

(negative control)

Supplementary Fig. 1. Expression profile of miRNAs in U2OS cells.

(**a**–**c**) The expression profile of miRNAs in U2OS cells. The small RNA-seq data (Mayr and Bartel, 2009) was reanalyzed. The length of small RNAs (a), the number of reads of each miRNA (b), and their relative occupancies (c) are shown. Top 30 most abundant miRNAs, whose sites were removed from reporter mRNAs, occupy ~80% of total population.

(d) The sequences of the miR-21 site (left) and the miR-21 mutant site (right). The miR-21 site was designed so that the positions 2–8 (seed region) and 13–16 (3' supplemental region) of miR-21 form base-pairs with the miR-21 site. The miR-21 mutant site does not form base-pairs with miR-21. Source data are provided as a Source Data file.

1. Induction of transcription

2. smFISH

Label *Fluc* mRNAs by smFISH probes (Quasar 570) Label *SunTag* mRNAs by smFISH probes (Quasar 670) Label nuclei by DAPI

3. Image acquisition

3-color: *Fluc* mRNAs (orange), *SunTag* mRNAs (far red), nuclei (blue) 3D: pixel size: XY, 107.5 nm; Z, 200 nm

4. Image analysis

Detect the outlines of cells and nuclei (by CellProfiler) Detect spots of *Fluc* mRNAs and *SunTag* mRNAs (by FISH-quant) Localize spots in 3D at sub-pixel resolution by fitting 3D Gaussians Extract data of cytoplasmic spots: #, intensities, positions in X, Y, Z

5. Data analysis

Relative abundance of SunTag mRNAs = -

of *SunTag* mRNAs # of *Fluc* mRNAs

Supplementary Fig. 2. Workflow for single-molecule imaging of miRNA-mediated mRNA decay.

The workflow for single-molecule imaging of miRNA-mediated mRNA decay is shown step by step. Detailed methods are provided in Methods.

Supplementary Fig. 3. Supplemental data for Fig. 1.

(a, b) The number of *Fluc* mRNAs (a) and *SunTag* mRNAs (b) detected in U2OS cells. Images were analyzed using CellProfiler and FISH-quant. Each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The p values of one-tailed Mann Whitney test are shown. n.s., not significant.

(c) Positive correlation between the number of *Fluc* mRNAs and *SunTag* mRNAs. Each circle represents a single cell (n = 50), while the red line represents the result of simple linear regression. The Pearson correlation coefficient (r) is shown. Source data are provided as a Source Data file.

1. Induction of transcription

2. SINAPS

Label SunTag peptides by anti-GCN4 antibodies (Alexa 488) Label SunTag mRNAs by smFISH probes (Quasar 570) Label nuclei by DAPI

3. Image acquisition

3-color: SunTag (green), mRNAs (orange), nuclei (blue) 3D: pixel size: XY, 107.5 nm; Z, 200 nm

4. Image analysis

Detect the outlines of cells and nuclei (by CellProfiler) Detect spots of SunTag and mRNAs (by FISH-quant) Localize spots in 3D at sub-pixel resolution by fitting 3D Gaussians Extract data of cytoplasmic spots: #, intensities, positions in X, Y, Z

5. Colocalization analysis

Analyse colocalization based on the 3D distance between spots Classify mRNAs into "untranslated" and "translated" Classify SunTag into "free" and "on mRNAs"

6. Data analysis

Translational efficiency		Intensity of SunTag on mRNAs
	# of mRNAs	

Fraction of translated mRNAs = # of translated mRNAs # of mRNAs

> # of ribosomes = Intensity of SunTag on mRNAs Intensity of free SunTag

Supplementary Fig. 4. Workflow for single-molecule imaging of miRNA-mediated translational repression.

The workflow for single-molecule imaging of miRNA-mediated translational repression is shown step by step. Detailed methods are provided in Methods.

Supplementary Fig. 5. Validation of SINAPS experiments.

(a, b) Reduction of translational efficiency by puromycin treatment. Images were analyzed using CellProfiler and FISH-quant. Then, translational efficiency was calculated as described in Supplementary Fig. 4 (see also Methods). The results of bulk analysis (a) and single-cell analysis (b) are shown. In (b), each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The p value of one-tailed Mann Whitney test is shown. The puromycin – data in (a) and (b) are identical to the data in Fig. 2d and 2e, respectively.

(c) Reduction of the fraction of translated mRNAs by puromycin treatment. The fraction of translated mRNAs was calculated as described in Supplementary Fig. 4 (see also Methods). Each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The p value of one-tailed Mann Whitney test is shown. The puromycin – data are identical to the data in Fig. 2f.

(d, e) Translational efficiency of reporter mRNAs in the presence or absence of the A_{114} - N_{40} sequence. Images were analyzed using CellProfiler and FISH-quant. Then, translational efficiency was calculated as described in Supplementary Fig. 4 (see also Methods). The results of bulk analysis (d) and single-cell analysis (e) are shown. In (e), each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The p value of one-tailed Mann Whitney test is shown. n.s., not significant. (f) The translated fraction of reporter mRNAs in the presence or absence of the A_{114} - N_{40} sequence. The fraction of translated mRNAs was calculated as described in Supplementary Fig. 4 (see also Methods). Each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The p value of one-tailed mSupplementary Fig. 4 (see also Methods). Each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The p value of one-tailed as described in Supplementary Fig. 4 (see also Methods). Each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The p value of one-tailed mann whitney test is shown. n.s., not significant. Source data are provided as a Source Data file.

Supplementary Fig. 6. Supplemental data for Fig. 2.

(a, b) The number of reporter mRNAs (a) and SunTag spots (b) detected in U2OS cells. Images were analyzed using CellProfiler and FISH-quant. Each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The p values of one-tailed Mann Whitney test are shown. n.s., not significant.

(c, d) Neither expression levels of mRNAs (c) nor nuclear sizes (d) affect translational efficiency of reporter mRNAs. The single-cell data in Fig. 2e were divided according to relative expression levels of mRNAs (c) or relative nuclear sizes (d). Each circle represents a single cell (n = 25 for each condition), while red lines represent the medians. The results of Dunn's multiple comparisons test are shown. n.s., not significant.

(e) Reduction of the number of ribosomes on translated mRNAs by miR-21. The number of ribosomes on translated mRNAs was calculated as described in Supplementary Fig. 4 (see also Methods). The p value of one-tailed Mann Whitney test is shown. Source data are provided as a Source Data file.

1. Induction of transcription

2. IF-FISH

Label *SunTag* mRNAs by smFISH probes (Quasar 570) Label RISC by anti-AGO antibodies (Alexa 647) Label nuclei by DAPI

3. Image acquisition

3-color: mRNAs (orange), RISC (far red), nuclei (blue) 3D: pixel size: XY, 107.5 nm; Z, 200 nm

4. Image analysis

Detect the outlines of cells and nuclei (by CellProfiler) Detect spots of mRNAs and RISC (by FISH-quant) Localize spots in 3D at sub-pixel resolution by fitting 3D Gaussians Extract data of cytoplasmic spots: #, intensities, positions in X, Y, Z

5. Colocalization analysis

Analyse colocalization based on the 3D distance between spots Classify mRNAs into "RISC-negative" and "RISC-positive" Classify RISC into "free" and "on mRNAs"

6. Data analysis

RISC-binding efficiency = Intensity of RISC on mRNAs # of mRNAs

Fraction of RISC-positive mRNAs = # of RISC-positive mRNAs # of mRNAs

Supplementary Fig. 7. Workflow for single-molecule imaging of RISC-binding.

The workflow for single-molecule imaging of RISC-binding is shown step by step. Detailed methods are provided in Methods.

Kobayashi & Singer, Supplementary Fig. 8

Supplementary Fig. 8. Supplemental data for Fig. 3.

(a) The expression profile of AGO proteins in U2OS cells. The proteome data of U2OS cells (Beck et al., 2011) was reanalyzed. The number of copies per cell are shown. N.D., not detected. In U2OS cells, AGO2 is predominantly expressed.

(**b**) The images of U2OS cells immunostained with anti-AGO antibodies. Two distinct anti-AGO2 antibodies (the mouse monoclonal antibody, 4G8, and the rat monoclonal antibody, 11A9) showed similar IF patterns.

(c) The number of AGO spots detected in the cytoplasm (cyto) and in the nucleus (nuc). Images were analyzed using CellProfiler and FISH-quant. Each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The results of Dunn's multiple comparisons test are shown. n.s., not significant.

(d-f) Neither expression levels of mRNAs (d), expression levels of AGO (e), nor nuclear sizes (f) affect RISC-binding efficiency of reporter mRNAs. The single-cell data in Fig. 3d were divided according to relative expression levels of mRNAs (d), relative expression levels of AGO (e), or relative nuclear sizes (f). Each circle represents a single cell (n = 25 for each condition), while red lines represent the medians. The results of Dunn's multiple comparisons test are shown. n.s., not significant.

(g, h) RISC-binding to the 1× miR-21 reporter and the 8× miR-21 reporter. Images were analyzed using CellProfiler and FISH-quant. Then, RISC-binding efficiency was calculated as described in Supplementary Fig. 7 (see also Methods). The results of bulk analysis (g) and single-cell analysis (h) are shown. In (h), each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The results of Dunn's multiple comparisons test are shown. *** and * represent p < 0.001 and p < 0.05, respectively. p values were 2.8×10^{-2} (1× reporter) and $< 1.0 \times 10^{-15}$ (8× reporter). Source data are provided as a Source Data file.

1. Induction of transcription

2. SINAPS + IF-FISH

Label SunTag peptides by anti-GCN4 antibodies (Alexa 488) Label *SunTag* mRNAs by smFISH probes (Quasar 570) Label RISC by anti-AGO antibodies (Alexa 647) Label nuclei by DAPI

3. Image acquisition

4-color: SunTag (green), mRNAs (orange), RISC (far red), nuclei (blue) 3D: pixel size: XY, 107.5 nm; Z, 200 nm

4. Image analysis

Detect the outlines of cells and nuclei (by CellProfiler) Detect spots of SunTag, mRNAs, and RISC (by FISH-quant) Localize spots in 3D at sub-pixel resolution by fitting 3D Gaussians Extract data of cytoplasmic spots: #, intensities, positions in X, Y, Z

5. Colocalization analysis

Analyse colocalization based on the 3D distance between spots Classify mRNAs into "untranslated" and "translated" Classify SunTag into "free" and "on mRNAs" Classify mRNAs into "RISC-negative" and "RISC-positive" Classify RISC into "free" and "on mRNAs"

6. Data analysis

Translational efficiency -	Intensity of SunTag on mRNAs	
Translational enletency =	# of mRNAs	
Fraction of translated mRNAs -	# of translated mRNAs	
	# of mRNAs	
# of ribosomes -	Intensity of SunTag on mRNAs	
# 011100301103 -	Intensity of free SunTag	
PISC binding officiency -	Intensity of RISC on mRNAs	
HISC-binding enciency =	# of mRNAs	
Fraction of RISC-positive mRNAs -	# of RISC-positive mRNAs	
	# of mRNAs	

Supplementary Fig. 9. Workflow for simultaneous visualization of single mRNAs, translation, and RISC-binding.

The workflow for simultaneous visualization of single mRNAs, translation, and RISC-binding is shown step by step. Detailed methods are provided in Methods.

Supplementary Fig. 10. Supplemental data for Fig. 4.

(**a**, **b**) Reduction of the number of ribosomes on translated mRNAs by miR-21. RISC-positive mRNAs (a) and RISC-negative mRNAs (b) were selectively analyzed. The number of ribosomes on translated mRNAs was calculated as described in Supplementary Fig. 4 (see also Methods). The p values of one-tailed Mann Whitney test are shown. Source data are provided as a Source Data file.

Supplementary Fig. 11. RISC prefers translated mRNAs.

(a) Translated mRNAs tend to be RISC-positive mRNAs. The fraction of RISC-positive mRNAs and the p value of paired t test are shown (four biological replicates). Magenta and green circles represent the values of untranslated and translated mRNAs, respectively.

(**b**) RISC-positive mRNAs tend to be translated mRNAs. The fraction of translated mRNAs and the p value of paired t test are shown (four biological replicates). Magenta and cyan circles represent the values of RISC-negative and RISC-positive mRNAs, respectively.

(c, d) Reduction of RISC-binding efficiency by cycloheximide (CHX) treatment. Images were analyzed using CellProfiler and FISH-quant. Then, RISC-binding efficiency was calculated as described in Supplementary Fig. 7 (see also Methods). The results of bulk analysis (c) and single-cell analysis (d) are shown. In (d), each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The p value of one-tailed Mann Whitney test is shown. The CHX – data in (c) and (d) are identical to the data in Supplementary Fig. 8g and 8h, respectively.

(e) SunTag intensity on mRNAs in the presence or absence of CHX. Images were analyzed using CellProfiler and FISH-quant. Then, the total SunTag intensity on mRNAs was divided by the number of mRNAs. Each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The p value of one-tailed Mann Whitney test is shown. n.s., not significant. Source data are provided as a Source Data file.

С

Supplementary Fig. 12. Supplemental data for Fig. 5.

(**a**, **b**) Time-course analysis of RISC-binding (a) and translational repression (b) by single-mRNA imaging. Images were analyzed using CellProfiler and FISH-quant. Then, the fraction of RISC-positive mRNAs (a) and of translated mRNAs (b) were calculated as described in Supplementary Fig. 9 (see also Methods). Each circle represents a single cell (n = 50 for each condition), while red lines represent the medians. The results of Dunn's multiple comparisons test are shown. *** and n.s. represent p < 0.001 and not significant (p > 0.05), respectively. p values in (a) were 5.4×10^{-10} (0 min), 1.4×10^{-13} (30 min), and 3.2×10^{-12} (60 min), while those in (b) were 0.87 (0 min), $< 1.0 \times 10^{-15}$ (30 min), and $< 1.0 \times 10^{-15}$ (60 min).

(c) The ratio of RISC-negative untranslated (magenta), RISC-negative translated (green), RISC-positive untranslated (cyan), and RISC-positive translated (orange) mRNAs. All mRNAs were classified into these four classes based on 3D-colocalization analysis. Source data are provided as a Source Data file.

Supplementary Table 1. The sequences of smFISH probes used in this study.

smFISH probes to	ward <i>Fluc</i>
Sequence Name	Sequence

Fluc_1

Fluc_2

Fluc_3

Fluc_4

Fluc_5

Fluc_6

Fluc_7

Fluc_8

Fluc_9

Fluc_10 Fluc_11

Fluc_12

Fluc_13 Fluc_14

Fluc_15

Fluc_16

Fluc_17

Fluc_18

Fluc_19 Fluc_20

Fluc_21

Fluc_22

Fluc_23

Fluc_24

Fluc_25

Fluc_26

Fluc_27

Fluc_28

Fluc_29

Fluc_30

Fluc_31

Fluc_32

Fluc_33

Fluc_34

Fluc_35

ard <i>Fluc</i>	smFISH probes toward <i>SunTag</i>		
Sequence	Sequence Name	Sequence	
catcggtgaaggcaatggtg	SunTag_1	ccacttcgttctcaagatga	
taggtgatgtccacctcaat	SunTag_2	ccctttttcagtctagctac	
cgcacagacatctcgaagta	SunTag_3	aatttttgctcagcaactcc	
tctcagagcacaccacgatg	SunTag_4	ttctttagtcgtgctacttc	
cactggcatgaagaactgca	SunTag_5	tttcgagagtaactcctcac	
cactccgatgaacagggcac	SunTag_6	ccacttcgttttcgagatga	
gtaaatgtcgttagcagggg	SunTag_7	acttcccttttttaagcgtg	
cttagacacgaacaccacgg	SunTag_8	tcttggatagtagctcttca	
gtccatgatgatgatcttct	SunTag_9	acctcgttctcaagatgata	
cgaatgtgtacatgctctgg	SunTag_10	cggaacccttcttcaaacgc	
ctggcacgaagtcgtactcg	SunTag_11	agttcttcgagagcagttcc	
gttttgtccctgtcgaaaga	SunTag_12	gatcccttttttaatcgagc	
cagagctgttcatgatcagg	SunTag_13	tgaaagtagttcctcaccac	
cgtgagagaagcgcacacag	SunTag_14	cttcgttttcgaggtggtaa	
tctggttgccgaaaataggg	SunTag_15	ccctgaacctttctttaatc	
aatggcaccacgctcagaat	SunTag_16	tactcagtaattcttcaccc	
agggtggtgaacatgccgaa	SunTag 17	tttcgatagcaactcttcgc	
aaagccgcaaatcaggtagc	SunTag 18	tttttgagcctagcaacttc	
aagcggtacatcagcaccac	SunTag_19	ttttcgagagcaactcctcg	
agcagggcagactgaatttt	SunTag 20	acctcattttccaagtggta	
gcgaagaagctgaacagggt	SunTag 21	tttgctcaataactcctcgc	
cgtacttgtcgatcagggtg	SunTag 22	cgcgacttcgttctctaaat	
aatctcgtgcaggttagaca	SunTag 23	ttcgataagagttcttcgcc	
ctggcagatgaaagcgcttg	SunTag 24	ctcattttcgaggtggtagt	
taatcagaatggcgctggtt	SunTag 25	agtggtagttcttgctcaag	
gaagaatggcaccaccttgc	SunTag 26	ttcaatctcgcgacctcatt	
gacataatcatagggccgcg	SunTag_27	attcttgctgagcaattcct	
ctcagggttattcacgtagc	SunTag 28	cgacttcgttctccaaatga	
cttqtcqatcaqqqcqtttq	SunTag 29	cgacttcattttccaagtgg	
agtaggcaatgtcgccagag	SunTag 30	ttgctcaataactcttcgcc	
ccacqatqaaqaaqtqctcq	SunTag 31	ttcqttctccaaqtqqtaat	
ttgatcagagacttcaggcg	SunTag 32	agttcttcgataagagctcc	
aaatgttagggtgctgcagc	SunTag 33	gcgacttcattctctaagtg	
acataqtccacqatctcctt	SunTag 34	ttcttgctcaagagctcttc	
ttcttagccttgatcaggat	SunTag 35	cacctcattttccaagtggt	
	SunTag 36	ttagatagtaactcttcccc	
	SunTag 37	cctcgttctcgagatgataa	
	SunTag 38	gatagttcttcgacaggagt	
	SunTag_39	cctttttaagtcttgcaaco	
	SunTag_40	ttactgagtagttcctcacc	
	SunTag_10	ttcgttttccaggtggtaat	
	SunTag_11	tectgatectttetteaaae	
	SunTag_12		
	SunTag_40	gcaacctcattttccaaatg	
	SunTag_44	taccacttcccttttttaaa	
	SunTag_40	tttcgacagaagttcctcac	
	SunTag_40	actacttcattctcraatta	
	Sullay_47	yeracticaticityayaty	

SunTag_48

gagccagaaccctttttaag

Supplementary Table 1. The sequences of smFISH probes used in this study.

The sequences of smFISH probes toward *Fluc* mRNAs and *SunTag* mRNAs used in this study are listed.