
𝜔p,2

2

𝜔0,2
2 −𝜔2−𝑖𝜔𝛾2

  with 𝜔p,1 =  283 cm-1, 𝜔0,1 =

 135 cm-1, 𝜔p,2 = 156 cm-1, 𝜔0,2 = 154 cm-1,  𝛾1 = 𝛾2 = 3.5 cm-1 (Ref. 12). Black and grey curves 

show the real part of 𝜀bulk
⊥ and 𝜀bulk

∥ , respectively. b Comparison of analytically (solid line, obtained 

with Supplementary Equation (4)) and numerically (blue symbols, obtained from COMSOL mode solver) 

calculated polariton dispersions for a 25 nm thick Bi2Se3 layer. In the numerical simulation we consider 

a 25 nm thick slab with the anisotropic bulk permittivity 𝜀bulk  of panel a and a bottom and a top 

conduction layer with a carrier concentration of 𝑛Dirac = 1.25∙1013 cm-2. In the analytical calculation, 

only the in-plane permittivity 𝜀bulk
⊥   of panel a is considered. c Comparison of analytically and 

numerically calculated polariton dispersion for an isotropic bulk permittivity 𝜀bulk = 22 with a bottom 

and top conduction layer of a carrier concentration of 𝑛Dirac = 1.25∙1013 cm-2. 
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Supplementary Note 4. Bulk dielectric function and surface conductivity of Bi2Se3 

A. Bulk dielectric function of Bi2Se3 

Due to its layered structure, Bi2Se3 is a uniaxial material. Consequently, its dielectric function, 

𝜀bulk, has to be described by a uniaxial tensor, where the in-plane components (parallel to the 

surface and being the same) are different to the out-of-plane component12. However, for 

describing polaritons in layers that are much thinner than the polariton wavelength, the out-of-

plane component can be neglected (for verification see Supplementary Figure 5), apart from 

its sign, which determines the sign of the phase velocity of the polaritons and depends on the 

sign of the in-plane components3-5. This condition is fulfilled in our experiments, as the Bi2Se3 

thickness is not more than 𝑑 = 60 nm and the polariton wavelengths are larger than several 

micrometer (Supplementary Figure 5). We thus describe 𝜀bulk as a scalar using the in-plane 

permittivity components.  

 

In the considered frequency range, the-in plane dielectric function of Bi2Se3 is governed by in-

plane optical phonons (𝜀phonon) and plasmons (𝜀Drude) due to unavoidable bulk carriers8,10,13, 

14. We describe it by 

 

 𝜀bulk = 𝜀phonon+𝜀Drude (5) 

With 

 

𝜀phonon = 𝜀∞ + 𝜀bg + 𝜀α +  𝜀β = 𝜀∞ +
𝜔p,bg

2

𝜔0,bg
2 −𝜔2−𝑖𝜔𝛾bg

+
𝜔p,α

2

𝜔0,α
2 −𝜔2−𝑖𝜔𝛾α

+ 
𝜔p,β

2

𝜔0,β
2 −𝜔2−𝑖𝜔𝛾β

  (6) 

 

and 

 𝜀Drude = −
𝜔p,D

2

𝜔2+𝑖𝜔𝛾D
       (7) 

 

where 𝜀∞ = 1, 𝜀bg, 𝜀α and 𝜀β represent the high-frequency permittivity, contribution of the 

bandgap and the two in-plane optical phonons, respectively8, 10, 13, 14. The oscillator strengths 

𝜔p,𝑥 , oscillator frequencies 𝜔0,𝑥  and damping parameters 𝛾𝑥  ( 𝑥 = D, bg, α  and β ) are 

summarized in Supplementary Table 1. 

 

 𝜔p,𝑥 [cm-1] 𝜔0,𝑥 [cm-1] 𝛾𝑥 [cm-1] 

𝜀Drude 𝜔p,D 0 7.43 

𝜀bg 11249 2029.5 3920.5 

𝜀α 675.9 63.03 17.5 

𝜀β 100 126.94 10 

 

Supplementary Table 1. Parameters for the bulk dielectric function of Bi2Se3. 

 

The plasma frequency is given by 𝜔p,D = √
4𝜋𝑛bulk𝑒2

𝑚∗ , where 𝑚∗ = 0.15𝑚𝑒 is the effective 

electron mass, 𝑚𝑒 the electron mass and 𝑛bulk the bulk free carrier concentration. 
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B. Surface conductivity of Dirac carries  

The surface conductivity of the Bi2Se3 films due to Dirac carriers (surface states) is described 

by12 

 𝜎Dirac =
𝑒2𝑘𝑇 ln[2 cosh(

𝐸F
2𝑘𝑇

)] 

2ℏ2𝜋

𝑖

𝜔+𝑖𝛾Dirac
  (8) 

 

where 𝛾Dirac  and 𝑇  are carrier relaxation rate and temperature, respectively. The Fermi 

energy for a single surface is given by 𝐸F = ℏ𝑣F√4𝜋𝑛Dirac , where 𝑣F =  5∙105 m/s is the 

Fermi velocity15, 16. We assume that 𝛾Dirac = 0 and note that variation of this value does not 

significantly influence the polariton dispersion. The interband conductivity is ignored, as it is 

negligible at THz frequencies for the considered Fermi energies (2 𝐸F > ℏ𝜔 ). For the 

temperature we use 𝑘𝑇 = 25 meV (300 K). 

 

We note that at low temperatures or large Fermi energies, 𝐸F ≫ 𝑘𝑇, the Dirac conductivity is 

of the form 𝜎Dirac =
𝑒2𝐸F

4ℏ2𝜋

𝑖

𝜔+𝑖𝛾Dirac
. 

 

C. Surface conductivity of a 2DEG formed by massive carriers 

The surface conductivity of a 2DEG formed by massive carriers (extremely thin layers that can 

be regarding as 2D sheets of zero thickness2,7) in Bi2Se3 is modelled within the local 

approximation by17 

 𝜎2DEG =
𝑒2𝑛2DEG

𝑚∗

𝑖

𝜔+𝑖𝛾2DEG
,     (9) 

 

where 𝑛2DEG , 𝑚∗ =  0.15𝑚𝑒  and 𝛾2DEG  are the carrier concentration, effective mass and 

carrier relaxation rate, respectively. We assume that 𝛾2DEG = 0 and note that variation of this 

value does not significantly influence the polariton dispersion. 

 

D. Carrier concentrations used in Figure 4 of the main text 

The bulk carrier concentration (𝑛bulk), Dirac carrier concentration (𝑛Dirac) and 2DEG carrier 

concentration (𝑛2DEG) used for calculating the dispersion curves shown in Figure 4b-d of the 

main text are listed on the right side of Supplementary Figure 6. 
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Supplementary Figure 6. Polariton dispersions in Bi2Se3 films with 60 nm and 25 nm thickness. a-

c Red symbols in the diagrams show the polariton dispersions obtained by complex-valued fitting of 

experimental line profiles as demonstrated in Figure 2 of the main text. Error bars indicate a 20% 

uncertainty of the wavevector, which we estimate conservatively from comparison of experimental and 

simulated near-field line profiles in the main text. Solid lines show calculated dispersions based on 

various conductivity models (described in main text), which are sketched on the left side. We consider 

various optical conductivity contributions based on optical bulk phonons (OP), massive bulk carriers 

(BC), Dirac carriers (DC) at both Bi2Se3 surfaces, and massive two-dimensional electron gases (2DEG) 

at both Bi2Se3 surfaces. The carrier concentrations of bulk carriers, Dirac carriers and 2DEG used for 

calculating each dispersion curve are correspondingly shown on the right side. Fit parameters are 

underlined.  

 

 

Supplementary Note 5. Resistance and Hall resistance measurements at room 

temperature 

Bi2Se3 films were grown on 10 mm by 10 mm large sapphire substrates of 0.5 mm thickness. 

The resistance and Hall resistance measurements were done immediately after taking the 

samples out of growth chamber. To that end, Indium contacts were soldered at the four corners 

of the sample (as shown in Supplementary Figure 7a) and contacted with copper probes for the 

resistance and Hall resistance measurements via Van der Pauw method18. The contacts were 

labeled from 1 to 4 in counterclockwise direction. We defined the current (𝐼12, 𝐼23, 𝐼13, 𝐼24), 

voltage (𝑉14, 𝑉43, 𝑉13, 𝑉24) as follows: 
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𝐼12: current from contact 1 to contact 2 

𝐼23: current from contact 2 to contact 3 

𝐼13: current from contact 1 to contact 3 

𝐼24: current from contact 2 to contact 4 

𝑉14: Voltage between contact 1 and 4, 𝑉1 − 𝑉4 

𝑉43: Voltage between contact 4 and 3, 𝑉4 − 𝑉3 

𝑉13: Voltage between contact 1 and 3, 𝑉1 − 𝑉3 

𝑉24: Voltage between contact 2 and 4, 𝑉2 − 𝑉4 

 

 

 

Supplementary Figure 7. Resistance and Hall resistance measurements. a Schematic of the van der 

Pauw measurement configuration. b Top: Voltage as function of current, 𝑉(𝐼), for measurement of 

longitudinal resistances 𝑅𝑥𝑥,𝐴 and 𝑅𝑥𝑥,𝐵 . Bottom: Hall resistance (black symbols) as a function of 

magnetic field, 𝑅𝑥𝑦(𝐵). In the Hall measurement, a constant current of 0.1 mA was used while the 

magnetic field was swept from −0.2 T to 0.2 T. From the measured Hall voltages, we obtained the 

resistances 𝑅𝑥𝑦,𝐴 and 𝑅𝑥𝑦,𝐵 according to Supplementary Equations (14) and (15). The grey dashed 

lines show linear fits of the experimental data. The Bi2Se3 film thickness is 120 nm. 

 

 

In the resistance measurement, we considered two cases. Case A: we measured the current from 

contact 1 to 2 and voltage between contact 4 and 3. Case B: we measured the current from 

contact 2 to 3 and voltage between contact 1 and 4. The longitudinal resistance (𝑅𝑥𝑥,A, 𝑅𝑥𝑥,B) 

of both cases are defined as: 

 

 𝑅𝑥𝑥,A =  𝑉43/𝐼12 (10) 

 𝑅𝑥𝑥,B =  𝑉14/𝐼23 (11) 

 

We obtained 𝑅𝑥𝑥,A =48.99 Ω, 𝑅𝑥𝑥,B =48.52 Ω from the slopes of the 𝑉(𝐼) curves in the top 

panel of Supplementary Figure 7b. We thus obtained the sheet resistance 𝑅s = 220.98 Ω using 

the Van der Pauw equation: 

 

𝑒(−𝜋 𝑅𝑥𝑥,A/𝑅s) + 𝑒(−𝜋 𝑅𝑥𝑥,B/𝑅s)  =  1.    (12) 
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The resistivity 𝜌 = 0.0022 cm-1 was obtained from 

 

 𝜌 = 𝑅s𝑑, (13) 

 

where 𝑑 is the thickness of Bi2Se3 film. 

 

For the Hall resistance measurements, a magnetic field 𝐵  perpendicular to the film was 

applied. The current and voltage probes were placed diagonally. We also considered two cases. 

Case A: we measured the current from contact 1 and 3 and the voltage between contact 2 and 

4. Case B: we measured the current from contact 2 and 4 and the voltage between contact 1 

and 3. The Hall resistance of both cases are given by: 

 

 𝑅𝑥𝑦,A  =  𝑉24/𝐼13 (14) 

 𝑅𝑥𝑦,B  =  𝑉13/𝐼24.   (15) 

 

During the Hall measurement, we used a constant current of 0.1 mA and swept the magnetic 

field from   -0.2 to 0.2 T. The bottom panel of Supplementary Figure 7b shows the Hall 

resistance𝑠 𝑅𝑥𝑦,A and 𝑅𝑥𝑦,B as a function of 𝐵, revealing that the Hall resistance is linear to 

the magnetic field. The sheet carrier concentrations 𝑛𝑠,A  and 𝑛𝑠,B  obtained from both 

measurements were obtained according to 

 

 𝑛s,A  =  1/(𝑒 ∙ (𝑅𝑥𝑦,A/𝐵)) (16) 

 𝑛s,B  = 1/(𝑒 ∙ (𝑅𝑥𝑦,B/𝐵)) (17) 

 𝑛s =
𝑛s,A+ 𝑛s,B

2
 . (18) 

 

We obtained 𝑛s,A= 3.05·1013 cm-2, 𝑛s,B= 3.04·1013 cm-2 and the average value 𝑛s = 3.04·1013 

cm-2. The carrier mobility 𝜇 was obtained according to 𝜇 = 1/(𝑒 ∙ 𝑛s ∙ 𝑅s) = 927 cm2/(V·s). 

We repeated the above-described Hall measurements three times and obtained averaged values 

𝑛s = 3.0·1013 cm-2 and 𝜇 = 925.6 cm2/(V·s).  

 

 

Supplementary Note 6. Hall effect of films with multi-conduction channels 

If there are multiple conduction channels in a thin film (one conduction channel corresponds 

to one type of carries), no matter what types of carriers are measured, the general longitudinal 

conductivity 𝜎𝑥𝑥  and transverse conductivity 𝜎𝑥𝑦  (also called Hall conductivity) can be 

expressed as: 

 

 𝜎𝑥𝑥(𝐵) = ∑ 𝜎𝑥𝑥,𝑗
𝑁
𝑗=1 = ∑

𝑞𝑗𝑛𝑗𝜇𝑗

1+(𝜇j𝐵)2
𝑁
𝑗=1  (19) 

 𝜎𝑥𝑦(𝐵) = ∑ 𝜎𝑥𝑦,𝑗
𝑁
𝑗=1 = 𝐵 ∑ 𝜇𝑗𝜎𝑥𝑥,𝑗

𝑁
𝑗=1 = ∑

𝑞𝑗𝑛𝑗𝜇𝑗
2𝐵

1+(𝜇𝑗𝐵)2
𝑁
𝑗=1 . (20) 

 

𝑁  is the number of total conduction channels, 𝜎𝑥𝑥,𝑗  and 𝜎𝑥𝑦,𝑗  are the longitudinal 
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conductivity transverse conductivity of the 𝑗𝑡ℎ channel, respectively. The parameters 𝑞𝑗, 𝑛𝑗 

and 𝜇𝑗  are the charge, carrier density and mobility of the 𝑗𝑡ℎ  channel, respectively. The 

resistivity 𝜌 and Hall coefficient 𝑅H of the whole system can be expressed as: 

 

 𝜌 =
𝜎𝑥𝑥

𝜎𝑥𝑥
2+𝜎𝑥𝑦

2 (21) 

 𝑅H =
𝜎𝑥𝑦

𝐵∙(𝜎𝑥𝑥
2+𝜎𝑥𝑦

2)
. (22) 

 

𝑅H is related with Hall resistance 𝑅𝑥𝑦 as 

 

 𝑅𝑥𝑦 = 𝑅H𝐵. (23) 

 

The overall mobility 𝜇 and sheet carrier concentration 𝑛s are obtained according to: 

 

 𝜇 = 𝑅H/𝜌 (24) 

 𝑛s = 1/(𝑞 · 𝑅H) .  (25) 

 

For two conduction channels, we have a general form of 𝜇, 𝑛s at any magnetic field 𝐵: 

 

  𝜇 =
𝑛2𝜇2

2(1+𝜇1
2𝐵2)+𝑛1𝜇1

2(1+𝜇2
2𝐵2)

𝑛2𝜇2(1+𝜇1
2𝐵2)+𝑛1𝜇1(1+𝜇2

2𝐵2)
 (26) 

 

 𝑛s =
𝑛2

2𝜇2
2(1+𝜇1

2𝐵2)+𝑛1
2𝜇1

2(1+𝜇2
2𝐵2)+2𝑛1𝑛2𝜇1𝜇2(1+𝜇1𝜇2𝐵2)

𝑛1𝜇1
2(1+𝜇2

2𝐵2)+𝑛2𝜇2
2(1+𝜇1

2𝐵2)
 (27) 

 

The bottom panel of Supplementary Figure 7b shows that 𝑅𝑥𝑦 is linearly changing with 𝐵, 

indicating that 𝑅H  is a constant value according to Supplementary Equation (23). We 

conclude that 𝑛s and 𝜇 are independent on 𝐵. In the following we thus discuss two special 

cases when 𝑛s and 𝜇 are independent on 𝐵. 

  

(a) When 𝜇1 =  𝜇2 we obtain according to Supplementary equations (26) and (27): 

 

 𝜇 = 𝜇1 = 𝜇2 (28) 

 𝑛s = 𝑛1 + 𝑛2, (29) 

 

which implies that the total sheet carrier concentration is simply the sum of the individual 

concentrations 𝑛1  and 𝑛2  of the two types of carriers, provided that they have the same 

mobility. From the pure Hall measurement, we cannot judge whether this is the case of our 

sample. However, far-field THz spectroscopy of Bi2Se3 microribbons revealed that the 

polariton dispersions can be explained only when the sum of the sheet carrier concentration of 

bulk carriers and Dirac carriers is much larger than the carrier concentration obtained from Hall 

measurements8,19. The same observation is made in the main text of this manuscript. We thus 

can exclude this case. 
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(b) When 𝜇2𝐵2 << 1, Supplementary Equations (26) and (27) can be simplified as follows: 

 

 𝜇 =
𝑛1𝜇1

2+𝑛2𝜇2
2

𝑛1𝜇1+𝑛2𝜇2
 (30) 

 𝑛s =
(𝑛1𝜇1+𝑛2𝜇2)2

𝑛1𝜇1
2+𝑛2𝜇2

2  (31) 

 

In our Hall measurements this condition was fulfilled, as the maximum magnetic field was 0.2 

T and the carrier mobility is about 𝜇~1000 cm2/(V·s). 

 

Supplementary Equations (30) and (31) show that 𝑛s  of our sample is not just from the 

contribution of one type of carrier. However, a mere Hall measurement of a single film does 

not allow us to separate the contributions of two carriers. By performing Hall measurement for 

differently thick films, we found that 𝑛s  exhibits a clear thickness dependence for thicker 

films (Supplementary Figure 8). For thin films, we find that 𝑛s is around 2.5∙1013 cm-2 and 

nearly independent of the film thickness (indicated by the orange horizontal line in 

Supplementary Figure 8). From the thickness independence we conclude that the 

measurements of thin films yield and estimate for the carrier concentration at the surfaces of 

our samples. Indeed, this value of 𝑛2D,Hall = 2.5∙1013 cm-2 is very close to values reported for 

Dirac carriers in Refs.20-22. Assuming further that the mobility of Dirac carriers is larger than 

that of massive bulk carriers (due to topological protection)23, we can thus conclude that most 

of the carriers measured in our Hall measurement can be attributed to Dirac carriers, i.e. 

Supplementary Equation (31) reduces to 𝑛s ≈ 𝑛1 for 𝑛1 > 𝑛2 and 𝜇1 > 𝜇2 (indices 1 and 

2 representing Dirac and massive bulk carriers, respectively). 

 

On the other hand, the increasing carrier concentration with increasing film thickness (for 

thicker films) indicates that bulk carriers exist in our Bi2Se3 films (marked by ∆𝑛𝑠  in 

Supplementary Figure 8). We estimate the three-dimensional (3D) bulk carrier concentration 

as 𝑛bulk  = ( ∆𝑛s/170 𝑛𝑚 ) = 2.15∙1018 cm-3 in our Bi2Se3 films and assume that it is 

independent of film thickness24. 

 

    

Supplementary Figure 8. Thickness-dependent sheet carrier concentration from Hall 

measurements. The data were taken from Bi2Se3 films that were grown under the same conditions as 

the Bi2Se3 films reported in the main text. 
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One may argue that 𝑛2D,Hall = 2.5∙1013 cm-2 for the surface carriers originates from massive 

2DEG carriers. However, the typical massive 2DEG carrier concentrations reported in 

literature for Bi2Se3 films are typically smaller 7,9,20. Indeed, by assuming that 𝑛2D,Hall  = 

2.5∙1013 cm-2 is exclusively forming a massive 2DEG, the calculated polariton dispersions do 

not match the experimental polariton dispersions (see green curves in Figure 4b and black 

curves in Figure 4c of the main text). A more reasonable assumption is that 𝑛2D,Hall = 2.5∙1013 

cm-2 reveals Dirac carriers and that a small amount of 2DEG carriers co-exist. With such an 

assumption we can actually well fit the experimental polariton dispersion (see red curves in 

Figure 4d of the main text). 

 

Generally, separating the contributions of two types of carriers in TIs by Hall measurements 

may be achieved at low temperatures (~1.5 K) and strong magnetic fields (above 2 T)20,22. In 

that case, the 𝑅𝑥𝑦(𝐵) curves are typically non-linear20,22. Fitting the nonlinear curve allows to 

extract the individual sheet concentration and mobility of each type  
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