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Supplementary Discussion 

 

pegLIT strategy for identifying optimal linker sequences 

pegLIT uses simulated annealing to sample the analyzed linker space efficiently1. Linkers that 

are adenosine- or cytosine-rich are preferred by pegLIT since these nucleotides have been reported 

to function better as flexible RNA linkers2. Additionally, pegLIT filters out linkers that contain runs of 

four or more uridines, since such sequences could cause premature transcriptional termination3.  

The pegLIT tool then analyzes linkers that pass these requirements using ViennaRNA4 to 

predict potential interactions between the linker sequence and the pegRNA spacer, PBS, template, or 

scaffold. The base pair probabilities of these predicted interactions are used to generate subscores for 

each region of the pegRNA, each of which represents the degree to which the linker is predicted to 

avoid interaction with the associated region. For example, a subscore of 0.95 for the PBS essentially 

indicates that, on average, the predicted probability of a pegRNA folded state lacking base pairing 

between any linker nucleotide and the PBS is 95%.  

We sought to validate the use of pegLIT for linker design and examine which interactions 

identified by pegLIT were most detrimental to editing efficiency. We generated 30 linker sequences 

(10 recommended by pegLIT, 10 interacting with the spacer, and 10 interacting with the PBS) to test 

with evopreQ1 epegRNAs templating either a C•G-to-A•T transversion at RNF2 or a 15-bp deletion at 

DNMT1. The average spacer and PBS subscores were 0.94 and 0.97 for the optimal sequences, 0.66 

and .95 for the spacer sequences, and 0.86 and 0.21 for the PBS sequences. Relative to the 

recommended designs, use of the PBS-interacting linkers was associated with 1.3- and 1.1-fold lower 

editing efficiency at RNF2 and DNMT1 respectively (Supplementary Fig. 13), whereas the spacer-

interacting linkers had a negligible effect on editing efficiency. This difference may be because the 

closer proximity of the linker to the PBS compared to the spacer may give linker:PBS interactions an 

entropic advantage compared to linker:spacer pairing.  

 

epegRNAs delivered via plasmid transfection with optimized guide RNA scaffolds in HEK293T cells 

To mimic lower expression conditions, we transfected HEK293T cells with 20 ng of PE2 

plasmid and 4 ng of pegRNA or epegRNA plasmid when assessing the applicability of “flip and 

extension” (F+E) sgRNA scaffold variants for PE. We compared the editing efficiency of epegRNAs 

targeted to PRNP, HEK3, RUNX1, and EMX1 that contained the canonical sgRNA scaffold, an (F+E) 

scaffold5, or one of six (F+E) scaffolds bearing mutations previously shown to increase Cas9-nuclease 

activity6. We found that these alternative scaffolds overall either maintained or improved PE efficiency 

relative to the standard scaffold, with cr772 exhibiting the best improvement (Supplementary Fig. 
12). While efficiency improvements were less consistent under these conditions compared to lentiviral 

transduction (Supplementary Fig. 11), this may stem from differences in expression. EpegRNA 



expression is likely several-fold higher following plasmid transfection than that following single-copy 

lentiviral transduction, which may partially obfuscate the benefits of more efficient transcription and 

Cas9 binding affinity. We recommend testing cr772 or the original (F+E) scaffold to further improve 

PE efficiency with epegRNAs, especially for applications with lower expression than plasmid 

transfection. 

 

Installation of FLAG tags using unoptimized epegRNAs 

We compared epegRNAs and pegRNAs for the installation of more challenging edits, such as 

insertion of the 24-bp FLAG epitope tag (Fig. 2a). We assessed the ability of unoptimized pegRNAs 

and tevopreQ1 epegRNAs containing one of two loci-specific pegLIT-designed 8-nt linkers to template 

the installation of a FLAG epitope tag at 15 loci in HEK293T cells using PE2 (Supplementary Fig. 
15). The unoptimized epegRNAs and pegRNAs were designed with a 13-nt PBS and an RT template 

containing 25 nt of homology downstream of the inserted FLAG epitope tag, except when the 3′ 

extension would begin with cytosine7, in which case it was extended to the nearest non-C nucleotide. 

The use of epegRNAs enabled FLAG tags to be installed with PE2 at ≥10% efficiency with no PBS 

and RT template optimization at 5 of the 15 sites, while ≥10% efficiency was not observed with any 

pegRNAs (Supplementary Fig. 15). These observations further demonstrate that epegRNAs can 

enhance prime editing performance for a variety of edits at many different endogenous human 

genomic loci.  



 
 

 

Supplementary Figure 1. Sequence and secondary structure of RNA structural motifs 
examined in this study. Structures are based on predictions from previously published structural or 
bioinformatic analyses8-11. Only two G-quadruplexes of the 11 tested are shown for brevity. 
Sequences of all motifs are provided in Supplementary Table 2. 
  



 

 
 
Supplementary Figure 2. PE3-mediated edit:indel ratio for pegRNAs and epegRNAs shown in 
Fig. 2. Fold-change in the observed prime editing edit:indel ratio for installation of a FLAG epitope tag 
(a) or the indicated transversion or deletion (b) in HEK293T cells, or the indicated edit in HeLa, U2OS, 
or K562 cells (c) of epegRNAs bearing either evopreQ1 (p) or mpknot (m) compared to unmodified 
pegRNA (dashed line). Values were calculated from the data presented in Fig. 2a, 2c and 2d 
respectively. Data and error bars reflect the mean and standard deviation of three independent 
biological replicates.  
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Supplementary Figure 3. Linker-length dependence of epegRNA activity. Effect of removing the 
8-nt linkers used in Fig. 2 and Supplementary Fig. 4 a-k on PE3 editing efficiency. Either evopreQ1 
(p) or mpknot (m) was appended to the PBS via either no linker or an 8-nt linker. The distance from 
the Cas9 nick site to the installed mutation in nucleotides is as indicated in the legend. Dots indicate 
the average of three biological replicates. Bars indicate the grand median. Significance was calculated 
via a two-tailed paired Student’s t test (p=0.022). 
 
 



 
Supplementary Figure 4. Improvement in PE3-mediated editing efficiency at various genomic 
loci from to the addition of 3′ RNA structural motifs to pegRNAs. (a-k) PE3-mediated installation 
of the indicated edit at (a, b) DNMT1, (c) RUNX1, (d, e) RNF2, (f, g) FANCF, (h, i) EMX1, (j) VEGFA, 
or (k) HEK3. Either an 8-nt linker alone or the linker in conjunction with evopreQ1 (p) or mpknot (m) 
was appended to pegRNAs of increasing template lengths and compared to canonical pegRNAs. The 
distance from the Cas9 nick site to the installed mutation in nucleotides is indicated. Data and error 
bars reflect the mean and standard deviation of three independent biological replicates.   



 

 
Supplementary Figure 5. PE3-mediated edit:indel ratio for pegRNAs and epegRNAs shown in 
Supplementary Fig. 4. Fold-change in the observed edit:indel ratio for the indicated transversion or 
deletion at HEK3, RUNX1, or DNMT1 (a), RNF2 or FANCF (b), or EMX1 or VEGFA (c) of epegRNAs 
bearing either evopreQ1 (p) or mpknot (m) compared to unmodified pegRNA (dashed line). Values 
were calculated from the data presented in Supplementary Fig. 2a-k. Data and error bars reflect the 
mean and standard deviation of three independent biological replicates.   



 
 
Supplementary Figure 6. Engineered pegRNAs demonstrate no increase in detected off-target 
activity compared to canonical pegRNAs. On- and off-target PE3 editing of pegRNAs and 
epegRNAs targeted to HEK3, EMX1, or FANCF and templating either a nucleotide transversion (T•A 
to A•T at HEK3 or G•C to T•A at EMX1 and FANCF; pt mtn) or a 15-nt deletion (del). –, canonical 
pegRNA; m, epegRNA containing mpknot; p, epegRNA containing evopreQ1. Indel frequencies are 
shown in parentheses. For EMX1 off-target 1, indels were obtained by subtracting the percentage of 
sequencing reads containing indels in cells transfected with a non-targeting pegRNA. Off-target loci 
are listed in Supplementary Table 4. Data are the average of three biological replicates. 
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Supplementary Figure 7. Site-dependent expression differences of pegRNAs and epegRNAs. 
Northern blot of HEK293T lysates containing pegRNAs or epegRNAs targeted to (a) HEK3  or (b) 
EMX1 after hybridization with a DIG-labeled RNA probe complementary to the sgRNA scaffold. PAGE 
gels shown are representative of multiple independent biological replicates. The normalized fold 
change in abundance relative to unmodified pegRNA as determined by densitometry is shown (right). 
Abundance was calculated by including both full-length pegRNA and epegRNA for samples in which 
full length pegRNA is present. Band identity was confirmed using untreated in vitro transcribed 
pegRNAs and epegRNAs as standards, DIG-labeled ssRNA ladder, and purified RNA from HEK293T 
cells transfected with sgRNA as markers. (c) Abundance of epegRNA and canonical pegRNA 
targeted to HEK3, DNMT1, RNF2 or EMX1 in HEK293T cells by RT-qPCR amplification and 
quantification of the sgRNA scaffold. Primers for qPCR amplification can be found in Supplementary 
Table 5. Data and error bars reflect the mean and standard deviation of three independent biological 
replicates.  
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Supplemental Figure 8. High-throughput sequencing analysis of PE2-mediated genomic 
reverse transcriptase products. Comparison of prime-editing intermediates generated by PE2 with 
either pegRNAs or epegRNAs at (a) HEK3, (b) DNMT1, or (c) EMX1 as indicated. Dotted lines 
indicate the full-length reverse transcriptase product templated by the pegRNA or epegRNA tested at 
the indicated locus. X axis is relative to the position of the PE2-induced nick with the first base 3′ 
downstream represented as position +1. Histograms and pie charts are generated from the average 
of three independent biological replicates. 
  



 
Supplementary Figure 9. PE3-mediated editing efficiency of pegRNAs containing other RNA 
structural motifs. Comparison of PE3-mediated editing efficiencies for the installation of the FLAG 
epitope tag, a 15-nt deletion, or a point mutation at HEK3 (a) and RNF2 (b) with epegRNAs to which 
various G-quadruplexes have been appended via an 8-nt linker. G-quadruplexes are ordered based 
on melting temperature, ranging from 60 to >90 °C, as previously determined12. (c) PE3-mediated 
efficiency of installation of point mutations at the indicated genomic loci using pegRNAs containing the 
evopreQ1 motif or a 15-bp (34-nt) hairpin. (d) Addition of either a pseudoknot known to inhibit the 5′ 
exonuclease XrnI (xrnI)10 or a large tertiary RNA structure (the P4-P6 domain of the group I intron 
from Tetrahymena thermophila11) to the 3′ terminus of the pegRNA via an 8-nt linker does not yield 
more efficient editing than addition of either evopreQ1 or mpnkot by the same linker. The distance 
from the Cas9 nick site to the installed mutation is indicated. Data and error bars reflect the mean and 
standard deviation of three independent biological replicates.  



  
 
Supplementary Figure 10. PE3-mediated editing efficiency of epegRNAs containing evopreQ1 
or mpknot variants. Comparison of PE3-mediated editing efficiencies for the installation of the FLAG 
epitope tag, a 15-nt deletion, or a point mutation at HEK3 and RNF2 with epegRNAs containing 
various RNA motifs, where the distance between the Cas9 nick and the edit is indicated by +1. PE3 
editing efficiencies of additional evolved prequeosine1-1 riboswitch aptamer variants (a) or 
modifications to mpknot (b) compared to evopreQ1 or mpknot. (c) PE3 editing efficiencies of 
epegRNAs trimmed to remove nucleotides 5′ and 3′ of evopreQ1 (tevopreQ1) and mpknot (tmpknot) 
compared to parent epegRNAs. Data and error bars reflect the mean and standard deviation of three 
independent biological replicates.   



 
 
Supplementary Figure 11. Effect of the (F+E) scaffold on PE2-editing efficiency with lentivirally 
transduced epegRNAs. PE2-editing efficiency of lentivirally-transduced prime editor and pegRNA or 
epegRNA that contain tevopreQ1 and either the canonical or (F+E) sgRNA scaffold and that template 
the indicated edit at HEK3 or DNMT1 in HEK293T cells. Data and error bars reflect the mean and 
standard deviation of three independent biological replicates. 
     



 

  
 
Supplementary Figure 12. Effect of (F+E) scaffold modifications on prime editing efficiency 
with epegRNAs. Comparison of PE3-mediated editing efficiencies of epegRNAs with the indicated 
scaffold to epegRNAs with the standard SpCas9 sgRNA scaffold. One-tenth the normal amount of 
plasmids encoding PE2 and pegRNA or epegRNA was transfected in HEK293T cells in these 
experiments. Edits templated were either a transversion at PRNP, RUNX1, or EMX1 or a 15-nt 
deletion at HEK3. Modified scaffold sequences all contain the “flip and extension” (F+E) modification. 
Scaffolds designated cr also contain mutations to the (F+E) scaffold previously identified as potentially 
improving Cas9 nuclease activity at some sites6. Sequences of all scaffolds can be found in 
Supplementary Table 1. Lines indicate the grand medians. 
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Supplementary Figure 13. Computational prediction of effective linker sequences between the 
PBS and structural motif of epegRNAs. (a) Schematic illustrating the workflow of pegLIT, a 
computational script to select appropriate linker sequences for epegRNAs. Potential linker sequences 
are filtered by sequence identity and propensity for base pairing to other regions of the epegRNA. 
Sequences passing the filter are then optionally clustered based on identity and individual sequences 
are selected from different clusters to promote diversity in the final output. (b and c) epegRNAs 
containing evopreQ1 connected via linker sequences recommended by pegLIT lead to modestly 



improved PE editing efficiency compared to epegRNAs containing evopreQ1 connected via a human-
designed linker or linkers that were predicted by pegLIT to interact with the PBS and (d) rescued 
activity at those sites at which epegRNAs did not initially yield improvements (Supplementary Fig. 4). 
(e) Comparison of PE3-mediated editing efficiencies of epegRNAs with evopreQ1 and either 8- or 18-
nt long linkers suggests no significant improvement is achieved by increasing linker length. (f) 
Comparison of PE3-mediated editing efficiencies of epegRNAs with either evopreQ1 (p) or mpknot (m) 
and either an 8-nt pegLIT linker (8) or no linker (0). Significance was calculated using a two-tailed 
paired student’s t test (p=0.0061). (g) Fold increase in PE3-mediated editing efficiencies of epegRNAs 
with tevopreQ1 containing an 8-nt pegLIT linker compared to no linker. Data are presented as the 
mean with error bars indicating either (for b) the standard deviation of the mean for five pegLIT-
designed linkers, each in triplicate, or the standard deviation of three replicates for manually designed 
linker sequences, (for c ,d, and g) the standard deviation of three biological replicates, or (for e and f) 
the grand median of the average fold-change in editing efficiency for each indicated site and edit. 
  



 
Supplementary Figure 14. Improvements in editing efficiency upon electroporation of 
chemically synthesized epegRNAs. (a) Efficiency of PE3-mediated installation of the indicated edit 
upon nucleofection of mRNA which encodes PE2, a chemically synthesized nicking sgRNA, and 
either chemically synthesized pegRNA or epegRNA containing evopreQ1 via an 8-nt linker. (b) 
Observed fold-change in the edit:indel ratio for epegRNAs compared to pegRNAs for the indicated 
site and edit, based on data in (a). Data and error bars reflect the mean and standard deviation of two 
or more independent biological replicates. 
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Supplementary Figure 15. PE2-mediated efficiency of installation of FLAG tags at the indicated 
genomic sites. (a) PE2-mediated editing efficiency of FLAG epitope tag insertion at 15 genomic loci 
in HEK293T cells using unoptimized epegRNAs compared to unoptimized canonical pegRNAs. (b) 
Data from (a) shown in bar chart form. Sites with sub 1% editing efficiency with both pegRNAs and 
epegRNAs are not shown but are listed in Supplemental Table 1. Data and error bars reflect the 
mean and standard deviation of three independent biological replicates.  
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Supplementary Figure 16. Uncropped agarose gel in Figure 3. Uncropped image of the agarose 
gel used for Figure 3a with the excerpted region outlined in black. Untreated in vitro transcribed 
pegRNAs or epegRNAs were used as molecular weight standards.  



  



Supplementary Figure 17. Uncropped northern blots in Supplementary Figure 7. (a) Uncropped 
image of the northern blot used for Supplementary Figure 7a with the excerpted region outlined in 
black. Species lengths were confirmed using untreated in vitro transcribed pegRNA and epegRNA as 
molecular weight standards on a separate blot with a molecular weight ladder (shown in b). (b) 
Uncropped image of the northern blot used to confirm the band identities and molecular weights of 
standards in (a). (c) Uncropped image of the northern blot used for Supplementary Figure 7b with the 
excerpted region outlined in black. 



Supplementary Tables are provided in a separate Microsoft Excel file.  
 
Supplementary Table 1. Sequences of pegRNAs and sgRNAs used in this study. This table lists all 
(e)pegRNAs and sgRNA used in the study. For each RNA, the spacer, template, PBS, linker, and 
motif added, if any, are listed separately. RNAs are organized by figure. 
 
Supplementary Table 2. Sequences of RNA structural motifs examined in this study. This table 
contains a separate list of RNA structural motifs which were appended to epegRNAs. We recommend 
epegRNAs that contain tevopreQ1 (highlighted). 
 
Supplementary Table 3. Sequences of primers used for genomic DNA amplification. This table lists 
all primers used for genomic DNA amplification prior to high-throughput sequencing. For most forward 
primers, offset forward primers with either 4 or 5 Ns were used, as indicated. 
 
Supplementary Table 4. Sequences of amplicons analyzed with high-throughput sequencing. This 
table lists all genomic regions analyzed by high-throughput sequencing, including known Cas9 off-
target sites for HEK3, EMX1, and FANCF. 
 
Supplementary Table 5. Sequences of primers used in RTqPCR experiments. This table lists all 
primers used for RTqPCR analysis of pegRNA expression levels. 
 
Supplementary Table 6. Reference SNP numbers of pathogenic mutations installed with pegRNAs 
or epegRNAs. This table lists NCBI reference SNP designations for mutations installed in Fig. 4d. 
 
  



Supplementary Note 1. Guidelines for epegRNA cloning via Golden Gate DNA assembly13. 
When cloning epegRNAs using the Golden Gate method, the same protocol as previously described7 
is appropriate with the important note that the junction sequence between the 3’ extension oligo and 
the plasmid backbone is different for epegRNAs using tevopreQ1 and trimmed mpknot (tmpknot), as 
shown below. More details on pegRNA design and cloning are available at http://liugroup.us. Plasmid 
backbones used for Golden Gate cloning have been deposited with Addgene. 
 

 
  



Supplementary Note 2. pegRNA Linker Identification Tool (pegLIT) code 
 
from math import prod 
import random 
import heapq 
import numpy as np 
from scipy.special import expit as sigmoid 
from sklearn.cluster import AgglomerativeClustering as HAC 
from Levenshtein import distance as levenshtein_distance 
import RNA # ViennaRNA 
 
BASE_SYMBOLS = { 
    "A": ("A",), "C": ("C",), "G": ("G",), "T": ("T",), "U": ("T",), 
    "W": ("A", "T"), "S": ("C", "G"), "M": ("A", "C"), 
    "K": ("G", "T"), "R": ("A", "G"), "Y": ("C", "T"), 
    "B": ("C", "G", "T"), "D": ("A", "G", "T"), "H": ("A", "C", "T"), "V": ("A", "C", "G"), 
    "N": ("A", "C", "G", "T")} 
 
def apply_filters(seq_pre, seq_linker, seq_post, ac_thresh, u_thresh, n_thresh): 
    """ 
    Returns False if any filter is failed i.e. AC content < ac_thresh OR consecutive Us > u_thresh 
    OR consecutive Ns > n_thresh. Otherwise, True if all filters are passed. All thresholds have 
    units nt (i.e. ac_thresh is not a percent). Ts are treated as Us. 
    """ 
    # AC content 
    if seq_linker.count("A") + seq_linker.count("C") < ac_thresh: 
        return False 
    # Consecutive U 
    seq_neighborhood = seq_pre[-(u_thresh):] + seq_linker + seq_post[:u_thresh] 
    seq_neighborhood = seq_neighborhood.replace("T", "U") 
    if "U" * (u_thresh + 1) in seq_neighborhood: 
        return False 
    # Consecutive N 
    seq_neighborhood = seq_pre[-(n_thresh):] + seq_linker + seq_post[:n_thresh] 
    seq_neighborhood = seq_neighborhood.replace("T", "U") 
    if any(nt * (n_thresh + 1) in seq_neighborhood for nt in set(seq_linker)): 
        return False 
    return True 
 
def calc_subscores(linker_pos, *sequence_components): 
    """ 
    Calculate base-pairing probs marginalized for each nucleotide 
    """ 
    # Calculate bpp from ViennaRNA 
    pegrna = RNA.fold_compound("".join(sequence_components)) 
    _ = pegrna.pf() # need to first internally calculate partition function 
    basepair_probs = np.array(pegrna.bpp())[1:, 1:] 
    # Fill in lower-triangle and diagonal of ViennaRNA's upper-triangular bpp matrix 
    unpaired_probs = 1. - (basepair_probs.sum(axis=0) + basepair_probs.sum(axis=1)) 
    # copy data to make symmetric 
    i_lower = np.tril_indices(len(basepair_probs), -1) 
    i_diag = np.eye(len(basepair_probs), dtype=bool) 
    basepair_probs[i_lower] = basepair_probs.T[i_lower] 



    basepair_probs[i_diag] = unpaired_probs 
    # Track indices of subsequences 
    idx_cur = 0 
    seq_idx = [] 
    for subseq in sequence_components: 
        idx_prev = idx_cur 
        idx_cur += len(subseq) 
        seq_idx.append(slice(idx_prev, idx_cur)) 
    # Extract subscores for subsequences 
    bpp_subseq = np.ma.masked_all(len(sequence_components)) 
    for i, subseq in enumerate(sequence_components): 
        bpp_within_subseq = basepair_probs[seq_idx[i], seq_idx[linker_pos]] 
        bpp_subseq[i] = np.mean(np.sum(bpp_within_subseq, axis=0)) 
    return bpp_subseq 
 
def apply_score(seq_spacer, seq_scaffold, seq_template, seq_pbs, seq_linker, 
                score_to_beat=None, epsilon=0.01): 
    """ 
    Calculates subscores then outputs hashed score. Terminates calculation early if score will 
    be less than score_to_beat. Prioritize PBS, spacer, template, scaffold. 
    """ 
    # Cas9 complex at R loop subscore 
    bpp_subseq1 = calc_subscores(2, seq_template, seq_pbs, seq_linker) 
    subscore_pbs = 1. - bpp_subseq1[1] 
    subscore_template = 1. - bpp_subseq1[0] 
    # Free pegRNA subscore 
    if ((score_to_beat is not None) 
            and (epsilon * int(subscore_pbs / epsilon) < score_to_beat[0])): 
        subscore_spacer = 0. 
        subscore_scaffold = 0. 
    else: 
        bpp_subseq2 = calc_subscores(4, seq_spacer, seq_scaffold, 
                                     seq_template, seq_pbs, seq_linker) 
        subscore_spacer = 1. - bpp_subseq2[0] 
        subscore_scaffold = 1. - bpp_subseq2[1] 
    # Turn subscores into a single score 
    return tuple( 
        epsilon * int(val / epsilon) 
        if val is not None else 0 
        for val in (subscore_pbs, subscore_spacer, subscore_template, subscore_scaffold) 
        ) 
 
def optimize(seq_spacer, seq_scaffold, seq_template, seq_pbs, seq_motif, 
             linker_pattern, ac_thresh, u_thresh, n_thresh, topn, epsilon, 
             num_repeats, num_steps, temp_init, temp_decay, seed): 
    """ 
    Simulated annealing optimization of linkers 
    """ 
    ## Pre-process inputs 
    random.seed(seed) 
    seq_pre = seq_spacer + seq_scaffold + seq_template + seq_pbs 
    seq_post = seq_motif 
    linker_pattern = linker_pattern.upper() 



    ac_thresh = ac_thresh * len(linker_pattern) 
    ## Simulated annealing to optimize linker sequence 
    # Initialize hashmap of sequences already considered 
    linker_skip = {} 
    len_sequence_space = prod(len(BASE_SYMBOLS[nt]) for nt in linker_pattern) 
    # Initialize min heap of topn linkers 
    linker_heap = [] 
    for _ in range(num_repeats): 
        # Initialize simulated annealing 
        seq_linker_prev = "".join([random.choice(BASE_SYMBOLS[nt]) for nt in linker_pattern]) 
        score_prev = None 
        temp = temp_init 
        for _ in range(num_steps): 
            # Generate new sequence by substituting characters in sequence until pass filters 
            seq_linker = seq_linker_prev 
            keep_going = True 
            while keep_going: 
                char_pos = random.randint(0, len(linker_pattern) - 1) 
                seq_linker = ( 
                    seq_linker[:char_pos] 
                    + random.choice(BASE_SYMBOLS[linker_pattern[char_pos]]) 
                    + seq_linker[(char_pos + 1):]) 
                keep_going = ( 
                    (seq_linker in linker_skip 
                    or not apply_filters(seq_pre, seq_linker, seq_post, 
                                         ac_thresh, u_thresh, n_thresh)) 
                    and len(linker_skip) < len_sequence_space) # already screened whole seq space 
                linker_skip[seq_linker] = True 
            # Calculate score for linker sequence 
            score_to_beat = linker_heap[0][0] if len(linker_heap) >= topn else None 
            score = apply_score(seq_spacer, seq_scaffold, seq_template, seq_pbs, seq_linker, 
                                score_to_beat=score_to_beat, epsilon=epsilon) 
            # Add to min heap i.e. maintains the top `topn` largest entries 
            if score_to_beat is None: # heap is not yet full 
                heapq.heappush(linker_heap, (score, seq_linker)) 
            elif score > score_to_beat: 
                heapq.heapreplace(linker_heap, (score, seq_linker)) 
            # Decide if keep proposal 
            if (score_prev is None                                      # initialize 
                or score > score_prev                                   # exploit improvement 
                or random.random() < sigmoid(                                  # explore 
                    sum((s1 - s2) * (epsilon ** i) 
                        for i, (s1, s2) in enumerate(zip(score, score_prev))) / temp 
                    )): 
                seq_linker_prev = seq_linker 
                score_prev = score 
            # Update simulated annealing param 
            temp *= temp_decay 
    linker_heap_scores, linker_heap = zip(*linker_heap) 
    return linker_heap_scores, linker_heap 
 
def apply_bottleneck(heap_scores, heap, bottleneck, seed): 
    """ 



    Cluster sequences and output top-scoring sequence per cluster. 
    """ 
    random.seed(seed) 
    # Pick best, randomly tiebreak if needed 
    def _pick_best(scores, choices): 
        idx_maxed = np.where(scores == np.max(scores))[0] 
        idx_chosen = random.choice(idx_maxed) 
        return choices[idx_chosen] 
    # Can just pick best output 
    if bottleneck == 1: 
        return [_pick_best(heap_scores, heap)] 
    # Calculate features for each linker sequence i.e. edit distance to all other linker sequences 
    features = np.zeros((len(heap), len(heap)), dtype=int) 
    for i, seq_x in enumerate(heap): 
        for j, seq_y in enumerate(heap): 
            features[i, j] = levenshtein_distance(seq_x, seq_y) 
    # Cluster linker sequences 
    clusters = HAC(n_clusters=bottleneck, linkage="complete").fit_predict(features) 
    # Output highest-scoring linker sequence from each cluster 
    output = [] 
    heap = np.array(heap) 
    heap_scores_mean = np.mean(heap_scores, axis=1) 
    for cluster_num in range(bottleneck): 
        idx_cluster = clusters == cluster_num 
        heap_cluster = heap[idx_cluster] 
        cluster_scores = heap_scores_mean[idx_cluster] 
        output.append(_pick_best(cluster_scores, heap_cluster)) 
    return output 
 
def pegLIT(seq_spacer, seq_scaffold, seq_template, seq_pbs, seq_motif, 
           linker_pattern="NNNNNNNN", ac_thresh=0.5, u_thresh=3, n_thresh=3, topn=100, 
           epsilon=1e-2, num_repeats=10, num_steps=250, temp_init=0.15, temp_decay=0.95, 
           bottleneck=1, seed=2020): 
    """ 
    Optimizes+bottlenecks linker for an inputted pegRNA. Outputs linker recommendation(s). 
    """ 
    # Simulated annealing to optimize linker sequence 
    linker_heap_scores, linker_heap = optimize( 
        seq_spacer, seq_scaffold, seq_template, seq_pbs, seq_motif, 
        linker_pattern=linker_pattern, ac_thresh=ac_thresh, u_thresh=u_thresh, 
        n_thresh=n_thresh, topn=topn, epsilon=epsilon, num_repeats=num_repeats, 
        num_steps=num_steps, temp_init=temp_init, temp_decay=temp_decay, seed=seed) 
    # Sample diverse sequences 
    linker_output = apply_bottleneck(linker_heap_scores, linker_heap, 
                                     bottleneck=bottleneck, seed=seed) 
    return linker_output 
 
if __name__ == "__main__": 
    # Example usage for HEK3 +1 FLAG ins 
    print(pegLIT( 
        seq_spacer="GGCCCAGACTGAGCACGTGA", 
        seq_scaffold="GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTAT" 
                    "CAACTTGAAAAAGTGGCACCGAGTCGGTGC", 



        seq_template="TGGAGGAAGCAGGGCTTCCTTTCCTCTGCCATCACTTATCG" 
                    "TCGTCATCCTTGTAATC", 
        seq_pbs="CGTGCTCAGTCTG", 
        seq_motif="CGCGGTTCTATCTAGTTACGCGTTAAACCAACTAGAA")) 
  



Supplementary Note 3. Python script for quantifying prime editing intermediates 
 
import pandas as pd 
import glob 
import re 
import os 
import subprocess 
from subprocess import Popen 
from subprocess import PIPE 
 
#generates list of fastq files to analyze 
fastqs = glob.glob('*.fastq') 
 
#collects sequences of prime editing intermediates as any sequence between first 10 #nucleotides of 
the targeted protospacer and a poly(G) sequence installed by TdT, writes #sequences to a new 
“trimmed” text file 
first10nts = { 

             'HEK3':'GGCCCAGACT', 
             'DNMT1':'GATTCCTGGT', 
             'RNF2':'GTCATCTTAG', 
             'EMX1':'GAGTCCGAGC' 
             } 

 
for fname in fastqs: 
    with open(f'{fname[:-6]}_trimmed.txt','w+') as f: 
        for spacer in first10nts.keys(): 
            if spacer in fname: 
 
                nt_readARGS = ['grep', '-o', f'{first10nts[spacer]}.*GGGGGGGG', fname] 
                nt_readproc = Popen(nt_readARGS, stdout=subprocess.PIPE,  

universal_newlines=True) 
                f.write(str(nt_readproc.stdout.read())+'\n') 
 
trimmedfastqs = glob.glob('*trimmed.txt') 
 
#determines length of intermediate that was tailed, whether it contains the desired edit, and the 
#degree to which it contains sequence belonging to the reverse complement of the pegRNA #scaffold 
and spacer 
for fname in trimmedfastqs: 
    sequences_b = open(fname, 'r') 
     
    if 'HEK3' in fname: 
        edit_pos = 1 
        designed_flap = 'AGATGGCAGAGGAA' 
        RT_temp_length = 14 
        scaffold_revcomp = 'GCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCC 

TTATTTTAACTTGCTATTTCTAGCTCTAAAACTCACGTGCTCAGTCTGGG
CC' 

    if 'RNF2' in fname: 
        edit_pos = 1 
        designed_flap = 'ATGAGGTGTTCGTT' 
        RT_temp_length = 14 
        scaffold_revcomp = 'GCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCC 



TTATTTTAACTTGCTATTTCTAGCTCTAAAACCAGGTAATGACTAAGATG
AC' 

    if 'DNMT1' in fname: 
        edit_pos = 5 
        designed_flap = 'ACAGTGGTGAC' 
        RT_temp_length = 11 
        scaffold_revcomp = 'GCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCC 

TTATTTTAACTTGCTATTTCTAGCTCTAAAACGCGCGAACAGCTCCAGCC
CGC' 

    if 'EMX1' in fname: 
        edit_pos = 5 
        designed_flap = 'GAAGTGCTCCCATCAC' 
        RT_temp_length = 16 
        scaffold_revcomp = 'GCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCC 

TTATTTTAACTTGCTATTTCTAGCTCTAAAACTTCTTCTTCTGCTCGGACT
C' 

     
    seq_list = [ ] 
 
    df = pd.DataFrame({'flap seq':[],'flap length':[],'contains edit?':[],'scaffold insertion length':[]}) 
 
    for line in sequences_b: 
        seq = str(line) 
        seq_list.append(seq) 
 
    counter = 0 
    counter_b = 1 
    for read in seq_list: 
        edit = 0 
        scaff_RT = 0 
        for k in range(len(read) - 5): 
            window = read[k:k+5] 
            if window == 'GGGGG': 
                spacer_flap = read[0:k] 
                flap_length = len(spacer_flap) - 17 
                if flap_length > edit_pos: 
                    if flap_length < len(designed_flap): 
                        three_prime = flap_length 
                    else: 
                        three_prime = len(designed_flap) 
                    if spacer_flap[17:17+three_prime] == designed_flap[:three_prime]: 
                        edit = 1 
                if flap_length > RT_temp_length: 
                    scaff_ins_len = flap_length - RT_temp_length 
                    scaff_ins_seq = spacer_flap[RT_temp_length+17:] 
                    if scaffold_revcomp[0:scaff_ins_len] == scaff_ins_seq: 
                        scaff_RT = scaff_ins_len 
                new_row = pd.DataFrame({'flap seq' : [spacer_flap],'flap length' :  

[flap_length],'contains edit?' : [edit],'scaffold insertion length' : [scaff_RT]}) 
                df = df.append(new_row) 
                break 
    df = df[['flap seq','flap length','contains edit?','scaffold insertion length']] 
    df.to_csv(f'{fname[:-4]}_output.csv', index=False) 



Supplementary References 
 
1. Bertsimas, D. & Tsitsiklis, J. Simulated Annealing. Stat Sci 8, 10-15 (1993). 
2. Win, M.N. & Smolke, C.D. A modular and extensible RNA-based gene-regulatory platform for 

engineering cellular function. Proc Natl Acad Sci USA 104, 14283-14288 (2007). 
3. Nielsen, S., Yuzenkova, Y. & Zenkin, N. Mechanism of eukaryotic RNA polymerase III 

transcription termination. Science 340, 1577-1580 (2013). 
4. Lorenz, R. et al. ViennaRNA package 2.0. Algorithms Mol Biol 6, 26 (2011). 
5. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized 

CRISPR/Cas system. Cell 155, 1479-1491 (2014). 
6.  Jost, M. et al. Titrating gene expression using libraries of systematically attenuated CRISPR 

guide RNAs. Nat Biotechnol 38, 355-364 (2020). 
7. Anzalone, A.V. et al. Search-and-replace genome editing without double-strand breaks or 

donor DNA. Nature 576, 149-157 (2019). 
8. Roth, A. et al. A riboswitch selective for the queuosine precursor preQ1 contains an unusually 

small aptamer domain. Nat Struct Mol Biol 14, 308-317 (2007). 
9. Houck-Loomis, B. et al. An equilibrium-dependent retroviral mRNA switch regulates 

translational recoding. Nature 480, 561-564 (2011). 
10. Steckelberg, A.L. et al. A folded viral noncoding RNA blocks host cell exoribonucleases 

through a conformationally dynamic RNA structure. Proc Natl Acad Sci USA 115, 6404-6409 
(2018). 

11. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing. 
Science 273, 1678-1685 (1996). 

12. Pandey, S., Agarwala, P. & Maiti, S. Effect of loops and G-quartets on the stability of RNA G-
quadruplexes. J Phys Chem B 117, 6896-6905 (2013). 

13. Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden gate shuffling: a one-pot DNA 
shuffling method based on type IIs restriction enzymes. PLoS One 4, e5553 (2009). 

 


