Procedures to compute elementary flux modes or extreme pathways forming glyceraldehyde 3-phosphate (GAP) from CO₂

Please prepare the 3 text files named Paths_example.txt, perform_expa.bat, and CO2_to_GAP.expa as described below. The following procedure was successful on a Windows PC on August 18, 2021.

- 1. Go to https://systemsbiology.ucsd.edu/Downloads/ExtremePathwayAnalysis
- 2. Get expa.zip by clicking "A new ExPA program (02/16/05)".
- 3. Extract expa.exe from expa.zip.
- 4. Make a working directory and put the 3 files of expa.exe, perform_expa.bat, and CO2_to_GAP.expa there.
- 5. Double-click on perform_expa.bat in the directory from Windows Explorer.
- 6. Find Paths.txt generated in the same directory. The content of Paths.txt must be the same as that of Paths_example.txt. Paths.txt as well as Paths_example.txt carries a matrix, where each of rows corresponds to one elementary flux mode or extreme pathway and each of columns to one of the fluxes defined in CO2_to_GAP.expa. The last 3 rows of the matrix correspond to the 3 columns in Table 2, which correspond to the S7P-removing transaldolase variant, the S7P-forming transaldolase variant, and the canonical Calvin-Benson cycle. The other rows correspond to pathways neither consuming CO₂ nor producing GAP. They include 2 cycles composed of 5 reactions, but those cycles require the unrealistic reverse reaction of FBPase or SBPase. Each row of CO2_to_GAP.expa beginning at '>' corresponds to the reaction with the same name as defined in Table 1, whilst each row of CO2_to_GAP.expa beginning at <' corresponds to the reverse reaction of the reaction with the same name as defined in Table 1.

Paths_example.txt

0 0	0 0	0 0	0 0	0 1	0 1	0 0	1 0	1 0	0 0	0 0	0 0	0 0	0 1	0 0	0 0	0 0	0 0	1 0	1 0	0 0	0 1	0 1	0 0	0 0	0 0	0 0	1 0	0 0	0 0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 0	0	0	0	1	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	Ó	0	0	0	1	0	0	Ő	0	0	0	0	0	0	0	0	0	0	1	Ô	0	Û	0	0
0	0	0	0	0		0	0	0	1	Û	0	0	0	0	0	0	0	0	0	0	0	0	1	ń	n		Û	0	0
0	•	•	-		0	•	•	•		· ·		•	-	-		•	•	•	1	•				· ·	×	0	ž	0	0
0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	U	U
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
3	6	6	2	0	0	1	2	2	1	1	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-3	1
3	6	6	2	2	2	i	ō	ō	1	1	2	3	1	Ō	Ő	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ō	Ő	Ō	Ó	-3	1
3	ě	ě.	2	1	1	i	ĩ	Ť	i	i	2	š	Ó	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	ŏ	-3	1

perform_expa.bat

expa -v CO2_to_GAP.expa

CO2_to_GAP.expa

(Internal Fluxes)			
>Rubisco	Ι	-1 CO2 -1 RuBP 2 PGA	
>PGA kinase	Ī	-1 PGA 1 BPG	
>GAP_dehydrogenase	Ī	-1 BPG 1 GAP	
>Triose_phosphate_isomerase	Ī	-1 GAP 1 DHAP	
>FBP aldolase	Ī	-1 GAP -1 DHAP 1 FBP	
>FBPase	Ī	-1 FBP 1 F6P	
>Transketolase	Ī	-1 F6P -1 GAP 1 E4P 1 Xu5	ïΡ
>SBP_aldolase	Ī	-1 E4P -1 DHAP 1 SBP	
>SBPase	Ī	-1 SBP 1 S7P	
>Transketolase	Ī	-1 S7P -1 GAP 1 R5P 1 Xu5	iΡ
>Isomerase	Ī	-1 R5P 1 Ru5P	
>Epimerase	Ī	-1 Xu5P 1 Ru5P	
>Phosphoribulokinase	Ī	-1 Ru5P 1 RuBP	
S7P-forming_transaldolase	Ī	-1 E4P -1 F6P 1 S7P 1 GAP	,
<rubisco< td=""><td>Ī</td><td>1 CO2 1 RuBP -2 PGA</td><td></td></rubisco<>	Ī	1 CO2 1 RuBP -2 PGA	
<pga_kinase< td=""><td>Ī</td><td>1 PGA -1 BPG</td><td></td></pga_kinase<>	Ī	1 PGA -1 BPG	
<gap_dehydrogenase< td=""><td>Ī</td><td>1 BPG -1 GAP</td><td></td></gap_dehydrogenase<>	Ī	1 BPG -1 GAP	
<pre><triose_phosphate_isomerase< pre=""></triose_phosphate_isomerase<></pre>	Ī	1 GAP -1 DHAP	
<fbp_aldolase< td=""><td>Ī</td><td>1 GAP 1 DHAP -1 FBP</td><td></td></fbp_aldolase<>	Ī	1 GAP 1 DHAP -1 FBP	
<fbpase< td=""><td>Ī</td><td>1 FBP -1 F6P</td><td></td></fbpase<>	Ī	1 FBP -1 F6P	
<transketolase< td=""><td>Ī</td><td>1 F6P 1 GAP -1 E4P -1 Xu5</td><td>iΡ</td></transketolase<>	Ī	1 F6P 1 GAP -1 E4P -1 Xu5	iΡ
<sbp aldolase<="" td=""><td>Ī</td><td>1 E4P 1 DHAP -1 SBP</td><td></td></sbp>	Ī	1 E4P 1 DHAP -1 SBP	
<sbpase< td=""><td>Ī</td><td>1 SBP -1 S7P</td><td></td></sbpase<>	Ī	1 SBP -1 S7P	
<transketolase< td=""><td>Ī</td><td>1 S7P 1 GAP -1 R5P -1 Xu5</td><td>iΡ</td></transketolase<>	Ī	1 S7P 1 GAP -1 R5P -1 Xu5	iΡ
<isomerase< td=""><td>Ī</td><td>1 R5P -1 Ru5P</td><td></td></isomerase<>	Ī	1 R5P -1 Ru5P	
<epimerase< td=""><td>Ī</td><td>1 Xu5P -1 Ru5P</td><td></td></epimerase<>	Ī	1 Xu5P -1 Ru5P	
<phosphoribulokinase< td=""><td>Ī</td><td>1 Ru5P -1 RuBP</td><td></td></phosphoribulokinase<>	Ī	1 Ru5P -1 RuBP	
S7P-removing_transaldolase	Ī	1 E4P 1 F6P -1 S7P -1 GAP	>
(Exchange Fluxes)	•		
CO2	Input		
GAP	Output		
	2001-00		