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2. Supplementary Methods 84 

 85 

Whole exome sequencing dataset 86 

Whole exome sequencing (WES) 87 

Exomes were captured with the IDT xGen Exome Research Panel v1.0 including supplemental probes. The 88 

basic design targets 39Mbp of the human genome (19,396 genes). Multiplexed samples were sequenced with 89 

dual-indexed 75x75bp paired-end reads on the Illumina NovaSeq 6000 platform using S2 (initial 50k samples) 90 

and S4 flow cells (all subsequent samples). In each sample and among targeted bases, coverage exceeds 91 

20X at 95% of sites on average. More information is available on the UK Biobank website 92 

(https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170). 93 

 94 

Variant calling for the OQFE dataset 95 

In the present analysis, we used the pVCF files from the OQFE dataset1. Briefly, all reads were duplicate 96 

marked and aligned to genome build GRCh38 in an alt-aware manner as described in the Functional 97 

Equivalence protocol2. Variants were called per-sample using DeepVariant, after which individual level VCF 98 

files were combined and joint-genotyped using GLnexus3.  More information is available on the UK Biobank 99 

website (https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170). 100 

 101 

Quality control 102 

In addition to any quality-control that was performed centrally, we applied extensive additional genotype, 103 
variant and sample quality-control procedures to ensure a high-quality dataset for analyses. To this end, we 104 
utilized the OQFE WES pVCF files provided by the UK Biobank, which contained calls for 200,643 sequenced 105 
samples. 106 
 107 

Genotype quality control 108 

We applied genotype refinement to the raw genotype calls in the pVCF files using Hail. We first split multi-109 

allelic sites to represent separate bi-allelic sites. All calls that did not pass the following hard filters were then 110 

set to no-call in our analysis: 111 

• For homozygous reference calls: Genotype Quality < 20; Genotype Depth < 10; Genotype Depth > 200 112 

• For heterozygous calls: (A1 Depth + A2 Depth)/Total Depth < 0.9; A2 Depth/Total Depth < 0.2; 113 

Genotype likelihood[ref/ref] < 20; Genotype Depth < 10; Genotype Depth > 200 114 

• For homozygous alternative calls: (A1 Depth + A2 Depth)/Total Depth < 0.9; A2 Depth/Total Depth < 115 

0.9; Genotype likelihood[ref/ref] < 20; Genotype Depth < 10; Genotype Depth > 200 116 

These filters removed 9% of the 3,573,574,459,423 raw genotype calls leaving 3,214,727,581,104 genotype 117 

calls across 17,981,897 variant sites and 200,643 samples. 118 

 119 

Variant quality control 120 

We then performed variant level filters. We removed variants that failed the following filters:  121 

• Call rate of < 90% (restricting to males for Y chromosomal markers) (N= 4,023,284) 122 

• Failed a liberal Hardy-Weinberg Equilibrium test (HWE) at P < 10-15 among unrelated samples (not 123 

applied to Y chromosomal markers) (N=136,869) 124 

• Present in Ensembl low-complexity regions (N=748,116)  125 

• Monomorphic in the final dataset (N=55,614) 126 

After performing these variant filters, 13,003,057 variants remained of which 12,756,075 were autosomal. 127 

 128 

High-quality variants for sample quality control and relationship inference 129 

To perform sample level quality control and kinship inference, we defined three subsets of genetic variants that 130 

were independent and of very high-quality: 131 

https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170
https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170
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• ‘High-quality independent autosomal variants subset’ with MAF > 0.1%, missingness < 1%, HWE P > 132 

10-6 and two rounds of pruning using --indep-pairwise 200 100 0.1 and --indep-pairwise 200 100 0.05 in 133 

PLINK4 (81,121 variants). 134 

• ‘WES-vs-array independent autosomal variants subset’ with MAF > 0.1%, missingness < 1% and HWE 135 

P > 10-6 in both the WES dataset and in the genotyping array data provided by the UK Biobank5 136 

(among participants who had both available). We further removed indels and ambiguous SNPs and 137 

performed two rounds of pruning (24,207 variants).  138 

• ‘High quality independent X-chromosomal subset’ with missingness < 1%, HWE P > 10-6, not within 139 

pseudo-autosomal regions, and two rounds of pruning. 140 

 141 

Sample quality control 142 

We computed a number of quality metrics to identify bad-quality or duplicated samples. We first used KING6 143 

(version 2.2.5) to calculate pairwise heterozygote concordance rates for each pair of samples, using the high-144 

quality independent autosomal markers. Then we used the high-quality autosomal variants present in both 145 

WES and array datasets to compute per-sample heterozygote concordance rates between WES calls and 146 

genotyping array calls. We inferred the genetic sex of each participants with the --check-sex option in PLINK, 147 

using the high-quality independent X-chromosomal markers. We set any sample with F > 0.8 to male, while 148 

samples with F < 0.5 were set to female. Finally, using all ~12.7M autosomal WES variants, we computed a 149 

number of additional metrics including sample call rate, transition/transversion ratio (Ti/Tv), 150 

heterozygote/homozygote ratio (Het/Hom), SNV/indel ratio (SNV/indel) and the number of singletons. After 151 

computing these metrics, we excluded participants based on the following criteria: 152 

• Decided to revoke their consent (N=13) 153 

• Sample duplicates based on heterozygote concordance rates > 0.8 (N=0) (27 putative genetic 154 

duplicates could be resolved as monozygotic twins and were not removed) 155 

• Samples with blatant discordance between self-reported and genetically inferred sex (N=80) 156 

• Discordance between WES and array calls with heterozygote concordance rates < 0.8 (N=0) 157 

• Call rate < 90% (N=1) 158 

• Samples further than 8 standard deviations from the mean for Ti/Tv (n=0), Het/Hom (N=100), SNV/indel 159 

(N=1) and number of singletons (N=111) 160 

After applying these filters 200,337 samples remained for analysis. 161 

 162 

Relationship inference, kinship matrix and principal component analysis 163 

Kinship inference and kinship matrix 164 

We used the KING-robust algorithm to compute pairwise kinship estimates for all samples in the dataset (using 165 

the high-quality independent autosomal variants). We then retained all information on pairs estimated to be 166 

genetically related to one another at 3rd degree or closer (kinship coefficient >=0.0442). We used this data to 167 

construct a sparse kinship matrix in which all relationships with kinship coefficient <0.0442 were set to 0. 168 

Finally, we scaled the values in this matrix so it had a diagonal of 1 (as opposed to 0.5 on the KING kinship 169 

scale).  170 

 171 

Unrelated subset 172 

We defined an unrelated subset of the WES cohort, where no relationships with kinship coefficient >=0.0442 173 

remained, a threshold that excludes any individuals related at 3rd degree or closer. To maximize the sample 174 

size of this unrelated subset, we first iteratively removed individuals related to multiple other individuals until 175 

none remained. We then removed one sample from each remaining pair at random, leaving 185,990 unrelated 176 

samples. 177 

 178 
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Principal component analysis 179 

PCAir7 (from GENESIS version 2.18.0) was used to calculate the top 20 ancestral principal components (using 180 

the high-quality independent autosomal variants), while implementing a randomized algorithm8 for 181 

computational efficiency. We performed this analysis among the unrelated subset of the cohort, after which the 182 

remaining samples were projected onto the PCs.    183 

 184 

Variant annotation for missense variants 185 

Missense variants annotated from VEP incorporated 30 in-silico prediction tools from the dbNSFP database 186 

(version 4.1a.) These tools included qualitative prediction algorithms (SIFT, SIFT4G, Polyphen2 HDIV, 187 

Polyphen2 HVAR, LRT, MutationTaster, FATHMM, PROVEAN, MetaSVM, MetaLR , MCAP, PrimateAI, 188 

DEOGEN2, BayesDel addAF, BayesDel noAF, ClinPred, LIST-S2, fathmm-MKL coding, fathmm-XF coding, 189 

MutationAssessor, and Aloft) and quantitative algorithms (VEST4, REVEL, MutPred, MVP, MPC, DANN, 190 

CADD, Eigen, and Eigen-PC). When the qualitative prediction tools (except for MutationAssessor and Aloft) 191 

indicated "D" for a variant, the variant gained one score from each algorithm. An indicator for a deleterious 192 

variant of MutationAssessor was "H" and of Aloft was "R" or "D" with high confidence. For the quantitative 193 

algorithms, when the variant indicators were higher than 90% of predicted variants in the entire dataset, a 194 

variant gained one score from each quantitative algorithm. Then, if a variant was annotated with more than 195 

seven prediction tools (over 20% out of the 30 tools), and the proportion of the deleterious score (total gained 196 

score / # none missing prediction tools) was greater than or equal to 0.9, we included the variant in the gene-197 

based analyses. 198 

 199 

Evaluation of test statistic inflation in exome-wide gene-based testing 200 

To inspect the calibration of test statistics in our analyses, we visually inspected quantile-quantile (QQ) plots 201 

across all performed tests for binary traits, and across all performed tests for quantitative traits. To evaluate the 202 

effect of the minimum carrier count we employed (≥20 rare variant carriers), we further made QQ plots for all 203 

test with ≥50, and all tests with ≥200 rare variant carriers. Then we inspected per-trait QQ plots and computed 204 

per-trait λ values, representing a statistic of inflation where a value of 1 indicates perfect calibration of P-values. For 205 

quantitative traits, we computed λ at the median (λ[median]), as is conventional. For binary traits, the Saddle Point 206 

Approximation was only applied to tests reaching P<0.05 in an initial regular score test. For this reason, λ(median) 207 

may not accurately represent test statistic inflation at the tails of the distribution. We therefore computed λ values for 208 

binary traits at the tail of the test statistic distribution, by comparing empirical values at the 95th quantile to the 209 

expected value at the 95th quantile (λ[q0.95]).  210 

 211 

Analysis of rare synonymous variants 212 

For any trait showing unexplained test statistic inflation, we analyzed rare synonymous variants. Synonymous 213 

variants are generally expected to have no protein consequence, and therefore represent a class of genetic 214 

variation that should produce a null distribution. As with the predicted-deleterious variants, we pooled rare 215 

synonymous variants variant by gene and performed a collapsing test. Variants were considered rare if they had 216 

MAF<0.1% in the UK Biobank WES dataset and MAF<0.1% in five major gnomAD9 populations.  217 

 218 

Analysis of common variation near rare variant signals in the UK Biobank 219 

To identify common variant associations near the identified rare variant signals, we ran common variant 220 

association analyses in the genomic region 500KB downstream and upstream of the identified gene. To this 221 

end, we utilized the UK Biobank version 3 imputed data. Details on genotyping and quality-control have been 222 

described previously5. Briefly, samples were genotyped using Affymetrix UK biobank Axiom (450,000 samples) 223 

and Affymetrix UK BiLEVE axiom (50,000 samples) arrays. Genetic data were then imputed to the Haplotype 224 

Reference Consortium panel and UK10K + 1000 Genomes panels. For the common variant association 225 

analyses, we removed samples that were outliers for heterozygosity or missingness, samples with putative sex 226 
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chromosome aneuploidy, samples with a mismatch between self-reported and genetically inferred sex, 227 

samples not included in the central kinship inference, and samples who had revoked their consent. Imputed 228 

variants with MAF<0.5% and INFO<0.3 were removed. We ran two-sided common variant association tests 229 

using PLINK24. Logistic regression was used for binary phenotypes and linear regression for continuous traits. 230 

We analyzed all unrelated UK Biobank individuals with imputed data and relevant phenotypic data available. 231 

We adjusted for age, sex, genotyping array and associated ancestral principal components (P<0.05). Common 232 

variants with P<1x10-5 were considered significant.  233 

 234 

Common variant results from the Type 2 Diabetes Portal (T2DKP) 235 

For genes in which we identified novel rare variant associations for metabolic and anthropometric traits, we aimed to 236 

find additional evidence for the role of these genes using publicly-available common variant results from the 237 

T2DKP10. We used gene-based common variant results downloaded on the 7th of December 2020, displayed in 238 

Supplementary Table 11. Gene-based results were based on single variant summary statistics from many large-239 

scale common variant GWAS. In short, the portal first filters summary statistics to include only biallelic markers with 240 

no missing data, and then separates variants by frequency (common vs rare) and by ancestry. Then, it meta-241 

analyses GWAS results for common variants using METAL11 (with OVERLAP ON) in a ancestry-specific manner, 242 

after which it performs a trans-ancestry meta-analysis using METAL (with OVELAP OFF). Gene-based common 243 

variant analyses were subsequently performed using the Multi-marker Analysis of GenoMic Annotation method 244 

(MAGMA)12. We further identified index single variants using the ‘explore region’ option for a given gene; the most 245 

significant single variant in a gene region for a given phenotype were extracted from the T2DKP data on the 7th of 246 

June 2021, displayed in Supplementary Table 12.  247 

 248 

GTEx expression-QTL and splice-QTL data for common variants 249 

For each index single variant from the T2DKP mentioned above, we leveraged data from GTEx to identify 250 

significant expression-QTL and splice-QTL associations. For a few phenotypes, no data in the T2DKP was 251 

available; in these cases, we used the index variants from our imputed common variant analyses in the UK 252 

Biobank (e.g. supraventricular tachycardia and TTN). We extracted expression-QTL and splice-QTL data for 253 

index variants and the relevant gene from the GTEx version 8 dataset (https://gtexportal.org/home/), on the 7th 254 

of June 2021. The dataset consists of RNA-sequencing and whole-genome sequencing data from 838 donors 255 

after previously described quality-control13; 49 tissues or cell lines had at least 70 individuals with both data 256 

sources available (15,201 total samples) for expression-QTL and splice-QTL analysis. We determined that a 257 

variant was a significant expression-QTL for the given gene if i) the expression-QTL reached tissue-specific 258 

FDR5%, as described previously13 and ii) had Bonferroni-corrected P < 7.3x10-5 = 0.05 / (14 variants x 49 259 

tissues) in our analysis. Splice-QTLs were determined to be significant if i) the splice-QTL reached tissue-260 

specific FDR5%, as described previously13 and ii) had Bonferroni-corrected P < 1.6x10-6 = 0.05 / (629 introns x 261 

49 tissues) in our analysis. Results for this lookup are displayed in Supplementary Table 12.  262 

 263 

Clinical variants from the ClinVar database 264 

To identify pathogenic rare variants, we used the ClinVar database. We downloaded the ClinVar dataset on 265 

11/2020. Variants that were not submitted by clinical testing labs or which were evaluated before 2015 were 266 

excluded from our analyses. We used the clinical significance interpretation at the most recent submission. 267 

The clinical significance interpretation included Pathogenic, Likely-Pathogenic, Likely-Benign, Benign, Variant 268 

of Uncertain Significance, and Conflicting data from submitters; we only used variants with the Pathogenic or 269 

Likely-Pathogenic classification in the present study. 270 

 271 

TTN exons highly expressed in left ventricle tissue 272 

Previous work described that distinguishing highly expressed TTN exons in heart tissues is important to 273 

understand phenotypic presentation14,15. As post-hoc analyses, we performed association tests between 274 

https://gtexportal.org/home/
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deleterious variant in highly expressed (Percentage Spliced-In [PSI] ≥ 90%) in left ventricular tissue14 and 275 

cardiac traits using the same model implemented in our primary analyses.   276 
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3. Supplementary Results and Discussion 277 

 278 

Evaluation of inflation in gene-based analyses 279 

QQ plots for P-values from all performed tests in the discovery phase (all quantitative and all binary) did not 280 

show any inflation (Supplementary Figure 2). We also made QQ plots restricting to tests with at least 50 281 

variant carriers and tests with at least 200 rare variant carriers (Supplementary Figure 2). QQ plots showed a 282 

similar distribution of P-values without clear inflation. We then inspected QQ plots for individual traits 283 

(Supplementary Figures 3-4). Most traits did not show evidence of inflation (λ<1.1); however for three traits, 284 

height, weight and QTc, lambda values were consistent with moderate inflation (1.1≤λGC<1.25). Indeed, height 285 

and weight had visually inflated distributions of P-values. Such inflation could be due to biases such as 286 

population stratification, or alternatively due to a high degree of polygenicity. To distinguish between these 287 

causes, we analyzed rare synonymous variants for these traits. Seeing as most synonymous variants are 288 

expected to have no protein consequence, such an analysis should yield a null distribution. We found that rare 289 

synonymous variants indeed yielded a distribution of P-values consistent with the null (λGC<1.05) for each traits 290 

(Supplementary Figure 5), implying that a large proportion of the observed inflation was due to polygenicity 291 

rather than bias. 292 

 293 

Associations between cardiac phenotypes and variants in TTN exons highly expressed in the heart 294 

Concordant with our prior knowledge TTN associations with heart failure, atrial fibrillation, dilated 295 

cardiomyopathy, left ventricle ejection fraction and left ventricular end systolic volume strengthened after 296 

restricting to variants in cardiac expressed exons. Supraventricular tachycardia (P = 3.0x10-12), ventricular 297 

arrhythmia (P = 2.6x10-10), and mitral valve disease (P = 5.4x10-15) also showed markedly stronger 298 

associations when restricting to cardiac exons of TTN. Furthermore, implantable cardioverter defibrillator (P = 299 

6.6x10-9), tricuspid valve disease (P = 9.7x10-7), RR interval (P = 2.6x10-6), Pulse rate (P = 1.1x10-25) and 300 

LVESVi (P = 1.8x10-7) were significantly associated with variants in cardiac exons of TTN. 301 

 302 

Common variants near genes with novel rare variant associations 303 

Among our novel associations were 3 associations for rare variants in GIGYF1, namely for increased risk of 304 

type 2 diabetes, elevated glucose levels and lower low-density lipoprotein levels. In accordance, common 305 

variants near GIGYF1 were associated with all these traits (Supplementary Table 11). The top common 306 

variants for each of these traits in the GIGYF1 locus are expression-QTLs for GIGYF1 in many tissues 307 

(Supplementary Table 12), including many relevant tissues such as adipose tissue, pancreas, skeletal 308 

muscle, thyroid and pituitary, as well as many other brain and gastro-intestinal tissues. The alleles associated 309 

with lower GIGYF1 expression were consistently associated with increased risk of diabetes, higher glucose 310 

and lower low-density lipoprotein levels across tissues, in strong concordance with the observed LOF 311 

associations. These results suggest that higher GIGYF1 levels may be protective for diabetes. CCAR2 rare 312 

variants were associated with increased risk of diabetes, and common variants near the locus were as well 313 

(Supplementary Table 11). The top CCAR2 common variant was a significant expression-QTL for CCAR2 314 

across many tissues, including adipose tissue, skeletal muscle, pancreas, thyroid and multiple brain and 315 

gastro-intestinal tissues (Supplementary Table 12). Generally, the alleles associated with higher CCAR2 316 

expression were associated with higher risk of diabetes, which is not directly consistent with the observed LOF 317 

associations, although the sign was flipped in certain tissues such as fibroblasts. 318 

 319 

Rare variants in TTN were novelly associated with mitral valve disease and supraventricular tachycardia. A 320 

common variant near TTN was also found to be associated with supraventricular tachycardia (rs10167882, 321 

P=2.1x10-6, OR 1.11; Supplementary Table 12). This variant was not found to be a significant expression-322 

QTL or splice-QTL for TTN, although it is in LD with a missense variant that also shows evidence of 323 
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association with supraventricular tachycardia as well (p.Gln8542His, P=0.0015, OR 1.23; Supplementary 324 

Table 12). 325 

 326 

Rare variants in NR1H3 were associated with high-density lipoprotein in our primary analysis, and a common 327 

variant association was also found at this locus (Supplementary Table 11). The top common variant in this 328 

locus was an expression-QTL for NR1H3, with the alleles associated with higher high-density lipoprotein being 329 

associated with increased NR1H3 expression in some tissues (for example subcutaneous adipose tissue) and 330 

decreased expression in others (whole blood, brain cortex) (Supplementary Table 12). The top common 331 

variant was also a significant splice-QTL for NR1H3 across many tissues including adipose tissue, with 332 

consistent tissue effects, and was also in LD with an NR1H3 missense variant (p.Ala101Val, P=1.9x10-21) 333 

(Supplementary Table 12).  334 

 335 

Among our novel rare variant associations were 7 associations for height, namely DTL, PIEZO1, SCUBE3, 336 

ANGPTL2, PAPPA, IRS1 and ZFAT. All of these genes are supported by significant nearby common variant 337 

associations (Supplementary 11). For IRS1, we found that the top common variant had two splice-QTL 338 

associations with IRS1: one in fibroblasts and thyroid, and another in subcutaneous adipose tissue 339 

(Supplementary Table 12). For PAPPA, we found that the top common variant was in LD with a PAPPA 340 

missense variant (p.Ser1224Tyr). Finally, for SCUBE3, we found that the top common variant was a 341 

suggestive (P=0.00019) expression-QTL for SCUBE3 in fibroblasts, with the allele associated with lower 342 

SCUBE3 expression being associated with shorter stature, consistent with the observed LOF association. The 343 

relative absence of additional expression-QTL and splice-QTL data for the remaining common variant height 344 

loci might be a reflection of the adult population in GTEx; relevant expression-QTLs for height may be 345 

predominantly developmental and possibly not present in adult tissue.      346 

 347 

Penetrance of predicted-deleterious and pathogenic variants in the UK Biobank 348 

In our primary analyses, 10 genes were significantly associated (Q-value < 0.01) with increased risk of a 349 

disease or medical condition. For those 10 genes, 3371 participants (1.6% of the sample) carried predicted-350 

deleterious variants (LOF and predicted-deleterious missense variants). Among 3371 carriers, 621 (18.4% 351 

penetrance) developed at least one medical condition. When we liberalize our significant threshold to FDR Q-352 

value 0.05, there were 15 genes associated with at least one medical condition. We found 3762 participants 353 

(1.9% of the sample) who carried deleterious variants; meanwhile 693 (18.4% penetrance) developed an 354 

associated disease. The penetrance of respective genes and traits are illustrated in Supplementary Figure 355 

11. The highest penetrance was 71% [95%CI 61-79%] from LDLR for hypercholesterolemia. PKD1 mutations 356 

were associated with 47% penetrance for chronic kidney disease [95%CI 33-62%]. PKD1 pathogenic 357 

mutations are known for causing highly-penetrant autosomal dominant polycystic kidney disease, with end 358 

stage kidney disease reached at around 58 years16. However, a higher-than-expected frequency of PKD1 359 

mutations in healthy sequenced populations has recently been described, suggesting incomplete penetrance17. 360 

We note, however, that PKD1 has many pseudo-genes which may complicate read-mapping, and Sanger 361 

sequencing validation is often performed in clinical settings to confirm PKD1 variants. Despite this fact, 362 

previous studies have mainly shown decreased sensitivity when utilizing next-generation sequencing; 363 

specificity ranges from 90-100% when stringent QC filters are applied18-20. Still, we cannot exclude the 364 

possibility of some alignment issues, which may downward bias penetrance estimates for this gene. 365 

 366 

The penetrance of putatively pathogenic variants in genes included in our panel analysis (InVitae 367 

Cardiomyopathy and Arrhythmia panel, InVitae hypercholesterolemia panel and InVitae Monogenic Diabetes 368 

panel) are shown in Supplementary Figure 13. The penetrance of cardiovascular disease variants was 369 

generally modest (Supplementary Table 10). Of TTNtv carriers, 16% [95%CI 14-19%] had diagnoses of atrial 370 

fibrillation, 9.6% [95%CI 7.9-12%] of heart failure, 4.0% [95%CI 2.8-5.6%] of dilated cardiomyopathy and 3.8% 371 
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[95%CI 2.6-5.3%] of ventricular arrhythmia (Supplementary Table 10), considerably lower than the incidence 372 

of these diseases in previous family-member based analyses21,22, although for cardiomyopathy and atrial 373 

fibrillation estimates were not dissimilar to genome-first estimates from the Geisinger Health System23. 374 

Penetrance of MYBPC3 and MYH7 putatively pathogenic variants for hypertrophic cardiomyopathy was 7.0% 375 

[95%CI 4.1-11%] and 4.8% [95%CI 2.9-7.0%], respectively (Supplementary Table 10). MYBPC3 LOFs were 376 

associated with 9.7% [95%CI 4.5,18%] penetrance. Relative-based analyses have frequently yielded estimates 377 

over 30% for sarcomere mutations24-27, although we note that our OR estimate for MYBPC3 LOFs is very 378 

consistent with a previous case-control study28. Similarly, family-member analyses have reported 40% 379 

incidence of arrhythmogenic cardiomyopathy/dysplasia for pathogenic desmosome mutations29, yet we find 380 

that fewer than 5% of PKP2 and DSP variant carriers have diagnoses of dilated cardiomyopathy or ventricular 381 

arrhythmia; fewer than 12% of carriers had atrial fibrillation (Supplementary Tables 10 and 15).  382 

 383 

The penetrance estimates of GCK and HNF1A putatively pathogenic variants for type 2 diabetes were large at 384 

64% [95%CI 49-78%] and 45% [95%CI 26-64%], respectively, with an age dependent penetrance 385 

(Supplementary Table 10).  Previous studies have suggested that HNF1A mutations have over 90% 386 

penetrance for progressive diabetes at 50 years of age30, while GCK mutations are thought to cause a shift in 387 

glucose-sensing and mild hyperglycemia from birth31. Interestingly, GCK LOF mutations - such as those 388 

contributing strongly to our signal - are found in MODY patients32, and rare GCK mutations are also enriched in 389 

individuals diagnosed with type 2 diabetes33. Further population-based assessment seems warranted to 390 

determine diabetes-related outcomes, given the conventional knowledge that GCK mutations cause 391 

hyperglycemia that often does not require medical intervention31. 392 

 393 

Penetrance estimates for significant associations at different cut-offs for age-at-onset are shown in 394 

Supplementary Table 10, showing an age-dependent probability of diagnosis for most gene-phenotype pairs. 395 

We acknowledge that these penetrance estimates are based on age-at-diagnosis, which may be inaccurate for 396 

diseases defined at UK Biobank visits. However, for age-specific penetrance estimates, we did not include 397 

cases defined at baseline for this reason; we further found that electronic health records were the most 398 

important source of data for many phenotypes (Supplementary Table 2). This should be considered when 399 

interpreting the age-stratified penetrance estimates, as true age-at-onset may be earlier than age-at-diagnosis 400 

based on ICD codes. In addition, by excluding cases defined by self-report at baseline, some individuals with 401 

early-onset disease may have been excluded for age-stratified analyses. Despite these limitations, these 402 

analyses highlight how age is an important factor in disease presentation in carriers of pathogenic variation. 403 

 404 

Overall, our penetrance results highlight - from a genome-first perspective - substantially lower penetrance for 405 

pathogenic variation than previously reported from family-based analyses. This finding is consistent with 406 

previous analyses in the UK Biobank that utilized well-genotyped likely-pathogenic rare variants from the 407 

genotyping array34. There are various factors that should be taken into account when interpreting population-408 

based penetrance estimates. First, some survivor and ascertainment bias are to be expected in our relatively 409 

healthy middle-aged population-based cohort, which may bias penetrance estimates downwards. Furthermore, 410 

it is possible that certain putatively pathogenic variants included in our analysis are not truly pathogenic 411 

variants; for example, the ‘likely pathogenic’ variants from ClinVar may include some non-pathogenic alleles, 412 

and certain LOF variants may not be truly LOF. To mitigate these issues, we only included ClinVar variants 413 

reported from 2015 onwards (which should therefore conform to stringent guidelines for pathogenicity 414 

assertions) and we used LOFTEE to filter out as many low-confidence or dubious LOF variants as possible. 415 

Third, for many of the diseases, cases were defined primarily by ICD codes, which may downward bias 416 

penetrance estimates for diseases that can go undiagnosed or that are diagnosed outside of the hospital (e.g. 417 

diabetes, dyslipidemias, chronic kidney disease). Therefore, our estimates may reflect more severe 418 

symptomatic cases, while not including subclinical and mildly symptomatic disease. However, given strikingly 419 
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high penetrance estimates for pathogenic variation in hypercholesterolemia and diabetes genes (>60% for 420 

LDLR and GCK), this effect generally appears not to be large. On the other hand, the high penetrance 421 

estimates from family-member analyses are likely biased upwards. First, since many family-member based 422 

analyses are based on clinically ascertained index cases with severe disease, such analyses are strongly 423 

biased towards families prone to more severe disease and higher disease penetrance. Second, in-depth 424 

phenotyping in such studies may over-diagnose disease even though clinical symptoms may never have 425 

arisen. In sum, true penetrance estimates likely lie somewhere in between population-based estimates and 426 

family-based/clinical cohort estimates. 427 

 428 

Yield of putatively pathogenic variants among disease cases 429 

The yield of rare putatively pathogenic variants was generally low among disease cases. Among heart failure 430 

and atrial fibrillation cases, the yield of associated pathogenic variants was ~1.5% and ~1.1%, respectively. For 431 

hypertrophic and dilated cardiomyopathy, the yield of associated putatively pathogenic variants was ~11.0% 432 

and ~10.1%, respectively (Supplementary Table 17 and Supplementary Figure 14). It should be noted that 433 

rare variant yield in this case only represents the yield of LOFs, known likely pathogenic variants and known 434 

pathogenic variants in genes showing evidence of association at P<0.005. As such, this yield is a conservative 435 

lower-bound estimate that should rise as more genes are included and more non-truncating pathogenic 436 

variants are discovered.     437 
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Supplementary Tables 438 

 439 

Supplementary Tables 1-17 can be found in the Supplementary Excel File.  440 
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Supplemental Figures 441 

 442 
 443 

Supplementary Figure 1. Principal component analysis and self-reported ancestries for UK Biobank 444 

WES samples. Samples are plotted for PC1-4, and self-reported ancestries are highlighted. The principal 445 

components stratify samples from different major ancestral groups.  446 



17 

 447 
Supplementary Figure 2: Quantile-quantile plots for exome-wide gene-based tests across all binary 448 

and all quantitative phenotypes. The y-axis represents the observed –log10 P-values across all tests, while 449 

the x-axis represents the expected under the null-hypothesis. P-values were obtained from score tests in linear 450 

mixed effects models (quantitative traits) or saddle point approximation in logistic mixed effects models (binary 451 

traits), adjusting for sex, age, sequencing batch, MRI serial number (for MRI traits), associated principal 452 
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components (PCs) and a sparse kinship matrix. P-values shown are two-sided and unadjusted for multiple 453 

testing, The left panels show the results for binary traits (for tests with >=20 carriers, 50 carriers and 200 454 

carriers), while the right panels show the results for quantitative traits. Across all performed tests, no systemic 455 

inflation is observed. 456 
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 464 
Supplementary Figure 3: Quantile-quantile plots for exome-wide gene-based tests for each individual 465 

binary trait. The y-axis represents the observed –log10 P-values across all tests, while the x-axis represents 466 

the expected under the null-hypothesis. P-values were obtained from saddle point approximation and were 467 

obtained from logistic mixed effects models, adjusting for sex, age, sequencing batch, associated principal 468 

components (PCs), a sparse kinship matrix. P-values shown are two-sided and unadjusted for multiple testing. 469 

The algorithm implemented in GENESIS applies the Saddle Point Approximation to raw P-values reaching 470 

P<0.05 to account for case-control imbalance. As such, P-values larger than 0.05 might not be well calibrated 471 

and λ estimated at the median of the P-value distribution might not capture the calibration of the tests. We 472 

therefore estimated the λ values for binary traits at the tail of the distributions, λ(q0.95), by comparing the test 473 

statistic at the 95th quantile to the expected statistic at this quantile under the null. Visually, and by judging 474 

λ(q0.95), none of the binary traits showed major systemic inflation. 475 
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 479 
Supplementary Figure 4: Quantile-quantile plots for exome-wide gene-based tests for each individual 480 

quantitative trait. The y-axis represents the observed –log10 P-values across all tests, while the x-axis 481 

represents the expected under the null-hypothesis. P-values were obtained from score tests in linear mixed 482 

effects models, adjusting for sex, age, sequencing batch, associated principal components (PCs), MRI serial 483 

number (for MRI traits) and a sparse kinship matrix. P-values shown are two-sided and unadjusted for multiple 484 

testing. Values of λ were estimated at the median of the test statistic distribution. For three traits, height, weight 485 

and QTc, λ(median) was larger than 1.1. Height and weight indeed show a visual inflation. 486 
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Supplementary Figure 5: Quantile-quantile plots for rare deleterious variants compared to rare 488 

synonymous variants for height, weight, BMI, and QTc. The y-axis represents the observed –log10 P-489 

values across all tests, while the x-axis represents the expected under the null-hypothesis. P-values were 490 

obtained from score tests in linear mixed effects models, adjusting for sex, age, sequencing batch, associated 491 

principal components (PCs), MRI serial number (for MRI traits) and a sparse kinship matrix. P-values shown 492 

are two-sided and unadjusted for multiple testing. Left panels represent the exome-wide discovery analysis 493 

where we analyzed rare LOF and predicted deleterious missense variants, while the right panels show the 494 

results for rare (MAF<0.1%) synonymous variants. As expected under the null, the distributions for the 495 

synonymous variants do not show inflation.  496 
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Supplementary Figure 6. Sensitivity analysis restricting to individuals of European ancestry only in the 499 

analysis of binary traits. Data are presented as Odds Ratios (OR) with error bars representing 95% 500 

confidence intervals (CI). P-values were computed using saddle point approximation and were obtained from 501 

logistic mixed effects models, adjusting for sex, age, sequencing batch, associated principal components 502 

(PCs), a sparse kinship matrix. P-values shown are two-sided and unadjusted for multiple testing. ORs and CIs 503 

were obtained from Firth’s regression models adjusting for sex, age, sequencing batch and associated PCs 504 

among unrelated samples. P-values are two-sided and unadjusted for multiple testing. Exome-wide significant 505 

associations for binary traits were largely consistent when restricting to a homogenous subset of the cohort 506 

consisting of European individuals only. Abbreviations: ALL, all ancestry individuals included; EUR, European 507 

ancestry individuals only. 508 
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Supplementary Figure 7. Sensitivity analysis restricting to individuals of European ancestry only in the 512 

analysis of quantitative traits. Data are presented as effect size () estimates per standard deviation with 513 

error bars representing 95% confidence intervals (CI). P-values, effect sizes and 95% CIs were obtained from 514 

score tests in linear mixed effects models, adjusting for sex, age, sequencing batch, associated principal 515 

components (PCs), MRI serial number (for MRI traits) and a sparse kinship matrix. P-values shown are 516 

unadjusted for multiple testing. Associations were largely consistent when restricting to samples from a 517 

homogenous subset of European individuals only. Abbreviations: ALL, all ancestry individuals included; EUR, 518 

European ancestry individuals only; CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density 519 

lipoprotein; Igf-1, insulin-like growth factor-1; QTc, Bazett-corrected QT interval; LVEF, left ventricular ejection 520 

fraction; CI, confidence interval. 521 
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Supplementary Figure 8. Sensitivity analysis restricting to LOFs only in the primary analysis of binary 524 

traits. Data are presented as Odds Ratios (OR) with error bars representing 95% confidence intervals (CI). P-525 

values were computed using the saddle point approximation and were obtained from logistic mixed effects 526 

models, adjusting for sex, age, sequencing batch, associated principal components (PCs), a sparse kinship 527 

matrix. P-values shown are two-sided and unadjusted for multiple testing. ORs and CIs were obtained from 528 

Firth’s regression models adjusting for sex, age, sequencing batch and associated PCs among unrelated 529 

samples. P-values are two-sided and unadjusted for multiple testing. Effect estimates for analysis of LOFs 530 

were largely consistent with effect estimates from LOFs and predicted-damaging missense combined, 531 

indicating that in general effect sizes from our discovery analysis our not diluted by the included missense 532 

variants. However, effect sizes were attenuated by including missense variants for GCK/type 2 diabetes. 533 

Interestingly, the GCK/diabetes association also dropped in significance after removing missense variants; this 534 

indicates that a number of these missense variants were functional, possibly with smaller effect sizes than 535 

LOFs. Abbreviations: L, high-confidence loss-of-function variants only; L+M, high-confidence loss-of-function 536 

and predicted-damaging missense variants combined; CI, confidence interval. 537 
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Supplementary Figure 9. Sensitivity analysis restricting to LOFs only in the primary analysis of 540 

quantitative traits. Data are presented as effect size () estimates per standard deviation with error bars 541 

representing 95% confidence intervals (CI). P-values, effect sizes and 95% CIs were obtained from score tests 542 

in linear mixed effects models, adjusting for sex, age, sequencing batch, associated principal components 543 

(PCs), MRI serial number (for MRI traits) and a sparse kinship matrix. P-values shown are two-sided and 544 

unadjusted for multiple testing. Effect estimates for analysis of LOFs were largely consistent with effect 545 

estimates from LOFs and predicted-damaging missense combined. Abbreviations: L, high-confidence loss-of-546 

function variants only; L+M, high-confidence loss-of-function and predicted-damaging missense variants 547 

combined; CI, confidence interval; HDL, high-density lipoprotein; LDL, low-density lipoprotein; Igf-1, insulin-like 548 

growth factor-1; QTc, Bazett-corrected QT interval; LVEF, left ventricular ejection fraction; CI, confidence 549 

interval.  550 
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 557 
Supplementary Figure 10. Leave-one-variant-out (LOVO) analysis for novel rare variant associations. 558 

The x-axis represents a single variant removed from the gene-based analysis, while the y-axis shows the -10log 559 

P-value of the association without that given variant. P-values were obtained from score tests in linear mixed 560 

effects models (quantitative traits) or saddle point approximation in logistic mixed effects models (binary traits), 561 

adjusting for sex, age, sequencing batch, associated principal components (PCs) and a sparse kinship matrix. 562 

P-values shown are two-sided and unadjusted for multiple testing. The first result (diamond) shows the original 563 

result without any variant removed. Variants are annotated with the variant name in format 564 
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chromosome:position:reference:alternative; for TTN variant names are not shown given the many variants in 565 

the masks. Associations are never abolished upon removing the most important variant from the mask.  566 
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 567 
Supplementary Figure 11. Penetrance of predicted-damaging variants in genes associated with disease 568 

in the primary analyses. The x-axis presents gene-phenotype pairs significantly associated with increased 569 

disease risk in the primary analysis of loss-of-function and predicted-deleterious missense variants. ‘Significant 570 

increased disease risk’ was defined as Benjamini-Hochberg two-sided Q-value < 0.01 (computed from P-571 

values from all tests in the discovery phase using saddle point approximation in logistic mixed effects models) 572 

and Odds Ratio (OR) > 1 (computed from Firth’s regression models among unrelated samples). Data on the y-573 

axis are presented as penetrance - calculated as the number of rare variant carriers who were disease cases 574 

divided by the total number of carriers times 100% - with dotted lines representing 95% exact binomial 575 

confidence intervals. Based on effect sizes, the penetrance estimates for diabetes type 2/GCK likely 576 

underestimate true loss-of-function, while the other associations should be comparable to loss-of-function 577 

variants estimates (Supplementary Figure 8).    578 
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 579 
Supplementary Figure 12. Prevalence of predicted-damaging variants in genes identified in primary 580 

analysis among relevant disease cases. The x-axis presents gene-phenotype pairs significantly associated 581 

with increased disease risk in the primary analysis of loss-of-function and predicted-deleterious missense 582 

variants. ‘Significant increased disease risk’ was defined as Benjamini-Hochberg two-sided Q-value < 0.01 583 

(computed from P-values from all tests in the discovery phase using saddle point approximatio in logistic mixed 584 

effects models) and Odds Ratio (OR) > 1 (computed from Firth’s regression models among unrelated 585 

samples). Data on the y-axis are presented as the percentage of rare variant carriers among disease cases - 586 

calculated as the number of rare variant carriers who were disease cases divided by the total number of 587 

disease cases times 100% - with dotted lines representing 95% exact binomial confidence intervals. Among 588 

individuals with dilated cardiomyopathy, up to 12% may carry rare variants in TTN. In general, however, rare 589 

high-impact variants are rare among common adult-onset disease cases.  590 

  591 
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Supplementary Figure 13. Penetrance of putatively pathogenic variants in cardiovascular disease and 592 

diabetes panel genes for relevant phenotypes. The x-axis presents gene-phenotype pairs showing at least 593 

suggestive evidence of association with increased disease risk in the analysis of putatively pathogenic variants 594 

in cardiovascular and diabetes panel genes. ‘Suggestive increased disease risk’ was defined as two-sided P-595 

value < 0.005 (unadjusted for multiple testing; computed using saddle point approximation in logistic mixed 596 

effects models) and Odds Ratio (OR) > 1 (computed from Firth’s regression models among unrelated 597 

samples). Data on the y-axis are presented as penetrance - calculated as the number of rare variant carriers 598 

who were disease cases divided by the total number of carriers times 100% - with dotted lines representing 599 

95% exact binomial confidence intervals.  600 

  601 
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 603 

Supplementary Figure 14. Prevalence of putatively pathogenic variants in cardiovascular disease and 604 

diabetes panel genes among disease cases. The x-axis presents gene-phenotype pairs showing at least 605 

suggestive evidence of association in the analysis of putatively pathogenic variants in cardiovascular and 606 

diabetes panel genes. ‘Suggestive increased disease risk’ was defined as two-sided P-value < 0.005 607 

(unadjusted for multiple testing; computed using saddle point approximation inn logistic mixed effects models) 608 

and Odds Ratio (OR) > 1 (computed from Firth’s regression models among unrelated samples). Data on the y-609 

axis are presented as the percentage of rare variant carriers among disease cases - calculated as the number 610 

of rare variant carriers who were disease cases divided by the total number of disease cases times 100% - 611 

with dotted lines representing 95% exact binomial confidence intervals.  612 
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