Supplementary information

Structure of the decoy module of human glycoprotein 2 and uromodulin and its interaction with bacterial adhesin FimH

In the format provided by the authors and unedited

	GP2 decoy module	GP2 decoy module	GP2 decoy module
	crystal form I (<i>P</i> 1)	crystal form II (P212121)	crystal form III (C2)
	(PDB 7P6R)	(PDB 7P6S)	(PDB 7P6T)
Data collection Space group Cell dimensions	<i>P</i> 1 [1]	<i>P</i> 2 ₁ 2 ₁ 2 ₁ [19]	C2 [5]
Cell dimensions a, b, c (Å)33.04, 46. a, β, γ (°)68.750, 75.Resolution (Å)52.9–1.90.No. unique reflections22914 (21.Completeness (%)96.6 (91.4.Redundancy3.5 (3.2). R_{merge} 0.099 (0.5. R_{meas} 0.118 (0.6. R_{pim} 0.063 (0.3.Wilson B-factor (Ų)20.1 $I/\sigma I$ 8.8 (2.6). $CC_{1/2}$ 0.99 (0.85. CC^* 1.00 (0.97.	33.04, 46.53, 57.44	33.48, 59.50, 87.04	90.15, 33.66, 59.63
	68.750, 75.873, 72.398	90, 90, 90	90, 111.839, 90
	52.9–1.90 (1.97–1.90)*	49.1–1.35 (1.39–1.35)	29.0–1.40 (1.47–1.40)
	22914 (2161)	38991 (2960)	32721 (4653)
	96.6 (91.4)	99.7 (98.2)	98.4 (96.8)
	3.5 (3.2)	6.0 (4.7)	6.9 (6.7)
	0.099 (0.509)	0.153 (2.318)	0.104 (3.379)
	0.118 (0.611)	0.167 (2.612)	0.112 (3.663)
	0.063 (0.333)	0.067 (1.180)	0.042 (1.396)
	20.1	13.2	18.9
	8.8 (2.6)	7.0 (0.7)	8.6 (0.6)
	0.99 (0.89)	1.00 (0.40)	1.00 (0.48)
	1.00 (0.97)	1.00 (0.75)	1.00 (0.81)
Refinement Resolution (Å) No. reflections No. free reflections <i>R</i> work <i>R</i> free No. non-H atoms Protein Ligand/ion Water No. protein residues <i>B</i> -factors Protein Ligand/ion Water R.m.s. deviations Bond lengths (Å) Bond angles (°) Validation MolProbity score Clashscore Rotamer outliers (%) Ramachandran plot Overall Z-score Favored (%)	52.9-1.90 (1.97-1.90) 22860 (2157) 1579 (152) 0.233 (0.275) 0.280 (0.313) 2400 2061 106 233 265 28.7 27.9 38.7 31.2 0.007 0.73 1.23 4.59 0.0 -1.29 \pm 0.44 98.4	$\begin{array}{c} 49.1-1.35\ (1.39-1.35)\\ 38932\ (2921)\\ 2027\ (153)\\ 0.194\ (0.422)\\ 0.224\ (0.429)\\ 1389\\ 1122\\ 35\\ 232\\ 142\\ 18.5\\ 16.5\\ 18.2\\ 28.2\\ 0.004\\ 0.72\\ 0.95\\ 1.83\\ 0.0\\ -1.47\pm 0.55\\ 98.6 \end{array}$	29.0-1.40 (1.47-1.40) 32522 (4534) 2018 (280) 0.194 (0.514) 0.223 (0.518) 1288 1067 87 134 138 31.3 28.6 53.4 38.4 0.003 0.67 0.66 0.45 0.0 -1.12 ± 0.60 98.5
Allowed (%)	1.6	1.4	1.5
Disallowed (%)	0.0	0.0	0.0

Supplementary Table 1 X-ray data collection, refinement and validation statistics

* Values in parentheses are for highest-resolution shell

Supplementary Table 2 Pathogenic UMOD D10C domain missense mutations

UMOD mutation	Equivalent GP2 residue*	Predicted mutation effect based on structural information	Disease reported [§]	Reference
D172H	D61	Affects the relative orientation of the β -hairpin and D10C domain by disrupting the salt bridge between D172 and K265 (K155 in GP2)	TN	66
P173L P173R	P62	The mutated residue clashes against invariant W202 (W92 in GP2), affecting the interface between the D10C domain and the β -hairpin	UAKD FJHN	4 67
C174R	C₁63	Destroys conserved disulfide bond C1-C8	UAKD	68
R185C	R74	Disrupts the interaction between helix $3_{10}B$ and loop $3_{10}B$ - βB	TN	66
R185G			FJHN	69 66
R185H R185I				66 70
R185S			FJHN	71
C195F	C ₂ 85	Destroys conserved disulfide bond C2-C9	FJHN	72
C195Y	D 00		FJHN	73
D196N	D86	Disrupts the interaction between loop $3_{10}B$ - βB and helix $3_{10}B$	FJHN	69 74
W202C	W92	Disrupts the interaction between the D10C domain and the β -	UAKD	4
W202S		hairpin	FJHN	72
R204G	R94	Disrupts the cation- π interaction with β G Y271 (Y161 in GP2)	FJHN	71
R204P		and affects the interface between the $3_{10}A\text{-}\beta A$ region and the	TN	66
	0.400	D10C domain β-strand core		
G210D	G100	The mutated residue clashes against the C-terminal end of		4
B2100	P102	Difference with correct disulfide band formation		75
C217G	C.107	Destroye concerved disulfide band C. C.		66 71
C217C	03107	Destroys conserved disultate bond C ₃ -C ₆	FJHN	76
C217W			FJHN	69
C223R	C₄113	Destrovs conserved disulfide bond C₄-C₁₀	FJHN	69
C223Y			FJHN	77
T225K	T115	Disrupts hydrogen bonding between the Thr hydroxyl group and	MCKD2	78
1225M		main chain atoms; introduces clashes with β -strands D/H	FJHN	71
M229R	M119	Disrupts D10C hydrophobic core	FJHN/MCKD	79
W230R	W120	Disrupts a key D10C residue whose aromatic side chain lies between the C_3 - C_6 and C_5 - C_7 disulfides	UAKD	80
P236L	P126	Disrupts the interaction between loop βD - βE and the D10C	FJHN	72
P236Q P236R		domain β-strand core	FJHN FJHN	82
P236S			UAKD	4
C248S	C₅138	Destroys conserved disulfide bond C5-C7	UAKD	80
C248W			MCKD2	78
H250L H250Q	H140	Disrupts the packing of the His ring against the C_3 - C_6 disulfide (on the opposite side of W230 (GP2 W120)	TN TN	66 83
C255Y	C ₆ 145	Destroys conserved disulfide bond C ₃ -C ₆	FJHN	84
C256G	C ₇ 146	Destroys conserved disulfide bond C5-C7	FJHN	85
C256Y	0 457			75
C207F	C150	Destroys conserved disulfide bond C_1 - C_8		<u> </u>
G269C	G159	Interferes with correct disulfide bond formation and the β -turn between strands βF and βG	UAKD	4
G270C	G160	Interferes with correct disulfide bond formation and the $\beta\text{-turn}$ between strands βF and βG	UAKD	87
V273F V273L	V163	Introduces clashes into the hydrophobic core	FJHN/MCKD TN	79 66
Y274C	Y164	Destabilizes the structure of the β G strand, carrying the UMOD	UAKD	80
Y274H		high-mannose glycan and, in the case of Y274C, may also		
C282P	C ₂ 172	Destroye concerved disulfide band C. C	E IHNI	71
C282S	Jy172	Destroys conserved disullide bond C2-C9	UAKD	4
L284P	L174	Affects closely located disulfide bond C2-C9	UAKD	4
C287F	C ₁₀ 177	Destroys conserved disulfide bond C_4 - C_{10}	ADTKD	88

* Residues shown in Fig. 1c-g and Extended Data Fig. 5c-g are highlighted in bold [§] ADTKD, Autosomal Dominant Tubulointerstitial Kidney Disease; FJHN, Familial Juvenile Hyperuricemic Nephropathy; MCKD, Medullary Cystic Kidney Disease; TN, Tubulointerstitial Nephritis; UAKD, Uromodulin-Associated Kidney Disease

	Full-length UMOD		OD	UMOD branch + EGF IV/ FimH ₁ complex	
	(EMD-10553 + EMD-13378) (PDB 7PFP)			(EMD-13794) (PDB 7Q3N)	
Data collection and processing Magnification Voltage (kV) Electron exposure (e–/Å ²) Defocus range (µm) Pixel size (Å)		130,000x 300 39.6 -1.5 to -3.5 1.06		105,000x 300 40 -1 to -3 0.84	
Body	Filament D10C do	t core + omain	Branch		
Symmetry imposed	Helical (62.5 Å ri 180.0° tv	with se, vist)	Non- helical	Helical (initial; with 65.2 Å rise, 180.0° twist); non-helical (final)	
Initial particle images (no.) Final particle images (no.) Map resolution (Å) FSC threshold Map resolution range (Å)	412,322 288,403 3.35 0.143 3.0–4.2		412,322 114,206 6.1 0.143 5.0-6.8	3,767,790 225,819 7.4 0.143 6.4–7.9	
Refinement Initial models used (PDB codes)	PDB 6TQK, AlphaFold2 model, PDB 7P6R/7P6S/7P6T		, model, 7P6S/7P6T	PDB 7PFP, PDB 6GTW	
Model resolution (Å) masked unmasked ESC threshold		4.1 4.4 0.143	1103/1101	8.3 8.5 0.143	
Map sharpening <i>B</i> factor ($Å^2$)	-200			-150	
Non-hydrogen atoms Protein residues Carbohydrate residues B factors (Å ²)		9,582 1,127 84		3,599 451 20	
Protein Carbohydrate residues R.m.s. deviations		315 406		404 291	
Bond lengths (A) Bond angles (°) Validation		0.005 0.845		0.003 0.672	
Clashscore Poor rotamers (%)		1.83 4.08 2.4		1.71 9.47 0.5	
Overall Z-score Favored (%) Allowed (%) Disallowed (%)		-1.66 ± 0.24 94.9 5.1 0.0	1	-0.74 ± 0.37 96.6 3.4 0.0	

Supplementary Table 3 Cryo-EM data collection, refinement and validation statistics

Supplementary References

- 66. Bollée, G. *et al.* Phenotype and outcome in hereditary tubulointerstitial nephritis secondary to *UMOD* mutations. *Clin. J. Am. Soc. Nephrol.* **6**, 2429–2438 (2011).
- Iguchi, A. *et al.* A novel mutation in the uromodulin gene in a Japanese family with a mild phenotype of familial juvenile hyperuricemic nephropathy. *CEN Case Rep.* 2, 228–233 (2013).
- Moskowitz, J. L. *et al.* Association between genotype and phenotype in uromodulin-associated kidney disease. *Clin. J. Am. Soc. Nephrol.* 8, 1349–1357 (2013).
- 69. Williams, S. E. *et al.* Uromodulin mutations causing familial juvenile hyperuricaemic nephropathy lead to protein maturation defects and retention in the endoplasmic reticulum. *Hum. Mol. Genet.* **18**, 2963–2974 (2009).
- Zhang, L.-L. *et al.* Autosomal dominant tubulointerstitial kidney disease with a novel heterozygous missense mutation in the uromodulin gene: A case report. *World J. Clin. Cases* 9, 10249–10256 (2021).
- Dahan, K. *et al.* A cluster of mutations in the UMOD gene causes familial juvenile hyperuricemic nephropathy with abnormal expression of uromodulin. *J. Am. Soc. Nephrol.* 14, 2883–2893 (2003).
- Kudo, E. *et al.* Familial juvenile hyperuricemic nephropathy: Detection of mutations in the uromodulin gene in five Japanese families. *Kidney Int.* 65, 1589–1597 (2004).
- 73. Spain, H., Plumb, T. & Mikuls, T. R. Gout as a manifestation of familial juvenile hyperuricemic nephropathy. *J. Clin. Rheumatol.* **20**, 442–444 (2014).
- 74. Lhotta, K. *et al.* Familial juvenile hyperuricemic nephropathy: report on a new mutation and a pregnancy. *Clin. Nephrol.* **71**, 80–83 (2009).
- 75. Schaeffer, C. *et al.* Urinary secretion and extracellular aggregation of mutant uromodulin isoforms. *Kidney Int.* **81**, 769–778 (2012).
- Hart, T. C. *et al.* Mutations of the *UMOD* gene are responsible for medullary cystic kidney disease 2 and familial juvenile hyperuricaemic nephropathy. *J. Med. Genet.* **39**, 882–892 (2002).
- Bleyer, A. J., Trachtman, H., Sandhu, J., Gorry, M. C. & Hart, T. C. Renal manifestations of a mutation in the uromodulin (Tamm Horsfall protein) gene. *Am. J. Kidney Dis.* 42, E20–E26 (2003).

- Wolf, M. T. F. *et al.* Mutations of the *Uromodulin* gene in MCKD type 2 patients cluster in exon 4, which encodes three EGF-like domains. *Kidney Int.* 64, 1580– 1587 (2003).
- Vylet'al, P. *et al.* Alterations of uromodulin biology: a common denominator of the genetically heterogeneous FJHN/MCKD syndrome. *Kidney Int.* **70**, 1155– 1169 (2006).
- Zaucke, F. *et al.* Uromodulin is expressed in renal primary cilia and UMOD mutations result in decreased ciliary uromodulin expression. *Hum. Mol. Genet.* 19, 1985–1997 (2010).
- Liu, M. *et al.* Novel *UMOD* mutations in familial juvenile hyperuricemic nephropathy lead to abnormal uromodulin intracellular trafficking. *Gene* 531, 363–369 (2013).
- 82. Bernascone, I. *et al.* Defective intracellular trafficking of uromodulin mutant isoforms. *Traffic* **7**, 1567–1579 (2006).
- Raffler, G., Zitt, E., Sprenger-Mähr, H., Nagel, M. & Lhotta, K. Autosomal dominant tubulointerstitial kidney disease caused by uromodulin mutations: seek and you will find. *Wien. Klin. Wochenschr.* **128**, 291–294 (2016).
- 84. Turner, J. J. O. *et al.* UROMODULIN mutations cause familial juvenile hyperuricemic nephropathy. *J. Clin. Endocrinol. Metab.* **88**, 1398–1401 (2003).
- 85. Takemasa, Y. *et al.* Familial juvenile hyperuricemia in early childhood in a boy with a novel gene mutation. *CEN Case Rep* **10**, 426–430 (2021).
- 86. Christiansen, R. E. *et al.* A mother and daughter with unexplained renal failure. *Nephron Clin. Pract.* **119**, c1–c9 (2011).
- 87. Nasr, S. H., Lucia, J. P., Galgano, S. J., Markowitz, G. S. & D'Agati, V. D. Uromodulin storage disease. *Kidney Int.* **73**, 971–976 (2008).
- 88. Gong, K. *et al.* Autosomal dominant tubulointerstitial kidney disease genotype and phenotype correlation in a Chinese cohort. *Sci. Rep.* **11**, 3615 (2021).