
Supplementary Information

Engineered pegRNAs that improve prime editing efficiency

James W. Nelson1,2,3*, Peyton B. Randolph1,2,3*, Simon P. Shen1,2,3, Kelcee A. Everette1,2,3, Peter J.
Chen1,2,3, Andrew V. Anzalone1,2,3, Meirui An1,2,3, Gregory A. Newby1,2,3, Jon C. Chen1,2,3, Alvin
Hsu1,2,3, David R. Liu1,2,3,‡

1Merkin institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT,
Cambridge, MA, USA
2Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
3Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA

* These authors contributed equally.
‡ Correspondence should be addressed to David R. Liu: drliu@fas.harvard.edu, @davidrliu

Supplementary Discussion

Supplementary Figures

1. Sequence and secondary structure of RNA structural motifs examined in this study
2. PE3-mediated edit:indel ratio for pegRNAs and epegRNAs shown in Fig. 2.
3. Linker-length dependence of epegRNA activity.
4. Improvement in PE3-mediated editing efficiency at various genomic loci from to the addition of

3′ RNA structural motifs to pegRNAs
5. PE3-mediated edit:indel ratio for pegRNAs and epegRNAs shown in Supplementary Fig. 4
6. Engineered pegRNAs demonstrate no increase in detected off-target activity compared to

canonical pegRNAs
7. Site-dependent expression differences of pegRNAs and epegRNAs
8. High-throughput sequencing analysis of PE2-mediated genomic reverse transcriptase

products.
9. PE3-mediated editing efficiency of pegRNAs containing other RNA structural motifs
10. PE3-mediated editing efficiency of epegRNAs containing evopreQ1 or mpknot variants
11. Effect of the (F+E) scaffold on PE2-editing efficiency with lentivirally transduced epegRNAs
12. Effect of (F+E) scaffold modifications on PE3-editing efficiency with epegRNAs
13. Computational prediction of effective linker sequences between the PBS and structural motif of

epegRNAs
14. Improvements in editing efficiency upon electroporation of chemically synthesized epegRNAs
15. PE2-mediated efficiency of installation of FLAG tags at the indicated genomic sites
16. Uncropped agarose gel in Figure 3
17. Uncropped northern blots in Supplementary Figure 7

Supplementary Tables

1. Sequences of pegRNAs, epegRNAs and sgRNAs used in this study
2. Sequences of RNA structural motifs examined in this study
3. Sequences of primers used for genomic DNA amplification

4. Sequences of amplicons analyzed with high-throughput sequencing
5. Sequences of primers, amplicons, and probes used in RTqPCR and northern blot experiments
6. Reference SNP numbers of pathogenic mutations installed with pegRNAs or epegRNAs

Supplementary Notes

1. Guidelines for epegRNA cloning via Golden Gate DNA assembly
2. pegRNA Linker Identification Tool (pegLIT) code
3. Python script for quantifying prime editing intermediates

Supplementary Discussion

pegLIT strategy for identifying optimal linker sequences

pegLIT uses simulated annealing to sample the analyzed linker space efficiently1. Linkers that

are adenosine- or cytosine-rich are preferred by pegLIT since these nucleotides have been reported

to function better as flexible RNA linkers2. Additionally, pegLIT filters out linkers that contain runs of

four or more uridines, since such sequences could cause premature transcriptional termination3.

The pegLIT tool then analyzes linkers that pass these requirements using ViennaRNA4 to

predict potential interactions between the linker sequence and the pegRNA spacer, PBS, template, or

scaffold. The base pair probabilities of these predicted interactions are used to generate subscores for

each region of the pegRNA, each of which represents the degree to which the linker is predicted to

avoid interaction with the associated region. For example, a subscore of 0.95 for the PBS essentially

indicates that, on average, the predicted probability of a pegRNA folded state lacking base pairing

between any linker nucleotide and the PBS is 95%.

We sought to validate the use of pegLIT for linker design and examine which interactions

identified by pegLIT were most detrimental to editing efficiency. We generated 30 linker sequences

(10 recommended by pegLIT, 10 interacting with the spacer, and 10 interacting with the PBS) to test

with evopreQ1 epegRNAs templating either a C•G-to-A•T transversion at RNF2 or a 15-bp deletion at

DNMT1. The average spacer and PBS subscores were 0.94 and 0.97 for the optimal sequences, 0.66

and .95 for the spacer sequences, and 0.86 and 0.21 for the PBS sequences. Relative to the

recommended designs, use of the PBS-interacting linkers was associated with 1.3- and 1.1-fold lower

editing efficiency at RNF2 and DNMT1 respectively (Supplementary Fig. 13), whereas the spacer-

interacting linkers had a negligible effect on editing efficiency. This difference may be because the

closer proximity of the linker to the PBS compared to the spacer may give linker:PBS interactions an

entropic advantage compared to linker:spacer pairing.

epegRNAs delivered via plasmid transfection with optimized guide RNA scaffolds in HEK293T cells

To mimic lower expression conditions, we transfected HEK293T cells with 20 ng of PE2

plasmid and 4 ng of pegRNA or epegRNA plasmid when assessing the applicability of “flip and

extension” (F+E) sgRNA scaffold variants for PE. We compared the editing efficiency of epegRNAs

targeted to PRNP, HEK3, RUNX1, and EMX1 that contained the canonical sgRNA scaffold, an (F+E)

scaffold5, or one of six (F+E) scaffolds bearing mutations previously shown to increase Cas9-nuclease

activity6. We found that these alternative scaffolds overall either maintained or improved PE efficiency

relative to the standard scaffold, with cr772 exhibiting the best improvement (Supplementary Fig.
12). While efficiency improvements were less consistent under these conditions compared to lentiviral

transduction (Supplementary Fig. 11), this may stem from differences in expression. EpegRNA

expression is likely several-fold higher following plasmid transfection than that following single-copy

lentiviral transduction, which may partially obfuscate the benefits of more efficient transcription and

Cas9 binding affinity. We recommend testing cr772 or the original (F+E) scaffold to further improve

PE efficiency with epegRNAs, especially for applications with lower expression than plasmid

transfection.

Installation of FLAG tags using unoptimized epegRNAs

We compared epegRNAs and pegRNAs for the installation of more challenging edits, such as

insertion of the 24-bp FLAG epitope tag (Fig. 2a). We assessed the ability of unoptimized pegRNAs

and tevopreQ1 epegRNAs containing one of two loci-specific pegLIT-designed 8-nt linkers to template

the installation of a FLAG epitope tag at 15 loci in HEK293T cells using PE2 (Supplementary Fig.
15). The unoptimized epegRNAs and pegRNAs were designed with a 13-nt PBS and an RT template

containing 25 nt of homology downstream of the inserted FLAG epitope tag, except when the 3′

extension would begin with cytosine7, in which case it was extended to the nearest non-C nucleotide.

The use of epegRNAs enabled FLAG tags to be installed with PE2 at ≥10% efficiency with no PBS

and RT template optimization at 5 of the 15 sites, while ≥10% efficiency was not observed with any

pegRNAs (Supplementary Fig. 15). These observations further demonstrate that epegRNAs can

enhance prime editing performance for a variety of edits at many different endogenous human

genomic loci.

Supplementary Figure 1. Sequence and secondary structure of RNA structural motifs
examined in this study. Structures are based on predictions from previously published structural or
bioinformatic analyses8-11. Only two G-quadruplexes of the 11 tested are shown for brevity.
Sequences of all motifs are provided in Supplementary Table 2.

Supplementary Figure 2. PE3-mediated edit:indel ratio for pegRNAs and epegRNAs shown in
Fig. 2. Fold-change in the observed prime editing edit:indel ratio for installation of a FLAG epitope tag
(a) or the indicated transversion or deletion (b) in HEK293T cells, or the indicated edit in HeLa, U2OS,
or K562 cells (c) of epegRNAs bearing either evopreQ1 (p) or mpknot (m) compared to unmodified
pegRNA (dashed line). Values were calculated from the data presented in Fig. 2a, 2c and 2d
respectively. Data and error bars reflect the mean and standard deviation of three independent
biological replicates.

Fo
ld

 c
ha

ng
e

in
 e

di
t:i

nd
el

 ra
tio

 o
f

ep
eg

R
N

As
 c

om
pa

re
d

to
 p

eg
R

N
As

HEK293T, +1 FLAG tag ins, PE3 HEK293T, PE3

motif p m p m p m p m p m p m

template
RT (nt) 14 14 24 24 34 34 15 15 25 25 35 35

RUNX1 + 1 to + 15 del
HEK3 + 1 T•A to A•T

HeLa, PE3

DNMT1 + 1 to 15 del
RNF2 + 1 C•G to T•A

HEK3 + 1 FLAG ins

0
1
2
3
4
5
5

10
15
20
25
30

motif p m p m p m p m p m p m p m p m p m
0
1
2
3
4
5
5

10
15
20
25
30

motif
0
1
2
3
4
5
5

10
15
20
25
30

motif

U2OS, PE3 K562, PE3c

0

1

2

3

4

5

V
E

G
FA

 e
vo

pr
eQ

1

V
E

G
FA

 m
pk

no
t-5

0

5

10

15

20

1

H
E

K
3

ev
op

re
Q

1

H
E

K
3

m
pk

no
t

R
N

F2
 e

vo
pr

eQ
1

R
N

F2
 m

pk
no

t
R

U
N

X
1

ev
op

re
Q

1

R
U

N
X

1
m

pk
no

t
D

N
M

T1
 e

vo
pr

eQ
1

D
N

M
T1

 m
pk

no
t0.0

0.5

1.0

1.5

Fo
ld

 c
ha

ng
e

in
 e

di
t:i

nd
el

 ra
tio

 o
f

ep
eg

R
N

As
 c

om
pa

re
d

to
 p

eg
R

N
As

Supplementary Figure 3. Linker-length dependence of epegRNA activity. Effect of removing the
8-nt linkers used in Fig. 2 and Supplementary Fig. 4 a-k on PE3 editing efficiency. Either evopreQ1
(p) or mpknot (m) was appended to the PBS via either no linker or an 8-nt linker. The distance from
the Cas9 nick site to the installed mutation in nucleotides is as indicated in the legend. Dots indicate
the average of three biological replicates. Bars indicate the grand median. Significance was calculated
via a two-tailed paired Student’s t test (p=0.022).

Supplementary Figure 4. Improvement in PE3-mediated editing efficiency at various genomic
loci from to the addition of 3′ RNA structural motifs to pegRNAs. (a-k) PE3-mediated installation
of the indicated edit at (a, b) DNMT1, (c) RUNX1, (d, e) RNF2, (f, g) FANCF, (h, i) EMX1, (j) VEGFA,
or (k) HEK3. Either an 8-nt linker alone or the linker in conjunction with evopreQ1 (p) or mpknot (m)
was appended to pegRNAs of increasing template lengths and compared to canonical pegRNAs. The
distance from the Cas9 nick site to the installed mutation in nucleotides is indicated. Data and error
bars reflect the mean and standard deviation of three independent biological replicates.

Supplementary Figure 5. PE3-mediated edit:indel ratio for pegRNAs and epegRNAs shown in
Supplementary Fig. 4. Fold-change in the observed edit:indel ratio for the indicated transversion or
deletion at HEK3, RUNX1, or DNMT1 (a), RNF2 or FANCF (b), or EMX1 or VEGFA (c) of epegRNAs
bearing either evopreQ1 (p) or mpknot (m) compared to unmodified pegRNA (dashed line). Values
were calculated from the data presented in Supplementary Fig. 2a-k. Data and error bars reflect the
mean and standard deviation of three independent biological replicates.

Supplementary Figure 6. Engineered pegRNAs demonstrate no increase in detected off-target
activity compared to canonical pegRNAs. On- and off-target PE3 editing of pegRNAs and
epegRNAs targeted to HEK3, EMX1, or FANCF and templating either a nucleotide transversion (T•A
to A•T at HEK3 or G•C to T•A at EMX1 and FANCF; pt mtn) or a 15-nt deletion (del). –, canonical
pegRNA; m, epegRNA containing mpknot; p, epegRNA containing evopreQ1. Indel frequencies are
shown in parentheses. For EMX1 off-target 1, indels were obtained by subtracting the percentage of
sequencing reads containing indels in cells transfected with a non-targeting pegRNA. Off-target loci
are listed in Supplementary Table 4. Data are the average of three biological replicates.

 pegRNA
site

- - -
pt mtn,

-
pt mtn,

m
del,

-
del,
p

- - -
pt mtn,

-
pt mtn,

p
del,

-
del,
m

- - -
pt mtn,

-
pt mtn,

m
del,

-
del,
m

On-target 21.5
(4.0)

44.1
(11.7)

57.9
(2.8)

72.7
(4.7)

30.5
(1.1)

34.5
(1.1)

28.6
(0.8)

47
(0.5)

40.7
(4.2)

48.8
(3.7)

38.9
(6.4)

40.6
(6.3)

Off-target 1 <0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

Off-target 2 <0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

Off-target 3 <0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

Off-target 4 <0.1
(<0.1)

<0.1
(0.1)

<0.1
(0.1)

<0.1
(0.1)

<0.1
(0.1)

<0.1
(0.1)

<0.1
(<0.1)

<0.1
(0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

<0.1
(<0.1)

HEK3 (PE3) EMX1 (PE3) FANCF (PE3)

Supplementary Figure 7. Site-dependent expression differences of pegRNAs and epegRNAs.
Northern blot of HEK293T lysates containing pegRNAs or epegRNAs targeted to (a) HEK3 or (b)
EMX1 after hybridization with a DIG-labeled RNA probe complementary to the sgRNA scaffold. PAGE
gels shown are representative of multiple independent biological replicates. The normalized fold
change in abundance relative to unmodified pegRNA as determined by densitometry is shown (right).
Abundance was calculated by including both full-length pegRNA and epegRNA for samples in which
full length pegRNA is present. Band identity was confirmed using untreated in vitro transcribed
pegRNAs and epegRNAs as standards, DIG-labeled ssRNA ladder, and purified RNA from HEK293T
cells transfected with sgRNA as markers. (c) Abundance of epegRNA and canonical pegRNA
targeted to HEK3, DNMT1, RNF2 or EMX1 in HEK293T cells by RT-qPCR amplification and
quantification of the sgRNA scaffold. Primers for qPCR amplification can be found in Supplementary
Table 5. Data and error bars reflect the mean and standard deviation of three independent biological
replicates.

epegRNA
(234 nt)

pegRNA
(170 nt)

sgRNA
(96 nt)

pe
gR

N
A

ev
op

re
Q

1

m
pk

no
t

0

0.5

1.0

1.5

un
m

od
ifi

ed

ev
op

re
Q

1

m
pk

no
t

N
or

m
al

iz
ed

 fo
ld

 c
ha

ng
e

in
 a

bu
nd

an
ce

HEK3 +1 FLAG ins

pe
gR

N
A

ev
op

re
Q

1

m
pk

no
t

10

1

2

3

4

un
m

od
ifi

ed

ev
op

re
Q

1

m
pk

no
t

N
or

m
al

iz
ed

 fo
ld

 c
ha

ng
e

in
 a

bu
nd

an
ce

EMX1 +5 G•C to T•A

0

1

2

3

4

5

Fo
ld

 c
ha

ng
e

in
 a

bu
nd

an
ce

re

la
tiv

e
to

 u
nm

od
ifi

ed
 p

eg
R

N
A

unmodified

evopreQ1

mpknot

HEK3 DNMT1 RNF2 EMX1

sgRNA
(96 nt)

epegRNA
(196 nt)

pegRNA
(132 nt)

Supplemental Figure 8. High-throughput sequencing analysis of PE2-mediated genomic
reverse transcriptase products. Comparison of prime-editing intermediates generated by PE2 with
either pegRNAs or epegRNAs at (a) HEK3, (b) DNMT1, or (c) EMX1 as indicated. Dotted lines
indicate the full-length reverse transcriptase product templated by the pegRNA or epegRNA tested at
the indicated locus. X axis is relative to the position of the PE2-induced nick with the first base 3′
downstream represented as position +1. Histograms and pie charts are generated from the average
of three independent biological replicates.

Supplementary Figure 9. PE3-mediated editing efficiency of pegRNAs containing other RNA
structural motifs. Comparison of PE3-mediated editing efficiencies for the installation of the FLAG
epitope tag, a 15-nt deletion, or a point mutation at HEK3 (a) and RNF2 (b) with epegRNAs to which
various G-quadruplexes have been appended via an 8-nt linker. G-quadruplexes are ordered based
on melting temperature, ranging from 60 to >90 °C, as previously determined12. (c) PE3-mediated
efficiency of installation of point mutations at the indicated genomic loci using pegRNAs containing the
evopreQ1 motif or a 15-bp (34-nt) hairpin. (d) Addition of either a pseudoknot known to inhibit the 5′
exonuclease XrnI (xrnI)10 or a large tertiary RNA structure (the P4-P6 domain of the group I intron
from Tetrahymena thermophila11) to the 3′ terminus of the pegRNA via an 8-nt linker does not yield
more efficient editing than addition of either evopreQ1 or mpnkot by the same linker. The distance
from the Cas9 nick site to the installed mutation is indicated. Data and error bars reflect the mean and
standard deviation of three independent biological replicates.

Supplementary Figure 10. PE3-mediated editing efficiency of epegRNAs containing evopreQ1
or mpknot variants. Comparison of PE3-mediated editing efficiencies for the installation of the FLAG
epitope tag, a 15-nt deletion, or a point mutation at HEK3 and RNF2 with epegRNAs containing
various RNA motifs, where the distance between the Cas9 nick and the edit is indicated by +1. PE3
editing efficiencies of additional evolved prequeosine1-1 riboswitch aptamer variants (a) or
modifications to mpknot (b) compared to evopreQ1 or mpknot. (c) PE3 editing efficiencies of
epegRNAs trimmed to remove nucleotides 5′ and 3′ of evopreQ1 (tevopreQ1) and mpknot (tmpknot)
compared to parent epegRNAs. Data and error bars reflect the mean and standard deviation of three
independent biological replicates.

Supplementary Figure 11. Effect of the (F+E) scaffold on PE2-editing efficiency with lentivirally
transduced epegRNAs. PE2-editing efficiency of lentivirally-transduced prime editor and pegRNA or
epegRNA that contain tevopreQ1 and either the canonical or (F+E) sgRNA scaffold and that template
the indicated edit at HEK3 or DNMT1 in HEK293T cells. Data and error bars reflect the mean and
standard deviation of three independent biological replicates.

Supplementary Figure 12. Effect of (F+E) scaffold modifications on prime editing efficiency
with epegRNAs. Comparison of PE3-mediated editing efficiencies of epegRNAs with the indicated
scaffold to epegRNAs with the standard SpCas9 sgRNA scaffold. One-tenth the normal amount of
plasmids encoding PE2 and pegRNA or epegRNA was transfected in HEK293T cells in these
experiments. Edits templated were either a transversion at PRNP, RUNX1, or EMX1 or a 15-nt
deletion at HEK3. Modified scaffold sequences all contain the “flip and extension” (F+E) modification.
Scaffolds designated cr also contain mutations to the (F+E) scaffold previously identified as potentially
improving Cas9 nuclease activity at some sites6. Sequences of all scaffolds can be found in
Supplementary Table 1. Lines indicate the grand medians.

(F
+E

)

cr
74

8

cr
28

9

cr
62

2

cr
77

2

cr
53

2

cr
96

10.0

0.5

1.0

1.5

2.0

Fo
ld

 in
cr

ea
se

 in
 e

di
tin

g
vs

 s
ta

nd
ar

d
sc

af
fo

ld
 HEK293T, PE3, reduced transfection

PRNP +6 G•C to T•A (w/o indels)

RUNX1 +5 G•C to T•A (w/o indels)

EMX1 +5 G•C to T•A (w/o indels)

HEK3 +1-15 deletion (w/o indels)

Supplementary Figure 13. Computational prediction of effective linker sequences between the
PBS and structural motif of epegRNAs. (a) Schematic illustrating the workflow of pegLIT, a
computational script to select appropriate linker sequences for epegRNAs. Potential linker sequences
are filtered by sequence identity and propensity for base pairing to other regions of the epegRNA.
Sequences passing the filter are then optionally clustered based on identity and individual sequences
are selected from different clusters to promote diversity in the final output. (b and c) epegRNAs
containing evopreQ1 connected via linker sequences recommended by pegLIT lead to modestly

improved PE editing efficiency compared to epegRNAs containing evopreQ1 connected via a human-
designed linker or linkers that were predicted by pegLIT to interact with the PBS and (d) rescued
activity at those sites at which epegRNAs did not initially yield improvements (Supplementary Fig. 4).
(e) Comparison of PE3-mediated editing efficiencies of epegRNAs with evopreQ1 and either 8- or 18-
nt long linkers suggests no significant improvement is achieved by increasing linker length. (f)
Comparison of PE3-mediated editing efficiencies of epegRNAs with either evopreQ1 (p) or mpknot (m)
and either an 8-nt pegLIT linker (8) or no linker (0). Significance was calculated using a two-tailed
paired student’s t test (p=0.0061). (g) Fold increase in PE3-mediated editing efficiencies of epegRNAs
with tevopreQ1 containing an 8-nt pegLIT linker compared to no linker. Data are presented as the
mean with error bars indicating either (for b) the standard deviation of the mean for five pegLIT-
designed linkers, each in triplicate, or the standard deviation of three replicates for manually designed
linker sequences, (for c ,d, and g) the standard deviation of three biological replicates, or (for e and f)
the grand median of the average fold-change in editing efficiency for each indicated site and edit.

Supplementary Figure 14. Improvements in editing efficiency upon electroporation of
chemically synthesized epegRNAs. (a) Efficiency of PE3-mediated installation of the indicated edit
upon nucleofection of mRNA which encodes PE2, a chemically synthesized nicking sgRNA, and
either chemically synthesized pegRNA or epegRNA containing evopreQ1 via an 8-nt linker. (b)
Observed fold-change in the edit:indel ratio for epegRNAs compared to pegRNAs for the indicated
site and edit, based on data in (a). Data and error bars reflect the mean and standard deviation of two
or more independent biological replicates.

DNMT1 +5 G•C to T•A (w/o indels)

RNF2 +1 C•G to A•T (w/o indels)
HEK3 +1-15 del (w/o indels)

RUNX1 +5 G•C to T•A (w/o indels)

Indels
EMX1 +5 G•C to T•A (w/o indels)

HEK3 +1 T•A to A•T (w/o indels)

0

20

40

60

80
%

 o
f t

ot
al

 s
eq

ue
nc

in
g

re
ad

s
w

ith
 th

e
sp

ec
ifi

ed
 e

di
t o

r i
nd

el
s

RNF2 +1-15 del (w/o indels)

HEK293T, nucleofection of synthetic pegRNA, PE3

un
m

od
ifi

ed

ep
eg

R
N

A

un
m

od
ifi

ed

ep
eg

R
N

A

un
m

od
ifi

ed

ep
eg

R
N

A

un
m

od
ifi

ed

ep
eg

R
N

A

un
m

od
ifi

ed

ep
eg

R
N

A

un
m

od
ifi

ed

ep
eg

R
N

A

un
m

od
ifi

ed

ep
eg

R
N

A

H
EK

3
+1

 T
•A

 to
 A

•T

H
EK

3
+1

-1
5

de
l

R
N

F2
 +

1
C

•G
 to

 A
•T

R
N

F2
 +

1
to

 1
5

de
l

D
N

M
T1

 +
5

C
•G

 to
 T

•A

R
U

N
X1

 +
5

C
•G

 to
 T

•A

EM
X1

 +
5

C
•G

 to
 T

•A

Fo
ld

 c
ha

ng
e

in
 e

di
t:i

nd
el

 ra
tio

 o
f

ep
eg

R
N

As
 c

om
pa

re
d

to
 p

eg
R

N
As

HEK293T, nucleofection
of synthetic pegRNA, PE3

0.0

0.5

1.5

2.0

2.5

1

Supplementary Figure 15. PE2-mediated efficiency of installation of FLAG tags at the indicated
genomic sites. (a) PE2-mediated editing efficiency of FLAG epitope tag insertion at 15 genomic loci
in HEK293T cells using unoptimized epegRNAs compared to unoptimized canonical pegRNAs. (b)
Data from (a) shown in bar chart form. Sites with sub 1% editing efficiency with both pegRNAs and
epegRNAs are not shown but are listed in Supplemental Table 1. Data and error bars reflect the
mean and standard deviation of three independent biological replicates.

0

10

20

30

%
 o

f t
ot

al
 s

eq
ue

nc
in

g
re

ad
s

w
ith

 th
e

sp
ec

ifi
ed

 e
di

t o
r i

nd
el

s

Indels
epegRNA
unmodified

HEK293T, PE2 FLAG tag insertion

DMC1 MLH3 MSH5 PMS2 Rad51d Spidr Swi5 Swsap1

BRCA

DMC1

HFM1

MLH1

MLH3

MSH2

MSH5

MSH6

PDS5

PMS2

RAD51B

RAD51D

SPIDR

SWI5

SWSAP1

un
m

od
ifi

ed

ep
eg

R
N

A

0

10

20

30

%
 o

f t
ot

al
 s

eq
ue

nc
in

g
re

ad
s

w
ith

 th
e

in
te

nd
ed

 e
di

t
PE2 FLAG tag insertion

with unoptimized pegRNAs
in HEK293T cells

Supplementary Figure 16. Uncropped agarose gel in Figure 3. Uncropped image of the agarose
gel used for Figure 3a with the excerpted region outlined in black. Untreated in vitro transcribed
pegRNAs or epegRNAs were used as molecular weight standards.

Supplementary Figure 17. Uncropped northern blots in Supplementary Figure 7. (a) Uncropped
image of the northern blot used for Supplementary Figure 7a with the excerpted region outlined in
black. Species lengths were confirmed using untreated in vitro transcribed pegRNA and epegRNA as
molecular weight standards on a separate blot with a molecular weight ladder (shown in b). (b)
Uncropped image of the northern blot used to confirm the band identities and molecular weights of
standards in (a). (c) Uncropped image of the northern blot used for Supplementary Figure 7b with the
excerpted region outlined in black.

Supplementary Tables are provided in a separate Microsoft Excel file.

Supplementary Table 1. Sequences of pegRNAs and sgRNAs used in this study. This table lists all
(e)pegRNAs and sgRNA used in the study. For each RNA, the spacer, template, PBS, linker, and
motif added, if any, are listed separately. RNAs are organized by figure.

Supplementary Table 2. Sequences of RNA structural motifs examined in this study. This table
contains a separate list of RNA structural motifs which were appended to epegRNAs. We recommend
epegRNAs that contain tevopreQ1 (highlighted).

Supplementary Table 3. Sequences of primers used for genomic DNA amplification. This table lists
all primers used for genomic DNA amplification prior to high-throughput sequencing. For most forward
primers, offset forward primers with either 4 or 5 Ns were used, as indicated.

Supplementary Table 4. Sequences of amplicons analyzed with high-throughput sequencing. This
table lists all genomic regions analyzed by high-throughput sequencing, including known Cas9 off-
target sites for HEK3, EMX1, and FANCF.

Supplementary Table 5. Sequences of primers used in RTqPCR experiments. This table lists all
primers used for RTqPCR analysis of pegRNA expression levels.

Supplementary Table 6. Reference SNP numbers of pathogenic mutations installed with pegRNAs
or epegRNAs. This table lists NCBI reference SNP designations for mutations installed in Fig. 4d.

Supplementary Note 1. Guidelines for epegRNA cloning via Golden Gate DNA assembly13.
When cloning epegRNAs using the Golden Gate method, the same protocol as previously described7
is appropriate with the important note that the junction sequence between the 3’ extension oligo and
the plasmid backbone is different for epegRNAs using tevopreQ1 and trimmed mpknot (tmpknot), as
shown below. More details on pegRNA design and cloning are available at http://liugroup.us. Plasmid
backbones used for Golden Gate cloning have been deposited with Addgene.

Supplementary Note 2. pegRNA Linker Identification Tool (pegLIT) code

from math import prod
import random
import heapq
import numpy as np
from scipy.special import expit as sigmoid
from sklearn.cluster import AgglomerativeClustering as HAC
from Levenshtein import distance as levenshtein_distance
import RNA # ViennaRNA

BASE_SYMBOLS = {
 "A": ("A",), "C": ("C",), "G": ("G",), "T": ("T",), "U": ("T",),
 "W": ("A", "T"), "S": ("C", "G"), "M": ("A", "C"),
 "K": ("G", "T"), "R": ("A", "G"), "Y": ("C", "T"),
 "B": ("C", "G", "T"), "D": ("A", "G", "T"), "H": ("A", "C", "T"), "V": ("A", "C", "G"),
 "N": ("A", "C", "G", "T")}

def apply_filters(seq_pre, seq_linker, seq_post, ac_thresh, u_thresh, n_thresh):
 """
 Returns False if any filter is failed i.e. AC content < ac_thresh OR consecutive Us > u_thresh
 OR consecutive Ns > n_thresh. Otherwise, True if all filters are passed. All thresholds have
 units nt (i.e. ac_thresh is not a percent). Ts are treated as Us.
 """
 # AC content
 if seq_linker.count("A") + seq_linker.count("C") < ac_thresh:
 return False
 # Consecutive U
 seq_neighborhood = seq_pre[-(u_thresh):] + seq_linker + seq_post[:u_thresh]
 seq_neighborhood = seq_neighborhood.replace("T", "U")
 if "U" * (u_thresh + 1) in seq_neighborhood:
 return False
 # Consecutive N
 seq_neighborhood = seq_pre[-(n_thresh):] + seq_linker + seq_post[:n_thresh]
 seq_neighborhood = seq_neighborhood.replace("T", "U")
 if any(nt * (n_thresh + 1) in seq_neighborhood for nt in set(seq_linker)):
 return False
 return True

def calc_subscores(linker_pos, *sequence_components):
 """
 Calculate base-pairing probs marginalized for each nucleotide
 """
 # Calculate bpp from ViennaRNA
 pegrna = RNA.fold_compound("".join(sequence_components))
 _ = pegrna.pf() # need to first internally calculate partition function
 basepair_probs = np.array(pegrna.bpp())[1:, 1:]
 # Fill in lower-triangle and diagonal of ViennaRNA's upper-triangular bpp matrix
 unpaired_probs = 1. - (basepair_probs.sum(axis=0) + basepair_probs.sum(axis=1))
 # copy data to make symmetric
 i_lower = np.tril_indices(len(basepair_probs), -1)
 i_diag = np.eye(len(basepair_probs), dtype=bool)
 basepair_probs[i_lower] = basepair_probs.T[i_lower]

 basepair_probs[i_diag] = unpaired_probs
 # Track indices of subsequences
 idx_cur = 0
 seq_idx = []
 for subseq in sequence_components:
 idx_prev = idx_cur
 idx_cur += len(subseq)
 seq_idx.append(slice(idx_prev, idx_cur))
 # Extract subscores for subsequences
 bpp_subseq = np.ma.masked_all(len(sequence_components))
 for i, subseq in enumerate(sequence_components):
 bpp_within_subseq = basepair_probs[seq_idx[i], seq_idx[linker_pos]]
 bpp_subseq[i] = np.mean(np.sum(bpp_within_subseq, axis=0))
 return bpp_subseq

def apply_score(seq_spacer, seq_scaffold, seq_template, seq_pbs, seq_linker,
 score_to_beat=None, epsilon=0.01):
 """
 Calculates subscores then outputs hashed score. Terminates calculation early if score will
 be less than score_to_beat. Prioritize PBS, spacer, template, scaffold.
 """
 # Cas9 complex at R loop subscore
 bpp_subseq1 = calc_subscores(2, seq_template, seq_pbs, seq_linker)
 subscore_pbs = 1. - bpp_subseq1[1]
 subscore_template = 1. - bpp_subseq1[0]
 # Free pegRNA subscore
 if ((score_to_beat is not None)
 and (epsilon * int(subscore_pbs / epsilon) < score_to_beat[0])):
 subscore_spacer = 0.
 subscore_scaffold = 0.
 else:
 bpp_subseq2 = calc_subscores(4, seq_spacer, seq_scaffold,
 seq_template, seq_pbs, seq_linker)
 subscore_spacer = 1. - bpp_subseq2[0]
 subscore_scaffold = 1. - bpp_subseq2[1]
 # Turn subscores into a single score
 return tuple(
 epsilon * int(val / epsilon)
 if val is not None else 0
 for val in (subscore_pbs, subscore_spacer, subscore_template, subscore_scaffold)
)

def optimize(seq_spacer, seq_scaffold, seq_template, seq_pbs, seq_motif,
 linker_pattern, ac_thresh, u_thresh, n_thresh, topn, epsilon,
 num_repeats, num_steps, temp_init, temp_decay, seed):
 """
 Simulated annealing optimization of linkers
 """
 ## Pre-process inputs
 random.seed(seed)
 seq_pre = seq_spacer + seq_scaffold + seq_template + seq_pbs
 seq_post = seq_motif
 linker_pattern = linker_pattern.upper()

 ac_thresh = ac_thresh * len(linker_pattern)
 ## Simulated annealing to optimize linker sequence
 # Initialize hashmap of sequences already considered
 linker_skip = {}
 len_sequence_space = prod(len(BASE_SYMBOLS[nt]) for nt in linker_pattern)
 # Initialize min heap of topn linkers
 linker_heap = []
 for _ in range(num_repeats):
 # Initialize simulated annealing
 seq_linker_prev = "".join([random.choice(BASE_SYMBOLS[nt]) for nt in linker_pattern])
 score_prev = None
 temp = temp_init
 for _ in range(num_steps):
 # Generate new sequence by substituting characters in sequence until pass filters
 seq_linker = seq_linker_prev
 keep_going = True
 while keep_going:
 char_pos = random.randint(0, len(linker_pattern) - 1)
 seq_linker = (
 seq_linker[:char_pos]
 + random.choice(BASE_SYMBOLS[linker_pattern[char_pos]])
 + seq_linker[(char_pos + 1):])
 keep_going = (
 (seq_linker in linker_skip
 or not apply_filters(seq_pre, seq_linker, seq_post,
 ac_thresh, u_thresh, n_thresh))
 and len(linker_skip) < len_sequence_space) # already screened whole seq space
 linker_skip[seq_linker] = True
 # Calculate score for linker sequence
 score_to_beat = linker_heap[0][0] if len(linker_heap) >= topn else None
 score = apply_score(seq_spacer, seq_scaffold, seq_template, seq_pbs, seq_linker,
 score_to_beat=score_to_beat, epsilon=epsilon)
 # Add to min heap i.e. maintains the top `topn` largest entries
 if score_to_beat is None: # heap is not yet full
 heapq.heappush(linker_heap, (score, seq_linker))
 elif score > score_to_beat:
 heapq.heapreplace(linker_heap, (score, seq_linker))
 # Decide if keep proposal
 if (score_prev is None # initialize
 or score > score_prev # exploit improvement
 or random.random() < sigmoid(# explore
 sum((s1 - s2) * (epsilon ** i)
 for i, (s1, s2) in enumerate(zip(score, score_prev))) / temp
)):
 seq_linker_prev = seq_linker
 score_prev = score
 # Update simulated annealing param
 temp *= temp_decay
 linker_heap_scores, linker_heap = zip(*linker_heap)
 return linker_heap_scores, linker_heap

def apply_bottleneck(heap_scores, heap, bottleneck, seed):
 """

 Cluster sequences and output top-scoring sequence per cluster.
 """
 random.seed(seed)
 # Pick best, randomly tiebreak if needed
 def _pick_best(scores, choices):
 idx_maxed = np.where(scores == np.max(scores))[0]
 idx_chosen = random.choice(idx_maxed)
 return choices[idx_chosen]
 # Can just pick best output
 if bottleneck == 1:
 return [_pick_best(heap_scores, heap)]
 # Calculate features for each linker sequence i.e. edit distance to all other linker sequences
 features = np.zeros((len(heap), len(heap)), dtype=int)
 for i, seq_x in enumerate(heap):
 for j, seq_y in enumerate(heap):
 features[i, j] = levenshtein_distance(seq_x, seq_y)
 # Cluster linker sequences
 clusters = HAC(n_clusters=bottleneck, linkage="complete").fit_predict(features)
 # Output highest-scoring linker sequence from each cluster
 output = []
 heap = np.array(heap)
 heap_scores_mean = np.mean(heap_scores, axis=1)
 for cluster_num in range(bottleneck):
 idx_cluster = clusters == cluster_num
 heap_cluster = heap[idx_cluster]
 cluster_scores = heap_scores_mean[idx_cluster]
 output.append(_pick_best(cluster_scores, heap_cluster))
 return output

def pegLIT(seq_spacer, seq_scaffold, seq_template, seq_pbs, seq_motif,
 linker_pattern="NNNNNNNN", ac_thresh=0.5, u_thresh=3, n_thresh=3, topn=100,
 epsilon=1e-2, num_repeats=10, num_steps=250, temp_init=0.15, temp_decay=0.95,
 bottleneck=1, seed=2020):
 """
 Optimizes+bottlenecks linker for an inputted pegRNA. Outputs linker recommendation(s).
 """
 # Simulated annealing to optimize linker sequence
 linker_heap_scores, linker_heap = optimize(
 seq_spacer, seq_scaffold, seq_template, seq_pbs, seq_motif,
 linker_pattern=linker_pattern, ac_thresh=ac_thresh, u_thresh=u_thresh,
 n_thresh=n_thresh, topn=topn, epsilon=epsilon, num_repeats=num_repeats,
 num_steps=num_steps, temp_init=temp_init, temp_decay=temp_decay, seed=seed)
 # Sample diverse sequences
 linker_output = apply_bottleneck(linker_heap_scores, linker_heap,
 bottleneck=bottleneck, seed=seed)
 return linker_output

if __name__ == "__main__":
 # Example usage for HEK3 +1 FLAG ins
 print(pegLIT(
 seq_spacer="GGCCCAGACTGAGCACGTGA",
 seq_scaffold="GTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTAT"
 "CAACTTGAAAAAGTGGCACCGAGTCGGTGC",

 seq_template="TGGAGGAAGCAGGGCTTCCTTTCCTCTGCCATCACTTATCG"
 "TCGTCATCCTTGTAATC",
 seq_pbs="CGTGCTCAGTCTG",
 seq_motif="CGCGGTTCTATCTAGTTACGCGTTAAACCAACTAGAA"))

Supplementary Note 3. Python script for quantifying prime editing intermediates

import pandas as pd
import glob
import re
import os
import subprocess
from subprocess import Popen
from subprocess import PIPE

#generates list of fastq files to analyze
fastqs = glob.glob('*.fastq')

#collects sequences of prime editing intermediates as any sequence between first 10 #nucleotides of
the targeted protospacer and a poly(G) sequence installed by TdT, writes #sequences to a new
“trimmed” text file
first10nts = {

 'HEK3':'GGCCCAGACT',
 'DNMT1':'GATTCCTGGT',
 'RNF2':'GTCATCTTAG',
 'EMX1':'GAGTCCGAGC'
 }

for fname in fastqs:
 with open(f'{fname[:-6]}_trimmed.txt','w+') as f:
 for spacer in first10nts.keys():
 if spacer in fname:

 nt_readARGS = ['grep', '-o', f'{first10nts[spacer]}.*GGGGGGGG', fname]
 nt_readproc = Popen(nt_readARGS, stdout=subprocess.PIPE,

universal_newlines=True)
 f.write(str(nt_readproc.stdout.read())+'\n')

trimmedfastqs = glob.glob('*trimmed.txt')

#determines length of intermediate that was tailed, whether it contains the desired edit, and the
#degree to which it contains sequence belonging to the reverse complement of the pegRNA #scaffold
and spacer
for fname in trimmedfastqs:
 sequences_b = open(fname, 'r')

 if 'HEK3' in fname:
 edit_pos = 1
 designed_flap = 'AGATGGCAGAGGAA'
 RT_temp_length = 14
 scaffold_revcomp = 'GCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCC

TTATTTTAACTTGCTATTTCTAGCTCTAAAACTCACGTGCTCAGTCTGGG
CC'

 if 'RNF2' in fname:
 edit_pos = 1
 designed_flap = 'ATGAGGTGTTCGTT'
 RT_temp_length = 14
 scaffold_revcomp = 'GCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCC

TTATTTTAACTTGCTATTTCTAGCTCTAAAACCAGGTAATGACTAAGATG
AC'

 if 'DNMT1' in fname:
 edit_pos = 5
 designed_flap = 'ACAGTGGTGAC'
 RT_temp_length = 11
 scaffold_revcomp = 'GCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCC

TTATTTTAACTTGCTATTTCTAGCTCTAAAACGCGCGAACAGCTCCAGCC
CGC'

 if 'EMX1' in fname:
 edit_pos = 5
 designed_flap = 'GAAGTGCTCCCATCAC'
 RT_temp_length = 16
 scaffold_revcomp = 'GCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCC

TTATTTTAACTTGCTATTTCTAGCTCTAAAACTTCTTCTTCTGCTCGGACT
C'

 seq_list = []

 df = pd.DataFrame({'flap seq':[],'flap length':[],'contains edit?':[],'scaffold insertion length':[]})

 for line in sequences_b:
 seq = str(line)
 seq_list.append(seq)

 counter = 0
 counter_b = 1
 for read in seq_list:
 edit = 0
 scaff_RT = 0
 for k in range(len(read) - 5):
 window = read[k:k+5]
 if window == 'GGGGG':
 spacer_flap = read[0:k]
 flap_length = len(spacer_flap) - 17
 if flap_length > edit_pos:
 if flap_length < len(designed_flap):
 three_prime = flap_length
 else:
 three_prime = len(designed_flap)
 if spacer_flap[17:17+three_prime] == designed_flap[:three_prime]:
 edit = 1
 if flap_length > RT_temp_length:
 scaff_ins_len = flap_length - RT_temp_length
 scaff_ins_seq = spacer_flap[RT_temp_length+17:]
 if scaffold_revcomp[0:scaff_ins_len] == scaff_ins_seq:
 scaff_RT = scaff_ins_len
 new_row = pd.DataFrame({'flap seq' : [spacer_flap],'flap length' :

[flap_length],'contains edit?' : [edit],'scaffold insertion length' : [scaff_RT]})
 df = df.append(new_row)
 break
 df = df[['flap seq','flap length','contains edit?','scaffold insertion length']]
 df.to_csv(f'{fname[:-4]}_output.csv', index=False)

Supplementary References

1. Bertsimas, D. & Tsitsiklis, J. Simulated Annealing. Stat Sci 8, 10-15 (1993).
2. Win, M.N. & Smolke, C.D. A modular and extensible RNA-based gene-regulatory platform for

engineering cellular function. Proc Natl Acad Sci USA 104, 14283-14288 (2007).
3. Nielsen, S., Yuzenkova, Y. & Zenkin, N. Mechanism of eukaryotic RNA polymerase III

transcription termination. Science 340, 1577-1580 (2013).
4. Lorenz, R. et al. ViennaRNA package 2.0. Algorithms Mol Biol 6, 26 (2011).
5. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized

CRISPR/Cas system. Cell 155, 1479-1491 (2014).
6. Jost, M. et al. Titrating gene expression using libraries of systematically attenuated CRISPR

guide RNAs. Nat Biotechnol 38, 355-364 (2020).
7. Anzalone, A.V. et al. Search-and-replace genome editing without double-strand breaks or

donor DNA. Nature 576, 149-157 (2019).
8. Roth, A. et al. A riboswitch selective for the queuosine precursor preQ1 contains an unusually

small aptamer domain. Nat Struct Mol Biol 14, 308-317 (2007).
9. Houck-Loomis, B. et al. An equilibrium-dependent retroviral mRNA switch regulates

translational recoding. Nature 480, 561-564 (2011).
10. Steckelberg, A.L. et al. A folded viral noncoding RNA blocks host cell exoribonucleases

through a conformationally dynamic RNA structure. Proc Natl Acad Sci USA 115, 6404-6409
(2018).

11. Cate, J.H. et al. Crystal structure of a group I ribozyme domain: principles of RNA packing.
Science 273, 1678-1685 (1996).

12. Pandey, S., Agarwala, P. & Maiti, S. Effect of loops and G-quartets on the stability of RNA G-
quadruplexes. J Phys Chem B 117, 6896-6905 (2013).

13. Engler, C., Gruetzner, R., Kandzia, R. & Marillonnet, S. Golden gate shuffling: a one-pot DNA
shuffling method based on type IIs restriction enzymes. PLoS One 4, e5553 (2009).

