Supplementary Information

Selective photocatalytic CO₂ reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO₂

Ma et al.

Table of Contents

Supplementary Fig. 1Long-term test of photocatalytic CO2 reductionS5over photocatalysts.Supplementary Fig. 2Photocatalytic CO2 reduction in different gasS5environment.Supplementary Fig. 3GC-MS of gas products after the photocatalyticS6

reaction over Pd-HPP-TiO₂.

Supplementary Fig. 4 Electrochemical impedance spectra (EIS) of asprepared photocatalysts.

Supplementary Fig. 5. Photoluminescence (PL) spectra of as-prepared S8 photocatalysts.

Supplementary Fig. 6 UV–vis diffuse reflectance spectra of as-prepared S9 photocatalysts.

Supplementary Fig. 7 The evolution rates of CH₄ and CO in pure CO₂ S9 under visible light irradiation ($\lambda \ge 420$ nm).

Supplementary Fig. 8 Effect of O₂ existence on the photocatalytic CO₂ S10 reduction.

Supplementary Fig. 9 Effect of CO₂ concentration on the photocatalytic S10 CO₂ reduction.

Supplementary Fig. 10 CO₂ adsorption and desorption isotherms at 273 S11 K.

Supplementary Fig. 11 CO₂ adsorption and desorption isotherms of S11 porous Pd-HPP-TiO₂ composites at 273 K.

Supplementary Fig. 12 The evolution rates of CH₄ and CO over porous S12 Pd-HPP-TiO₂ composites.

Supplementary Fig. 13 Comparisons in CO ₂ and O ₂ adsorption	S12
isotherms at 273 K.	
Supplementary Fig. 14 SEM images.	S13
Supplementary Fig. 15 Low-magnified TEM image of Pd-HPP-TiO ₂ .	S13
Supplementary Fig. 16 FT-IR spectra of of as-prepared photocatalysts.	S14
Supplementary Fig. 17 XPS spectra of hollow TiO ₂ , Pd/TiO ₂ , Pd-HPP,	S15
and Pd-HPP-TiO ₂ .	
Supplementary Fig. 18 In situ DRIFTS tests in the region of 3500-3800	S16
cm ⁻¹ .	
Supplementary Fig. 19 Cycling test of photocatalytic CO ₂ reduction.	S16
Supplementary Fig.e 20 Thermogravimetric analysis of Pd-HPP at a	S17
heating rate of 10 °C min ⁻¹ in air.	
Supplementary Fig. 21 Changes in the FT-IR spectra of Pd-HPP-TiO ₂ by	S17
the photocatalysis.	
Supplementary Fig. 22 XRD patterns of Pd-HPP-TiO ₂ before and after	S18
the photocatalytic reaction.	
Supplementary Fig. 23 XPS spectra of Pd-HPP-TiO ₂ before and after the	S19
photocatalytic reaction.	
Supplementary Fig. 24 Full spectrum of light source.	S20
Supplementary Table 1 Comparison of the photocatalytic activity of Pd-	S20
HPP-TiO ₂ with the recently reported catalysts for CO ₂ reduction under	
similar reaction conditions	
Supplementary Table 2 Comparisons of photocatalytic CO ₂ conversion	S21
in air reported recently.	

Supplementary Table 3 Conversion yield of CO_2 in 0.15 vol% CO_2/N_2	S21
and air for Pd-HPP-TiO ₂ and Pd/TiO ₂ .	
Supplementary Table 4 The porosity parameters and gas uptake of as-	S22
prepared photocatalysts.	
Supplementary Table 5 Comparison of the molar ratio of porphyrin/CO ₂	S22
in different photocatalysts.	
Supplementary Table 6 EXAFS fitting parameters at the Pd K-edge $(S_0^2 =$	S23
0.829).	
Supplementary Table 7 Pd and TiO ₂ contents in Pd-HPP-TiO ₂ and	S23
Pd/TiO ₂ based on the ICP-MS measurements.	
Supplementary References	S23

Supplementary Figures

Supplementary Fig. 1 Long-term test of photocatalytic CO₂ reduction over photocatalysts. (a) Pd-HPP-TiO₂ and (b) Pd/TiO₂.

Supplementary Fig. 2 Photocatalytic CO_2 reduction in different gas environment. The evolution rates of CH_4 and CO over Pd-HPP-TiO₂ in pure CO_2 or N_2 with H_2O .

Supplementary Fig. 3 GC-MS of gas products after the photocatalytic reaction over Pd-HPP-TiO₂. (a, c) GC charts and (b, d) MS of CH₄ and CO produced from the isotopically labelled ¹³CO₂ (¹³C enrichment of \geq 97%) and ¹²CO₂ used as the reactant.

The appearance of m/z = 17 reveals that the produced ¹³CH₄ indeed originated from the ¹³CO₂ reduction over Pd-HPP-TiO₂. The peaks at m/z = 16 and 15 are assigned to the fragments of ¹³CH₄. The peaks at m/z = 29 reveals that the produced ¹³CO originated from ¹³CO₂ reduction over Pd-HPP-TiO₂. The residual and pre-adsorbed ¹²CO₂ on Pd-HPP-TiO₂ and glass surface of the reactor from air are not negligible in contributing to m/z = 28, 16 and 15.

Supplementary Fig. 4 Electrochemical impedance spectra (EIS) of the as-prepared samples. Work electrode: indium-tin-oxide (ITO) glass dip-coated by the samples; reference electrode: Ag/AgCl electrode; counter electrode: platinum wire; electrolyte: 0.1 M KCl aqueous solution containing 5 mM Fe $(CN)_6^{3-}/Fe (CN)_6^{4-}$.

The size of the semicircle at high frequencies in the EIS Nyquist diagram represents the charge transfer resistance (R_{ct}). Pd-HPP and TiO₂ show large R_{ct} due to lower electronic conductivities than that of Pd-HP-TiO₂, suggesting the efficient electron transfer between TiO₂ and Pd-HPP with effective interfacial interaction and efficient charge transfer in Pd-HPP.

Supplementary Fig. 5 Photoluminescence (PL) spectra of as-prepared photocatalysts. Those of Pd/TiO₂, Pd-HPP-TiO₂, HPP-TiO₂, Pd-HPP, and TiO₂ at 360 nm excitation were compared.

Hollow TiO_2 exhibited a strong and broad emission band in the region of 380-550 nm, assigned to the surface defects¹. The largest PL quenching was observed for Pd-HPP-TiO₂, indicating a decrease of charge recombination because of rapid electron transfer from TiO₂ to Pd-HPP.

Supplementary Fig. 6 UV–vis diffuse reflectance spectra of as-prepared photocatalysts. Those of Pd/TiO₂, Pd-HPP-TiO₂, HPP-TiO₂, Pd-HPP, and TiO₂ were compared.

Supplementary Fig. 7 The evolution rates of CH₄ and CO in pure CO₂ under visible light irradiation ($\lambda \ge 420$ nm). The rates over TiO₂, Pd-HPP, and Pd-HPP-TiO₂ were compared.

Supplementary Fig. 8 Effect of O_2 existence on the photocatalytic CO_2 reduction. The evolution rates of CH_4 and CO over Pd-HPP-TiO₂ photocatalyst under visible light irradiation ($\lambda \ge 420$ nm) and full light irradiation. (a) in pure CO_2 (b) in CO_2 with 2 vol% O_2 .

Supplementary Fig. 9 Effect of CO_2 concentration on the photocatalytic CO_2 reduction. The CH_4 evolution rate in CO_2/N_2 synthetic gas over Pd/TiO₂ and Pd-HPP-TiO₂ photocatalysts.

Supplementary Fig. 10 CO₂ adsorption and desorption isotherms at 273 K. Those of hollow TiO₂, Pd-HPP, and Pd-HPP-TiO₂ were compared.

Supplementary Fig. 11 CO₂ adsorption and desorption isotherms of porous Pd-HPP-TiO₂ composites at 273 K. Pd-HPP-TiO₂-1 was synthesized by adding 15 mg of TPP monomer. Pd-HPP-TiO₂-2 was synthesized by adding 45 mg of TPP monomer.

Supplementary Fig. 12 The evolution rates of CH_4 and CO over porous Pd-HPP-TiO₂ composites. Pd-HPP-TiO₂-1 was synthesized by adding 15 mg of TPP monomer. Pd-HPP-TiO₂ was synthesized by adding 30 mg of TPP monomer. Pd-HPP-TiO₂-2 was synthesized by adding 45 mg of TPP monomer.

Supplementary Fig. 13 Comparisons in CO_2 and O_2 adsorption isotherms at 273 K. (a) Pd-HPP-TiO₂ and (b) Pd/TiO₂. The CO_2/O_2 selectivity ratio was calculated by the initial slopes of adsorption isotherms in the pressure less than $0.1^{2,3}$.

Supplementary Fig. 14 SEM images. (a) SiO₂ spheres and (b) core-shell SiO₂@TiO₂.

The SEM image indicates that SiO₂ spheres were covered by TiO₂ to formcore-shell SiO₂@TiO₂.

Supplementary Fig. 15 Low-magnified TEM image of Pd-HPP-TiO₂.

After step I and II in Figure 1, hollow TiO_2 were uniformly covered by Pd-HPP as shown in transmission electron microscopy (TEM) images (Figures 4b and S15).

Supplementary Fig. 16 FT-IR spectra of of as-prepared photocatalysts. Those of hollow TiO₂, HPP-TiO₂, Pd-HPP, and Pd-HPP-TiO₂ were compared.

Supplementary Fig. 17 XPS spectra of hollow TiO₂, Pd/TiO₂, Pd-HPP, and Pd-HPP-TiO₂.
(a) XPS survey spectra. High-resolution XPS spectra of (b) C 1s, (c) N 1s, and (d) Ti 2p in the corresponding samples.

The high-resolution C 1*s* spectra were deconvoluted to three peaks at 288.9, 286.0, and 284.6 eV, assigned to Cs of C-N, C=N, and C-C of HPP, respectively. The N 1*s* spectra show two peaks at 400.3 and 398.9 eV, corresponding to pyrrolic-N and Pd-N in Pd-HPP. Combined with the presence of Pd(II) in Pd 3*d* spectra (Figure 5b), it can be deduced that Pd(II) coordinates with the porphyrin. The intensity of the Pd-N peak decreased in Pd-HPP-TiO₂, presumably due to the interaction between TiO₂ and N of the porphyrin. In the high-resolution Ti 2*p* spectra, two peaks were observed at 464.3 and 458.6 eV, corresponding to Ti $2p_{3/2}$ and Ti $2p_{1/2}$. The interaction between Pd-HPP and TiO₂ causes higher-energy shifts of ~0.7 eV for two peaks.

Supplementary Fig. 18 In situ DRIFTS tests in the region of 3500-3800 cm⁻¹. Gas adsorption and photocatalytic reaction over Pd-HPP-TiO₂ in the dark and under UV-visible light irradiation.

Supplementary Fig. 19 Cycling test of photocatalytic CO_2 reduction. The CH_4 and CO evolution over Pd-HPP-TiO₂ within 5 cycles.

Supplementary Fig. 20 Thermogravimetric analysis of Pd-HPP at a heating rate of 10 $\,^{\circ}$ C min⁻¹ in air.

The thermostability of Pd-HPP was investigated by thermogravimetric analysis. Upon heating, the weight loss of about 5.1 % below 150 $^{\circ}$ C came from the adsorbed water and other gaseous molecules. The decomposition of HPP was observed when Pd-HPP was heated at higher than 330 $^{\circ}$ C.

Supplementary Fig. 21 Changes in the FT-IR spectra of Pd-HPP-TiO₂ by the photocatalysis.

Comparison between before and after the photocatalytic reaction.

Supplementary Fig. 22 XRD patterns of Pd-HPP-TiO₂ before and after the photocatalytic reaction.

The vertical lines are the position and intensity of anatase TiO_2 (black line, JCPDS 21-1272) and Pd (red line, JCPDS 46-1043).

Supplementary Fig. 23 XPS spectra of Pd-HPP-TiO₂ before and after the photocatalytic reaction. (a) Pd 3*d*, (b) Ti 2*p*, (c) C 1*s*, and (d) N 1*s*. The ratio of Pd (II) and Pd (0) was calculated for Pd-HPP-TiO₂ before and after the reaction.

After the photocatalytic reaction, Pd existed as Pd(II) in ~78.8%, i.e. 21.2% of Pd(II) of Pd-HPP-TiO₂ changed to Pd(0). The largely remained Pd(II) in the composite can be ascribed to the confinement effect and coordination with porphyrin of HPP. No significant difference was observed in the spectra of Ti 2p, C1s, and N1s, indicating the durability of HPP and TiO₂.

Supplementary Fig. 24 Full spectrum of light source. Light: Xe lamp (PLS-SXE300D, Beijing Perfectlight, China).

	Products (µmol g ⁻¹ h	Def	
Photocatalysts	CH ₄	СО	Kei
Pyrazolyl Porphyrinic Ni-MOF	10.1	6.0	5
$1\%B/g-C_3N_4$	0.16	-	6
a-Fe ₂ O ₃ /Amine-RGO/CsPbBr ₃	28.5	6.0	7
V _o -BiOIO ₃	-	16.33	8
N-Doped Graphene on CdS	0.33	2.59	9
V _s -CuIn ₅ S ₈	8.7	-	10
Porous CoO@N-GCs	10.03	5.16	11
Hypercrosslinked Polymers-3	0.30	5.10	12
Porphyrin Based COF	-	24.6	13
Triphenylamine Based CMPs	-	37.15	14
ZnSe/CdS DORs	-	11.3	15
Pd-HPP-TiO ₂	48	34	This work

Supplementary Table 1 Comparison of the photocatalytic activity of Pd-HPP-TiO₂ with the recently reported catalysts for CO_2 reduction under similar reaction conditions (gas-solid reaction just using H₂O as electron donor).

Photocatalysts	S_{BET} $(\text{m}^2 \text{g}^{-1})$	Irradiation light, additives	Products $(\mu mol g^{-1} h^{-1})$	Conversion yield of CO ₂	References
Rb _{0.33} WO ₃	5.0	UV-vis, H ₂ O	CH ₃ OH: 3.73; CO: 0.07; CH ₄ : 0.02; HCHO: 1.05	4.3 % (4 h)	16
Mo-doped Cs _{0.33} WO ₃		UV-vis, H ₂ O,	CO: 3.4; CH ₃ OH: 1		17
Ionic liquid([P ₄₄₄₄][p-2- O])-pyrene-based polymer	23.9	$\lambda > 420$ nm, TEOA	CO: 47.37		18
Pd/TiO ₂ (control)	61	UV-vis, H ₂ O	CH ₄ : 2.7; CO:	2.6 % (2 h)	This work
Pd-HPP-TiO ₂	323.0	UV-vis, H ₂ O	CH ₄ : 12.2; CO: 4.9	12 % (2 h)	This work

Supplementary Table 2 Comparisons of photocatalytic CO₂ conversion in air reported recently.

Supplementary Table 3 Conversion yield of CO_2 in 0.15 vol% CO_2/N_2 and air for Pd-HPP-TiO₂ and Pd/TiO₂.

Photocatalsts	Atmosphere	CO_2 in the reactor (ppm) (CO_2 conversion rate (%))		
		Before reaction	Irradiation for 1 h	Irradiation for 2 h
Pd/TiO ₂	0.15 vol% CO ₂ /N ₂	1384 (-)	1297 (6.3)	1224 (12)
	Air	332 (-)	326 (1.9)	323 (2.7)
Pd-HPP-TiO ₂	0.15 vol% CO ₂ /N ₂	1362 (-)	1322 (3.0)	1285 (5.7)
	Air	319 (-)	297 (7.2)	282 (12)

Photocatalysts	$S_{\text{BET}}^{[a]}$ (m ² g ⁻¹)	Pore volume ^[b] (cm ³ g ⁻¹)	Micropore volume ^[c] (cm ³ g ⁻¹)	$CO_2 uptake^{[d]} (cm3 g-1)$	$O_2 uptake^{[e]} (cm3 g-1)$
Pd-HPP	1252	0.71	0.61	96	-
TiO ₂	75	0.13	-	11	-
Pd-HPP-TiO ₂	323	0.29	0.22	54	4.3
Pd/TiO ₂	61	0.1	-	6.5	2.8

Supplementary Table 4 The porosity parameters and gas uptake of as-prepared photocatalysts.

[a] Calculated from the N₂ adsorption-desorption isotherms at 77.3 K. ^[b]Calculated from N₂ isotherm at $P/P_0=0.995$ and 77.3 K. ^[c]Calculated from the N₂isotherm at $P/P_0=0.050$. ^[d]Calculated from the CO₂ adsorption-desorption isotherms at 1.00 bar and 273 K. ^[e]Calculated from the O₂ adsorption-desorption isotherms at 1.00 bar and 273 K.

Supplementary Table 5 Comparison of the molar ratio of porphyrin/CO₂ in different photocatalysts.

Photocatalysts	Pd-HPP Content	Porphyrin Content	CO ₂ uptake	Porphyrin/CO ₂
-	(wt%)	(wt%)	$(\text{cm}^3 \text{g}^{-1})^{[d]}$	(molar ratio)
Pd-HPP	100	70.5	96	1:3.7
Pd-HPP-TiO ₂ -1 ^[a]	53.8	37.9	42.4	1:3.1
Pd-HPP-TiO ₂ ^[b]	65.6	46.2	54	1:3.2
Pd-HPP-TiO ₂ -2 ^[c]	74.9	52.8	58.3	1:3.0

^[a] Pd-HPP-TiO₂-1 was synthesized by adding 15 mg of TPP monomer.

^[b] Pd-HPP-TiO₂ was synthesized by adding 30 mg of TPP monomer.

^[c] Pd-HPP-TiO₂-2 was synthesized by adding 45 mg of TPP monomer.

^[d]Calculated from the CO₂ adsorption-desorption isotherms at 1.00 bar and 273 K.

Supprementaly		in o mui	18 paramete	is at the 1 a H			
Photocatalyst	Shell	Ν	$R(\text{\AA})$	$\sigma^2(\text{\AA}^2)$	$\Delta E_0 (\mathrm{eV})$	<i>R</i> factor ^[b]	
Pd-HPP-TiO ₂	Pd-N	3.9	2.03	0.0043	2.6	0.0001	

Supplementary Table 6 EXAFS fitting parameters at the Pd K-edge $(S_0^2 = 0.829)^{[a]}$.

 ${}^{[a]}S_0{}^2$ was set to 0.829, according to the experimental EXAFS fit of Pd foil reference by fixing CN as the known crystallographic value.

^[b]*N*: coordination numbers; *R*: bond distance; σ^2 : Debye-Waller factor; ΔE_0 : the inner potential correction. *R* factor: goodness of fit.

Supplementary Table 7 Pd and TiO_2 contents in Pd-HPP- TiO_2 and Pd/ TiO_2 based on the ICP-MS measurements.

Photocatalysts	Pd content (wt%)	TiO ₂ content (wt%)
Pd-HPP-TiO ₂	2.72	34.4
Pd/TiO ₂	2.68	97.3

Supplementary References

1. Ma, Y. *et al.* Assembling ultrafine TiO_2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO_2 to CH_4 at a low concentration. *Appl. Catal. B-Environ.* **270**, 118856 (2020).

2. Wang, S. *et al.* Porous hypercrosslinked polymer-TiO₂-graphene composite photocatalysts for visible-light-driven CO₂ conversion. *Nat. Commun.* **10**, 626 (2019).

3. Saleh, M., Lee, H. M., Kemp, K. C., Kim, K. S. Highly stable CO_2/N_2 and CO_2/CH_4 selectivity in hyper-cross-linked heterocyclic porous polymers. *ACS Appl. Mater. Interfaces* **6**, 7325–7333 (2014).

4. Lu, C. *et al.* Atomic Ni anchored covalent triazine framework as high efficient electrocatalyst for carbon dioxide conversion. *Adv. Funct. Mater.* **29**, 1806884 (2019).

5. Fang, Z. *et al.* Boosting interfacial charge-transfer kinetics for efficient overall CO₂ photoreduction via rational design of coordination spheres on metal–organic frameworks *J. Am. Chem. Soc.* **142**, 12515-12523 (2020).

6. Fu, J. *et al.* Graphitic carbon nitride with dopant induced charge localization for enhanced photoreduction of CO₂ to CH₄. *Adv. Sci.* **6**, 1900796 (2019).

7. Jiang, Y. *et al.* All-solid-state Z-scheme α -Fe₂O₃/amine-RGO/CsPbBr₃ hybrids for visible lightdriven photocatalytic CO₂ reduction. *Chem* **6**, 766-780 (2020).

8. Chen, F. *et al.* Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO_2 photoreduction on BiOIO₃ single crystals. *Adv. Mater.* **32**, 1908350 (2020).

9. Bie, C. *et al.* In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO₂ reduction. *Adv. Mater.* **31**, 1902868 (2019).

10. Li, X. *et al.* Selective visible-light-driven photocatalytic CO_2 reduction to CH_4 mediated by atomically thin $CuIn_5S_8$ layers. *Nat. Energy* **4**, 690-699 (2019).

11. He, L., Zhang, W., Liu, S. & Zhao, Y. Three-dimensional porous N-doped graphitic carbon framework with embedded CoO for photocatalytic CO₂ reduction. *Appl. Catal. B: Environ.* **298**, 120546 (2021).

12. Schukraft, G. E. M. *et al.* Hypercrosslinked polymers as a photocatalytic platform for visiblelight-driven CO_2 photoreduction using H₂O. *ChemSusChem* **14**, 1720-1727 (2021).

13. Wang, L. *et al.* Improved photoreduction of CO_2 with water by tuning the valence band of covalent organic frameworks. *ChemSusChem* **13**, 2973-2980 (2020).

14. Dai, C. *et al.* Triphenylamine based conjugated microporous polymers for selective photoreduction of CO₂ to CO under visible light. *Green Chem.* **21**, 6606-6610 (2019).

15. Xin, Z. *et al.* Rational design of dot-on-rod nanoheterostructure for photocatalytic CO₂ reduction: pivotal role of hole transfer and utilization. *Adv. Mater.* DOI: https://doi.org/10.1002/adma.202106662.

16 Wu, X. *et al.* Photocatalytic CO₂ conversion of $M_{0.33}WO_3$ directly from the air with high selectivity: insight into full spectrum-induced reaction mechanism. *J. Am. Chem. Soc.* **141**, 5267–5274 (2019).

17. Yi, L. *et al.* Tungsten bronze $Cs_{0.33}WO_3$ nanorods modified by molybdenum for improved photocatalytic CO_2 reduction directly from air. *Sci. Chin. Mater.* **63**, 2206–2214 (2020).

18. Chen, Y. *et al.* Visible-light-driven conversion of CO_2 from air to CO using an ionic liquid and a conjugated polymer. *Green Chem.* **19**, 5777–5781 (2017).