
Simulation details 

The computational model describes the dynamic mechanical interactions between short 

microtubules, long microtubules, and kinetochores in two spatial dimensions. All positions 

described below are 2-dimensional. The coordinate system is assumed to be in the spindle 

frame, meaning the first component is along the spindle axis and the second component 

orthogonal to this axis. 

Simulation overview 

The following dynamic quantities are tracked in the simulations and updated at each time step. 

1. The spatial positions of each kinetochore, 𝑥ଵ, 𝑥ଶ, labeled arbitrarily. This allows for the 

computation of IKD and cTilt,  

IKD ൌ∥ 𝑥ଵ െ 𝑥ଶ ∥
cTilt ൌ arccos൫ሺ𝑥ଵ െ 𝑥ଶሻ ⋅ 𝑒ଵ൯/∥ 𝑥ଵ െ 𝑥ଶ ∥,

 

where 𝑒ଵ ൌ ሾ1,0ሿ, the unit vector corresponding to the spindle axis. 

2. The spatial positions of 𝑆 minus-end tips of short microtubules emanating from each 

kinetochore, 𝑦
 for 𝑗 ൌ 1, … , 𝑆 and 𝑖 ൌ 1,2. 

3. The state of minus-end tips of 𝑆 short microtubules emanating from each kinetochore, 𝑞
  

for 𝑗 ൌ 1, … , 𝑆 and 𝑖 ൌ 1,2. The state is either 𝑞 ൌ 𝑏 for bound or 𝑞 ൌ 𝑏 for bound to a 

particular long microtubule. 

The long microtubules are considered to be static and infinitely long in the simulation, each 

determined by a point on the line and the plus-end orientation 𝜙. Note that the orientation 

dictates the polarity of the microtubule. For example, 𝜙 ൌ 0 and 𝜙 ൌ 𝜋 are antiparallel, that is, 

geometrically parallel with opposite polarity. 



The time step of simulation, 𝛥𝑡, is fixed. The initial conditions are taken to be IKD ൌ 𝐿ୱ୮୰୧୬ and 

cTilt uniformly random. All short microtubules are initially in the unbound state and placed at 

positions uniformly radial to each kinetochore at distance 𝐿ୱ୦୭୰୲. 

Each timestep of the simulation contains two steps: 

4. Process binding and unbinding events by calculating position-dependent rates and then 

simulating whether an event occurs, updating the appropriate states if so. 

5. Compute mechanical forces based on positions and use these to update positions 

Due to the dependence between the reaction rates and positions, time steps are chosen to be 

small, and rates are assumed to be constant within each time step. We will describe each of 

these sub-steps in further detail. 

Binding and unbinding 

At each timestep, the rate of each possible reaction is computed based on current positions and 

states. These reactions are modeled as a Poisson process, where the probability of reaction 

with rate 𝜔 occuring in a small timestep ሾ𝑡, 𝑡  𝛥𝑡ሿ is 𝑝୰ୣୟୡ୲ ൌ 𝜔 ⋅ 𝛥𝑡. 

Binding 

Binding can occur when a short MT tip is unbound and near a long microtubule. The binding 

rate between short MT tip 𝑗 and long microtubule 𝑘 is 

𝑘୭୬
→ ൌ ൜

𝜔୭୬ ∥ 𝑦 െ 𝑑 ∥ 𝑅
0 otherwise,

 

where 𝑑 is the smallest distance from 𝑦 to the line characterized by 𝑑’s position and direction. 

In practice, this is straightforward to compute by projection. 



In words, binding occurs at constant when the short MT tip is within radius 𝑅 of a long 

microtubule. The result of the binding event is that the state 𝑞 → 𝑏 and the position is fixed to 

the closest point on the microtubule 𝑦 → 𝑑. 

Unbinding 

There are two types of unbinding considered in the model. One is the short MT unbinding at its 

minus-end from a long MT and the other is unbinding at its plus end from the kinetochore, both 

only occurring when the short MT is bound on the plus end. 

Type 1 unbinding (plus-end from KT). The connection between short MTs and kinetochores 

is assumed to be dynamic and able to be broken. The rate at which this connection breaks is 

modeled to depend on the angle between the kinetochore and the short MT, stemming from the 

assumption that the physical connection would become strained at large anglesS1,S2. 

For short MT 𝑗 bound to kinetochore 𝑖, this angle is measured by 

𝛾
 ൌ

൫𝑦
 െ 𝑥൯ ⋅ ሺ𝑥 െ 𝑥ሻ

∥ 𝑦
 െ 𝑥 ∥∥ 𝑥 െ 𝑥 ∥

. 

Here 𝑖𝑖 corresponds to the other kinetochore index. Then, the unbinding rate is a monotonically 

increasing function of 𝛾, 

𝑘ୠ୰ୣୟ୩ ൌ 𝜔ൣtanh൫െ𝛼𝛾
൯  1൧. 

In words, if 𝛾 ൎ 1, the short MT emenates straight out of the kinetochore, assumed to be the 

most stable connection. As mechanics occur, 𝛾 ൎ 0 means that the short MT is orthogonal to 

the kinetochore and this connection breaks with dramatically increased frequency. Short MTs 

that are connected toward the kinetochore detach effectively immediately, as this is physically 

unrealistic. The 𝛼 parameter controls the sensitivity of this mechanism to the angle. When this 

occurs, 𝑞 → 𝑢 and 𝑦 is placed at a uniformly random location 𝐿ୱ୦୭୰୲ distance away from the 



kinetochore. That is, a new connection forms immediately and total number of short MTs is 

conserved. This assumption is justified if the number of short MT connections at the kinetochore 

interface is limited by the number of linkers. 

Type 2 unbinding (minus-end from long MT). The other type of unbinding corresponds to the 

minus-end of short MT 𝑗 unbinding from a long microtubule. Although this connection is 

assumed to be by a molecular motor whose unbinding rate is known to be force-dependent, we 

assume that the motor force relaxes quickly relative to the rest of the system and this becomes 

effectively constant, 

𝑘୭ ൌ 𝜔୭. 

When this occurs, 𝑞
 → 𝑢 and the position is maintained 𝑦

 → 𝑦
, allowing for the possibility of 

rebinding quickly after. 

Forces 

The force between kinetochores is modeled as a spring with some stiffness and rest length. The 

force on kinetochore 𝑖 is 

𝐹ୱ୮୰୧୬
 ൌ ൝

െ𝑘ୱ୮୰୧୬൫∥ 𝑥 െ 𝑥 ∥ െ𝐿ୱ୮୰୧୬൯
𝑥 െ 𝑥

∥ 𝑥 െ 𝑥 ∥
∥ 𝑥 െ 𝑥 ∥ 𝐿ୱ୮୰୧୬

0 otherwise.
 

Rigid short microtubules are modeled as stiff springs, with a nearly fixed length enforced by the 

spring stiffness. 

𝐹ୱ୦୭୰୲,
 ൌ െ𝑘ୱ୦୭୰୲൫∥ 𝑦

 െ 𝑥 ∥ െ𝐿ୱ୦୭୰୲൯
𝑦

 െ 𝑥

∥ 𝑦
 െ 𝑥 ∥

. 

Effectively an angular spring, we assume there is a force causing short MTs to maintain 

emanating an angle straight out of kinetochores. Since the tip is modeled as a point, this is 



modeled as a force pulling the tip to the position 𝐿ୱ୦୭୰୲ distance away from the kinetochore in 

the direction of the KT-KT vector. Therefore, the angular force is 

𝐹ୟ୬,
 ൌ െ𝑘ୟ୬ 𝑦

 െ ൬𝑥  𝐿ୱ୦୭୰୲
𝑥 െ 𝑥

∥ 𝑥 െ 𝑥 ∥
൰൨. 

While bound, the motors exert a constant force 𝐹 on the tip of short MT 𝑗 in the minus-end 

direction of the long microtubule described by the unit vector in the direction െ𝜙 

𝐹୫୭୲,
 ൌ 𝐹𝑒ିథ. 

The evolution of the kinetochores due to the forces exerted on it is described by the stochastic 

differential equation (SDE) 

𝜂𝑥ሶ ൌ 𝐹ୱ୮୰୧୬
 െ  𝐹ୱ୦୭୰୲,



ௌ

ୀଵ

 𝜉𝜁ሺ𝑡ሻ, 

where 𝜁 is a white-noise process corresponding to random fluctuations with magnitude 

controlled by 𝜉 and 𝜂 is the effective drag coefficient. 

The short microtubule tips follow a similar evolution, 

𝜂௦𝑦ሶ
 ൌ 𝐹ୱ୦୭୰୲,

  𝐹ୟ୬,
  1ೕ

ୀ𝐹୫୭୲,
  𝜉௦𝜁,ሺ𝑡ሻ. 

where 1⋅ is an indicator function causing the motor force to only be exerted while bound. The 

SDEs are updated at each time step using the Euler-Maruyama scheme. 

Long MT configurations 

In the main text, four long MT configurations are mentioned and elaborated upon here. In all 

configurations, the number long MTs is chosen to be large enough that no simulation reaches a 

boundary in the timeframe of 100 seconds. That is, the pattern is effectively periodic in both 

dimensions. 



Antiparallel uniform. In this configuration, all microtubules are equidistant, with distance 𝐷ଵ, in 

the 2nd dimension and are infinitely long in the first. The orientation alternates between 𝜙 ൌ 0 

and 𝜙 ൌ 𝜋. 

Antiparallel bundled. 𝐵 (an even number) of microtubules within a bundle are equidistant with 

distance 𝐷ଶ apart from one another, again with alternating 𝜙 ൌ 0, 𝜋 orientation, so the number of 

each polarity is equal in each bundle. The bundles are placed so that the centers of each bundle 

at a distance 𝐷ଵ apart. 

Angled. Reference positions (intercepts) of each microtubule are placed at ሺ0, 𝑧ሻ where each 𝑧 

is 𝐷ଵ distance apart. The orientations are then chosen to alternate between 𝜙 ൌ 𝜋/4 and 𝜙 ൌ

െ𝑝𝑖/4, resulting in a square lattice of microtubules. 

Biased bundled. 𝐵 (an even number) of microtubules within a bundle are equidistant with 

distance 𝐷ଶ apart from one another. For a bias 𝑏, each microtubule is individually assigned 𝜙 ൌ

0 with probability 𝑏 or 𝜙 ൌ 𝜋 with probability 1 െ 𝑏. For instance, the 3: 1 ratio corresponds to 

𝑏 ൌ 1/4 (or 3/4 by symmetry of the model). 

Parameters 

Many of the parameters in the computational model have been measured experimentally, 

although some with reported values spanning several orders of magnitude. In these cases, we 

chose values roughly in the middle of the range of values. The parameters chosen for 

simulations can be found in the table below.  

Parameters relating to molecular motors and mechanical properties of the kinetochores are 

thoroughly measured. Parameters that increase the motor attachment rate or force generation 

lead to faster biorientation. Parameters relating to short microtubules are relatively unknown. 

Rough estimates regarding number and geometry were made from previous studies, but 



mechanical interactions are completely unknown. The plots shown below present parameter 

sweeps over the unknown short microtubule parameters. Although the biorientation times do 

depend on each of these parameters, these timings are robust to an order of magnitude when 

varying each of these parameters by several.  

 

 

Plots of additional parameter sweeps showing the dependence on various model 

parameters for biorientation times. a: Biorientation becomes optimal values of intrabundle 

spacing, 𝐷ଶ, in the relevant on the order of 100 nanometers.  b: Biorientation becomes 

favorable for more separated bundles, parameterized by the distance 𝐷ଵ. c: The angular spring 

stiffness 𝑘ୱ୮୰୧୬ has little effect on the biorientation but does facilitate it slightly. d: More short 

microtubule fluctuations, parameterized by 𝜉௦ is favorable for biorientation. e: Short microtubules 

detaching at their plus end, the rate of which is parameterized by 𝜔 is necessary for 



biorientation but does not improve the rate when made larger. f: Shorter short MTs, 𝐿ୱ୦୭୰୲, are 

favorable for biorientation for the bundled configuration of long MTs only. In uniform (not 

shown), 𝐿ୱ୦୭୰୲ on the order of hundreds of nanometers is optimal.  



Model parameters 

parameter meaning value(s) used 

in simulation 

notes 

𝑆 number of short MTs at each 
KT 

varied, 0-40 estimated from refS3 

𝜔୭୬ binding rate 10 sିଵ notoriously difficult to measure, estimated 
magnitude from other motorsS4 

𝑅 binding radius 75 nm magnitude from dynein stalk lengthS5 

𝜔 short MT plus-end breakage 
rate 

10 sିଵ estimated to be on the timescale of motors 
unbinding 

𝛼 short MT plus-end breakage 
angular sensitivity 

100 unknown, little effect on model behavior 

𝜔୭ short MT minus-end unbinding 
rate 

1 sିଵ magnitude dynein unbinding rate under 
loadS6,S7 

𝑘ୱ୮୰୧୬ KT-KT spring stiffness 60 pN/𝜇m magnitude fromS8-S10 

𝐿ୱ୮୰୧୬ KT-KT spring rest length 0.65 𝜇m estimated from data 

𝑘ୱ୦୭୰୲ short MT stiffness 500 pN/𝜇m approximately rigidS11 

𝐿ୱ୦୭୰୲ short MT length 0.5 𝜇m estimated from refS3 

𝑘ୟ୬ short MT angular spring 
stiffness 

0.2 pN/𝜇m unknown 

𝐹 short MT minus-end motor 
force 

3 pN magnitude of force exerted by team of dynein  

𝜂 kinetochore effective drag 
coefficient 

30 s⋅pN/𝜇m estimated from refS12-S14 

𝜂௦ short MT effective drag 
coefficient 

2 s⋅pN/𝜇m estimated as an order of magnitude smaller 
than KT drag coefficient 

𝜉 kinetochore noise magnitude 0.01 pN⋅ 𝜇m estimated, taken to be larger than thermal 
fluctuations alone, little effect on model 
behavior 

𝜉௦ short MT tip noise magnitude 0.1 pN⋅ 𝜇m unknown, estimated 

𝐷ଵ distance between long MT 
bundles 

varied, ∼2 𝜇m estimatedS11 

𝐷ଶ distance between long MTs 
within bundles 

varied, ∼50 nm estimated 

𝐵 number of long MTs within 
bundle 

varied, ∼10 estimated 

𝛥𝑡 simulation time step 10ିଷ  
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