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Supplementary note 1: the simulation results 

 

Supplementary Fig. 1 The spatial distribution of electric field at different stages (Simulated by 

COMSOL Multiphysics). (a) Initial or released stage. (b) Pressing or releasing stage. (c) 

Maximum pressed stage. 

 

Supplementary note 2: electrical characteristics of sensors. 

 

Supplementary Fig. 2 Electrical characteristics of sensors. (a) The output open circuit voltage 

of 5 different materials friction with nylon. (b-c) The open circuit voltage (Voc) and short circuit 

current (Isc) of the triboelectric sensor as a power supply (5 N force pressing at 2 Hz frequency). 

(d)The short circuit current of two sensors in series and parallel respectively. (e) The effective 
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value curve of the output voltage and current of the TENG under different loads. (f-g) The open 

circuit voltage (Voc) and short circuit current (Isc) of the triboelectric sensor with different drops 

of artificial sweat (pressed with a force of 5 N at a frequency of 5 Hz). 

 

Supplementary note 3: comparison of the sensors (Piezoresistive, 

Capacitive, Piezoelectric and Triboelectric sensors). 

Piezoresistive, piezoelectric, capacitive and triboelectric sensors are all electromechanical 

sensors which transduce the applied force into electrical signals via different mechanisms. They can 

be divided into two groups: group A includes piezoresistive and capacitive passive sensors, group 

B includes piezoelectric and triboelectric active sensors.  

The resistance or capacitance changes when the sensors in group A is pressed by force. The 

force of compression can be obtained from the change of resistance or capacitance. In order to 

measure the change of resistance or capacitance, an additional voltage is needed, and the change of 

resistance or capacitance is obtained through the change of current. Electrical signals generated by 

pressure or contact cannot be measured without an additional voltage. 

Piezoelectric and triboelectric sensors in group B are both self-powered sensors. Piezoelectric 

sensors make use of the piezoelectric effect, which creates a voltage when charge accumulates on 

both sides of the material during compression and deformation. The triboelectric sensors make use 

of two effects: contact electrification and electrostatic induction. The friction between two interfaces 

with different surface energy generates charges, which will further induce charges on the adjacent 

electrodes. Change of the distance between two interfaces will cause the change of the amount of 

induced charges, and will produce instantaneous voltage and current in the external circuit. 

Electrical signals generated by pressure or contact can be measured without an additional voltage, 

which is called self-powered. 

Comparing to group A, the self-powered characteristic of group B means low-power 

consumption, which is of great importance for small-scale wearable electronics (sensors and devices) 

and low carbon living. With the booming of the Internet of Things (IoT), numerous lightweight and 

wearable sensors have been developed for biomedical monitoring. In the case of a certain battery 

capacity, low energy consumption can prolong the working time of the device and reduce the 

charging frequency. In addition, group B does not require additional circuit design and power supply 

to generate electrical signals, whereas group A does. 

Piezoelectric generators (PG) and Triboelectric nanogenerators (TENG) are two most common 

approaches for energy harvesting in group B. The two generators are compared (Ahmed et al1, 2020) 

at frequency values below 4 Hz, which is typical of human motions. TENG shows higher power 

performance and is almost independent of the operating frequency, making it highly efficient 

comparing to PG. Low cost is another advantage of TENG. Various thin film materials which are 

common in daily life, e.g. paper, can be used to fabricate the TENGs, which shall greatly lower the 

cost. 

Sensitivity is a key parameter of sensors. There are a variety of sensitivities of different types 

of sensors in literatures. The sensitivities of different sensors in literatures are shown in 

Supplementary Tab. 1.  
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Reference Materials Electrode Sensitivity Mechanism 

This work PET/ nylon Cu foil 0.61183 V/kPa 

/ 0.376 V/N 

/0.514 kPa-1 

Triboelectric 

Wu et al2, 2016 PDMS/ CB/ PU 

fiber 

 0.068 kPa-1 Piezoresistive 

Lou et al3, 2017 rGO-textile  0.012 kPa-1 Piezoresistive 

Kim et al4, 2019 3D spacer textile/ 

PUD /CNT ink 

 0.03-0.31 kPa-1 Piezoresistive 

Liu et al5, 2019 ionogel 

infiltrated paper 

 0.304 kPa-1 Piezoresistive 

Park et al6, 2017 Porous Ecoflex AgNW/ carbon 

fiber film 

0.161 kPa-1 Capacitive 

Sheng et al7, 2016 Polyethylene Liguid GalnSn 

alloy 

0.17 kPa-1 Capacitive 

Joseph et al8, 2017 Silk Au 0.00326 V/kPa Piezoelectric 

Ghosh et al9, 2017 Fishskin collagen  0.027 V/N Piezoelectric 

Guo et al10, 2018 PVDF/ BaTiO3 

NW 

Al/ Cu foil 0.017 kPa-1 Piezoelectric 

Pu et al11, 2017 PDMS, 3M VHB PAAM-LiCl 

hydrogel 

0.013 V/kPa Triboelectric 

Rasel et al12, 2018 PDMS/PDMS-

MWCNT 

Au 0.51 V/kPa Triboelectric 

Liu et al5, 2019 Ionogel 

infiltrated Paper / 

Paper 

IIPFE 0.0206 V/N Triboelectric 

Supplementary Tab. 1 Sensitivity, materials and electrodes of different sensors in literature 

 

Liu et al5, 2019 developed an ionogel infiltrated paper based flexible electrode and fabricated 

two kinds of all-paper based sensors. By comparing the piezoresistive and triboelectric sensors, he 

found that TENG sensor have a broader measuring rang (0.45 - 6.5 N) and higher sensitivity (20.6 

mV/N) than piezoresistive sensor (0.304 within the range of 0.3 - 0.9 N). 

TENG-based sensors have advantages of low-power consumption, low cost, various choice of 

materials and easy fabrication. 

The capacitive (ESPB-01, RENHE Co. LTD), piezoresistive (DF9-16, CHENGTec Co. LTD), 

piezoelectric (LDT0-028K, piezoelectric Polyvinylidene Fluoride, TE) and our triboelectric sensors 

are collected to make the comparison, as shown in Supplementary Fig. 3. The sensitivities of these 

sensors are measured and analyzed, as shown in Supplementary Fig. 4. The sensitivity, trigger 

point and cost of each sensor are compared in Supplementary Tab. 2. Our triboelectric sensor has 

the lowest cost and the highest sensitivity in the four sensors. 
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Supplementary Fig. 3 The sensors for testing, from left to right are capacitive, piezoresistive, 

piezoelectric and triboelectric sensors. 

 

 
Supplementary Fig. 4 Sensitivities of sensors. a. sensitivity of capacitive sensor. b. sensitivity 

of piezoresistive sensor. c. sensitivity of piezoelectric sensor. d. sensitivity of triboelectric sensor. 

 

 

Model Sensitivity Trigger point Cost Type 

ESPB-01 0.12112 kPa-1 1 N ￥288/ ＄45.1 capacitive 

DF9-16 0.0107 kPa-1 4 N ￥13/ ＄2.0 piezoresistive 

LDT0-028K 0.00212 V/kPa 10 N ￥12/ ＄1.9 piezoelectric 

This work 0.61183 V/kPa    

/ 0.514 kPa-1 

1 N ￥2/ ＄0.31 triboelectric 

Supplementary Tab. 2 Sensitivity, trigger point, cost of different sensors. 
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Supplementary note 4: The normalized waveform of main vowels 

 

Supplementary Fig. 5 The normalized lip-motion voltage waveforms of 12 vowels (a-l) and 

related mouth shapes 
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Supplementary note 5: the characteristics of lip motion signals 

 

Supplementary Fig. 6 The characteristics of lip motion signals (a) Signals corresponding to the 

same pronunciation in different mouth opening size. (b) The combination and decomposed lip-

motion signals of “Open”, “Sesame”, and “Open sesame”. 

 

Supplementary note 6: Voltage data manipulation 

Taking the normalized curves in Fig.6(b) for example, the obtained signals are filtered with a 

cut-off frequency of 20 Hz to filter out the power-frequency electromagnetic interference; the 

obtained signals are intercepted and the baseline is subtracted to reduce the baseline drift caused by 

ultra-low frequency noises. The baseline is determined by connecting the first point of the 

intercepted signal to the last point. In order to reduce the difference of voltage amplitude in different 

lip-motion recording processes, the obtained signals were normalized, and the absolute value of 

each point was normalized into the interval [0,1]. 

Supplementary note 7: setup of the neural network classifier. 

In our method, for each class, the model learns a prototype in the deep feature space. In the 

classification stage, classification is performed by calculating the Euclidean distance between the 

feature representation of the sample and the class prototype. Specifically, the feature mapping 
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function is defined as: 𝑓𝜃(𝑥) : ℝ
𝐷
→ ℝ

𝑑
，where is the parameters of the feature extractor, D is the 

dimension of input space, and d is the dimension of the deep feature space. The corresponding 

prototype for each category is 𝜇𝑖，𝑖 ∈ (1, . . . 𝐶), in which C is the number of training classes. The 

probability of sample (x,y) belonging to class i is: 

𝑝(𝑥 ∈ 𝜇𝑖|𝑥) =
𝑒𝑥𝑝(−𝑑(𝑓(𝑥),𝜇𝑖))

∑ 𝑒𝑥𝑝(−𝑑(𝑓(𝑥),𝜇𝑐)
𝐶
𝑐=1

  (1) 

Among them 

𝑑(𝑓(𝑥), 𝜇𝑖) = ‖𝑓(𝑥) − 𝜇𝑖‖2
2  (2) 

is the distance in feature space between the sample (x,y) and the prototype of class i. Based on the 

probability, the cross-entropy loss is: 

𝑙((𝑥, 𝑦) ; 𝜃 , 𝜇) = − 𝑙𝑜𝑔(𝑝( 𝑦 | 𝑥)) = − 𝑙𝑜𝑔( 𝑝(𝑥 ∈ 𝜇𝑖|𝑥)) = − 𝑙𝑜𝑔 (
𝑒𝑥𝑝(−𝑑(𝑓(𝑥),𝜇𝑖))

∑ 𝑒𝑥𝑝(−𝑑(𝑓(𝑥),𝜇𝑐)
𝐶
𝑐=1

)  (3) 

In addition, the following regularization term is added to learn compact feature representations for 

each class: 

𝑝𝑙((𝑥, 𝑦); 𝜃, 𝜇) = 𝑑(𝑓(𝑥), 𝜇𝑖) = ‖𝑓(𝑥) − 𝜇𝑖‖2
2 (4) 

The final learning objective of our method is as follows: 

loss((𝑥, 𝑦) ; 𝜃 , 𝜇) = 𝑙((𝑥, 𝑦) ; 𝜃 , 𝜇) + 𝛼 ⋅ 𝑝𝑙((𝑥, 𝑦) ; 𝜃 , 𝜇) , where 𝛼  is a hyper-parameter 

balancing the trade-off of each term. 

Implementation details：We train all the models with batch size 50 and Adam optimizer13 

with 0.001 initial learning rate. 

 

Supplementary note 8: Data collection process 

Take the word “apple” for example. The participant speaks “apple” 150 times with a sampling 

rate of 500 Hz. The participant speaks the word for 15 times as a group and 10 groups in total; the 

participant can have a rest between groups. To control the rhythm of speech, a counter (15 counts at 

4s intervals) is used to remind the participant. Then the signals are preprocessed for data recognition. 

 

Supplementary note 9: Data preprocessing for machine learning 

The data preprocessing for machine learning mainly consist of two steps.  

First, machine learning algorithms do not perform well when the features of input samples have 

very different scales. Therefore, the first step of data preprocessing is standardization, which is a 

commonly used strategy of feature scaling. Specifically, standardization subtracts the mean value, 

and divides by the variance to make the features distribution have unit variance. With 

standardization, the machine learning process could be much less affected by outliers. 

Second, to train and evaluate the model, the collected data is divided into two sets: the training 

set and the testing set. The total samples (2000 samples) are shuffled firstly. The first 1600 samples 

are viewed as the training set, and the remaining samples are viewed as the testing set. 
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After data preprocessing, the training set is processed by the machine learning algorithm. 

 

Supplementary note 10: the chosen words and phrases 

 
Supplementary Fig. 7 Words list (20 fruit photographs, a-t) selected for collection and training. 

 

 

Apple Banana Bennet Berry 

• /ˈæpl/  • /bəˈnɑːnə/  /'benɪt/  •  /ˈberi/  
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Cherry Coconut Date Durian 

• /ˈtʃeri/  /ˈkəʊkənʌt/  • /deɪt/ /ˈdʊəriən/ 

Grape Lemon Mango Melon 

• /ɡreɪp/ /ˈlemən/  • /ˈmæŋɡəʊ/ /ˈmelən/ 

Olive Orange Peach Peanut 

• /ˈɒlɪv/ /ˈɒrɪndʒ/ • /piːtʃ/ /ˈpiːnʌt/ 

Pear Pineapple Pomelo Walnut 

•  /peə(r)/  /ˈpaɪnæpl/ • /ˈpɒmələʊ/ /ˈwɔːlnʌt/ 

Supplementary Tab. 3 The chosen words and phonetic symbols 

 

 

1 Nice To Meet You 

•  •  /naɪs/ /tə; tu; tuː/ • /miːt/ /ju; juː/  

2 Open Sesame   

•  • /ˈəʊpən/   /ˈsesəmi/  
  

3 Zhi  芝 Ma   麻 Kai   开 Men   门 

 /ʈʂʅ/ /ma/ /kʰaɪ/ /mən/ 

Supplementary Tab. 4 The chosen phrases and phonetic symbols of each word. English uses 

British phonetic alphabet, and Chinese pinyin uses International Pinyin (IPA). ‘Zhima kaimen’ 

is the ‘Open saseme’ in Chinese. 
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Supplementary note 11：Waveform of the 20 fruit words 

 

Supplementary Fig. 8 The normalized lip-motion voltage waveforms of 20 words (a-t). 
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Supplementary note 12: impact of hyper-parameters of dilated RNN 

 

Supplementary Fig. 9 The impact of hyper-parameters including the number of layers and 

neurons in each layer of the test. (a) Visualization of the two-dimensional features of the dilated 

recurrent neural network based on softmax classifier. (b) The accuracy curve of the softmax-

based model when the training sample is gradually reduced. (c) The accuracy curve of the 

prototype-based model when the training sample is gradually reduced. (d)The accuracy curve 

based on prototype learning with different number of layers in the dilated RNN. (e) The accuracy 

curve based on prototype learning under different numbers of hidden layer neurons. (f) The 

accuracy curve based on prototype learning under different prototype regularization coefficients. 

 

Supplementary note 13: training results of the dilated RNN 

 

Supplementary Fig. 10 Training results of the dilated RNN. (a)The confusion matrix for lip-

motion signals of 20 classes with softmax model. (b) The comparison of loss in prototype and 

softmax training and testing. 



14 

 

Supplementary note 14: analysis of the lip-motion signals. 

 
Supplementary Fig. 11 The analysis of the lip-motion signals. (a)The comparison of lip-

motion signals from participants (Han and Bin) in frequency domain. (b) STFT analysis of the 

lip motion signals from Bin. (c) The comparison of lip-motion signals from Han in frequency 

domain. (d-f) STFT analysis of the lip motion signals of ‘Go backward’, ‘Left’ and ‘Right’ from 

Han. 
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