

Figure S1. Related to Figure 2, BLA and MDT inputs to PFC drive feedforward inhibition. (A) ChR2 was expressed within the BLA by viral-mediated gene transfer and recordings were made from SST-INs. (B) Optical stimulation of BLA terminals readily elicits SST-IN action potentials (APs) with high probability. n/N = 7/4 cells/mice. (C) BLA op-EPSCs as small as 100 pA readily elicit APs. n/N = 7/4 cells/mice. (D) ChR2 was expressed within the BLA and recordings were made from pyramidal cells. (E) Relative to EPSCs, BLA-driven IPSCs displayed longer onset latency (7.1±0.3 vs 3.5±0.2ms; t₁₁=12.76, ****:p<0.0001, paired t-test) and (F) jitter (0.50±0.12 vs 0.21±0.04ms; t₁₁=2.21, *:p<0.05, paired t-test). n/N = 12/4 (G) ChR2 was expressed within the MDT and recordings were made from pyramidal cells. (H) MDT-driven IPSCs displayed longer onset latency (8.3±0.8 vs 4.8±0.5ms; t₈=6.24, ***:p<0.001, paired t-test) and (I) a greater jitter (0.67±0.16 vs 0.34±0.05ms; t₉=2.3, p<0.05, paired t-test) than EPSCs. n/N = 9-10/3.

Figure S2. Related to Figure 3, Parvalbumin-expressing interneuron (PV-IN) function does not adapt during acute stress. (A) Schematic displaying viral-assisted approach to express GCaMP7f in PV-INs. A virus promoting the expression of a double-inverted open (DIO) reading frame of GCaMP7f was delivered to the PFC of PV-Cre mice and chronically indwelling fiberoptic cannulas were implanted. After 4 weeks recovery, animals underwent 20 minutes restraint stress while interneuron calcium mobilization was measured via fiber photometry. (B) PV-GCaMP Ca²⁺-dependent signals (465-nm) were readily detected following struggling episodes, but their magnitude assessed by the area under the curve (AUC) did not change during a single exposure to restraint stress (RM Two-way ANOVA time x wavelength interaction: $F_{2,10}=1.1$, n.s.; main effect of wavelength: $F_{1,5}=9.8$, p<0.03). N=6 mice. Fluorescent signals on the Ca²⁺-independent isobestic control channel (405-nm) were not readily detected following

struggling episodes. **(C)** The maximum increase in PV-GCaMP fluorescence locked to struggling episodes was not different than that on the isobestic control channel (RM Two-way ANOVA time x wavelength interaction: $F_{2,10}$ =1.1, n.s.; main effect of wavelength: $F_{1,5}$ =3.1, n.s.). N=6. **(D)** Mice were sacrificed for whole-cell electrophysiology 30 minutes following a single exposure to restraint stress. Recordings were made from PV-INs with soma in layer 5 PFC. **(E)** Restraint stress did not affect the resting membrane potential (V_m) or membrane resistance (R_m) in PV-INs. n/N = 20-23/4 cells/mice. **(F)** Current-evoked spiking was not different in PV-INs from mice in the control and restraint stress groups. n/N = 20-23/4. **(G)** sEPSC amplitude in PV-INs was not different between control and restraint stress groups n/N = 17-18/4. **(H)** Acute stress did not alter PV-IN spontaneous excitatory postsynaptic current (sEPSC) frequency n/N = 17-18/4. **(I)** Acute stress did not alter PV-IN spontaneous inhibitory postsynaptic current (sIPSC) frequency n/N = 13/4. **(J)** sIPSC amplitude in PV-INs was not different between control and restraint stress groups n/N = 14-15/4.

Figure S3. Related to Figure 3, Stress does not alter SST-IN intrinsic physiology or acute actions of mGlu₁ receptors. (A) Left, Recordings from fluorescent labeled SST-INs were made following restraint stress and in control mice. (B) Left, Current-evoked spiking was not different in SST-INs from mice in the control and stress groups. Right, Restraint stress did not affect the resting membrane potential (V_m) or membrane resistance (R_m) in SST-INs. n/N = 17-24/6-9 cells/mice. (C) During acute application, DHPG (100 μ M, 10min) increased the frequency of sEPSCs onto SST-INs (2.8±0.65 fold). The increase in sEPSC frequency was blocked by the mGlu₁ NAM VU'650 (10 μ M) but not the mGlu₅ NAM MTEP (3 μ M) (One-way ANOVA main effect of NAM: F_{2,35}=11.4, p<0.08; *:p<0.05, Sidak test). n/N=9-18/4-7. (D) DHPG-induced increases in sEPSC frequency were not different between SST-INs from the control and restraint stress groups. n/N=8-15/6-7.

Figure S4. Related to Figure 5, Selective reduction in BLA op-EPSC Q following NASPM administration. (A) ChR2 was expressed in the BLA and recordings were made from layer 5 SST-INs in PL PFC. (**B**) Representative MPFA experiment. For each cell, op-EPSC amplitude and standard deviation (σ) were obtained across a range of light stimulation durations. A quadratic equation was fit to the op-EPSC amplitude and variance (σ^2) at baseline and in the presence of NASPM (200µM, 15min). The quantal size (Q), number of synapses (N), and glutamate release probability (P), can be derived from the curve fit parameters. (**C**) NASPM reduced quantal size on SST-INs (11.1±3.2 vs 26.5±3.9pA; t₃=4.7, p<0.02, t-test). n/N = 4/3 cells/mice. (**D**) NASPM did not affect N at BLA inputs onto SST-INs. (**E**) P from BLA to SST-INs was not affected by NASPM.

Figure S5. Related to Figure 5, YM90K DART administration attenuates BLA-elicited feedforward inhibition without affecting presynaptic release parameters on SST-INs . (A) DART was deployed by viral-mediated expression of the HaloTag protein (HT+), or an inactive mutant variant (HT-), selectively in PFC SST-INs. Both constructs also expressed tdTomato to allow for visualization and cellular targeting. (B) No effect of YM90K DART application on sEPSC frequency in either HT- or HT+ SST-INs. n/N=9-13/3-4 cells/mice. (C) The AMPA receptor antagonist YM90K DART did not affect PPR of electrically evoked EPSCs on SST-INs. n/N=4-5/3-4. (D) HT+ was expressed in PFC SST-INs, ChR2 was expressed in BLA terminals, and BLA op-EPSCs and disynaptic op-IPSCs were recorded from pyramidal cells. (E) The amplitude ratio of BLA op-IPSCs relative to op-EPSCs (I/E) was decreased by YM90K-DART ($2.3 \pm 0.2 \text{ vs } 1.0 \pm 0.2$; t_{14} =5.83, ****:p<0.0001, t-test). n/N=8/3.

Figure S6. Related to Figure 5, Control experiments supporting BLA-driven heterosynaptic shunting inhibition. (A) Chrimson was expressed in the BLA without any expression of ChR2. (B) Stimulation with either blue (470nm, 1ms) or red (620nm, 3ms) light readily evoked EPSCs in PFC pyramidal cells. n/N = 8/3 cells/mice. For experiments utilizing both Chrimson and ChR2, red light stimulation was saturating, and blue light was kept below 2 a.u. for experiments in the main body of the manuscript. (C) The intensity of blue light was increased to 4-5 a.u. to evoke comparable EPSCs as red. Short-latency red light pre-pulses (3-10ms) prevented any subsequent BLA op-EPSCs evoked via blue light stimulation, suggesting spectral overlap is unlikely to contribute to blue light EPSCs in dual opsin experiments. n/N = 12/4. (D) A dual opsin strategy was employed to evaluate interactions between BLA and MDT inputs on isolated pyramidal cells. The red-shifted opsin Chrimson was expressed in the MDT

and ChR2 was expressed in the BLA. Red light stimulation preceded blue light stimulation. **(E)** Prior stimulation of MDT terminals did not decrease the amplitude of subsequent BLA op-EPSCs (RM One-way ANOVA main effect of ISI: $F_{4,44}$ =5.1, p<0.01; n.s. Sidak tests vs 300ms). n/N=12/3 cells/mice. **(F)** Prior stimulation of MDT terminals decreased the amplitude of EPSCs evoked with L1 electrical stimulation 3-ms later but not at 10-ms pre-pulse ISIs associated with SST-IN disynaptic inhibition. (RM One-way ANOVA main effect of ISI: $F_{4,36}$ =6.76, p<0.001; *:p<0.05. Sidak tests vs 300ms). n/N=10/5 cells/mice. **(G)** ChR2 was expressed in the MDT and recordings were made from pyramidal cells. **(H)** The GABA_A receptor agonist muscimol (10µM, 10min) depressed the amplitude of MDT op-EPSCs (63.2±6.2% baseline) **(I)** concomitant with a reduction in R_m (21.6±5.8% baseline). n/N = 5/2.

Figure S7. Related to Figure 8, WT and SST-mGlu^{5-/-} **mice display comparable locomotor behavior. (A)** Trend decrease in locomotor activity in the Y-maze apparatus following restraint stress, but no main effect of genotype or interaction (Two-way ANOVA stress x KO interaction: $F_{1,38}$ =1.0, n.s.; main effect of stress: $F_{1,38}$ =6.1, \$:p<0.07). N=10-12 mice per group. **(B)** No genotypic difference was detected in the proportion of time spent in the open arms of an elevated zero-maze. N=10-13. **(C)** SST mGlu₅-/- mice displayed typical locomotor activity in a novel environment. N=10-13. **(D)** No difference in the proportion of time spent in the center of the open field during the first 5 minutes of the test. N=10-13.

Supplemental Table 1. Related to Figure 1, Membrane physiology parameters characterizing LTS SST-INs

Parameter	Unit	Cell type	Mean	SEM	t(32)	р			
V	m\/	LTS	-63.3	1.6	17	****			
v m	IIIV	FSL	-76.3	1.2	4.7				
R	MO	LTS	411	24	50	****			
l v _m	10122	FSL	171	18	5.5				
rebound sag	_	LTS	0.063	0.008	2.6	*			
Tebound Say	-	FSL	0.027	0.005	2.0				
rheobase	nΔ	LTS	30	3	69	****			
meobase	рА	FSL	139	27	0.9				
max froquency		LTS	44	4	07	****			
max nequency	ΠZ	FSL	119	9	0.7				
FSL, fast-spiking-like; LTS, low-threshold-spiking; R _m , membrane resistance; V _m , resting membrane potential									

Supplemental Table 2. Related to Figures 1, 2, 3, 5, 6, 7; Amplitudes of EPSCs for normalized data sets

Cell type	Input	Panel	Condition	Mean	SEM	n cells	ΝÇ	Nð		
SST-IN		1E	K-gluconate	86	19	12	6	5		
		15	VU'650	51	14	8	3	4		
		11	MTEP	54	15	8	3	4		
		1J	BAPTA	46	7	5	3	1		
		31	control	52	13	12	4	6		
	alactrical	51	stress	89	25	8	2	2		
	electrical	31	control	113	20	7	2	4		
		SL	stress	103	21	7	1	4		
		5E	HT-	91	19	4	0	3		
			HT+	75	9	5	0	4		
		70	WT	103	32	6	1	2		
		70	KO	113	16	5	1	1		
	BLA	2D	-	150	36	4	1	3		
		00	control	168	54	8	2	3		
		ZG	MTEP	245	70	5	2	1		
	MDT	2D	_	302	91	5	1	3		
	MDT	2H	-	201	92	7	1	2		
				EPS	C (pA)	IPSC (p	A)			
	Input	Panel	Condition	Mean	SEM	Mean	, SEM	n cells	N 오	Nð
		5C / 5L	K-aluconate	210	40	_	-	9	2	2
		5C	picrotoxin	388	158	-	-	8	2	1
	electrical	51	basal	191	69	-	-	8		
			YM90K-DART	247	89	-	-	7	3	0
		S4	MDT-elec study	162	42			11	1	4
pyramidal cell	BLA	2K	basal	469	97	449	97	9	0	3
			post DHPG	391	41	728	132	9	0	3
		5C / 5L	K-gluconate	224	30	-	-	9	2	2
		5C	picrotoxin	216	50	-	-	8	2	1
		5K	K-gluconate	271	47	-	-	16	2	3
			picrotoxin	206	44	-	-	5	2	0
		5L	stress	190	36	-	-	10	2	1
		6F / 6H	control	224	42	340	70	8	0	3
			stress	295	51	1089	190	8	0	3
		S6	HT+ baseline	317	52	664	157	9	0	0
			HT+ YM90-K	340	72	352	100	8	3	0
		2L	basal	334	98	918	244	6	1	3
	MDT		post DHPG	629	174	1276	194	8	1	3
		5K / 5L	control	175	28	-	-	16	2	3
			stress	304	125	_	_	10	2	1
		6K / 6M	control	241	32	871	166	10	0	3
			stress	246	60	893	244	10	0	3
		S4	MDT-elec study	222	34	-	-	11	1	4
									_	-