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Supplementary Note 1: Description of band structure of MAPbI3 within K.P/crystal field model. 
In orthorhombic MAPbI3 the conduction and valence band edges are located at the zone center1 .  

Within   K.P theory the energy band structure near the band edge at Γ is found by writing the 

Hamiltonian in a basis of the band edge periodic Bloch functions and then diagonalizing the 

Hamiltonian at non-zero wave vector 𝐤.  Then at any value of 𝐤 the conduction and valence band 

states may be written approximately in the form, 

 
𝜓𝑛,𝒌(𝐫) = 𝑢𝑛,𝒌=0(𝐫) 

1

√𝑉
𝑒𝑖 𝒌⋅𝒓,             (S1) 

where 𝑛 is a band index, 𝐫 is the electron coordinate, and  𝑉 is the crystal volume. In order to 

describe optical properties we require expressions for the band edge Bloch functions 𝑢𝑛,𝒌=0 at 𝐤 =

0 for the conduction and valence bands.  We express the Bloch functions within a quasi-cubic 

model2, in which the effect of lattice distortion from the cubic phase to the orthorhombic phase is 

captured in terms of a crystal field.  Within this model the valence band  functions can be written  

as the 2-fold degenerate  𝐽 = 1/2,  𝐽𝑧 = ±1/2 states with S orbital symmetry:  

 𝑢1
𝑣 = 𝑆 ↑ ,       𝑢2

𝑣 = 𝑆 ↓, (S2) 

where the symbol 𝑆 denotes an orbital function that transforms as an invariant under the operations 

of the crystal point symmetry group, while ↑ (↓) denote the spin functions with projection 𝑆𝑧 =

 +1/2 (−1/2).  For the conduction band, the Bloch functions have orbital p-symmetry;  in a cubic 

perovskite in the absence of spin-orbit coupling these can be represented by the 𝑋, 𝑌, 𝑍 orbital 

basis. To find the Bloch functions in the presence of spin-orbit coupling (SOC) we diagonalize the 

band-edge Hamiltonian, including the spin-orbit interaction, 𝐻𝐿𝑆 =
2

3
Δ 𝐋 ⋅ 𝐒,  whose strength is 

given by Δ, the spin-orbit split-off parameter which separates the upper 𝐽 = 3/2 bands from the 

lower 𝐽 = ½ conduction bands.  We must also include the crystal field (CF)  Hamiltonian 𝐻𝐶𝐹, 

which represents the effect of lattice distortions relative to the cubic phase.  All together, the band 

edge Hamiltonian 𝐻𝑜𝑟𝑡ℎ𝑜 is, 

 𝐻𝑜𝑟𝑡ℎ𝑜 = 𝐻0 + 𝐻𝐶𝐹  + 𝐻𝐿𝑆 . (S3) 

Here, 𝐻0 gives the band edge energies in the absence of SOC and CF splitting. The crystal field 

Hamiltonian 𝐻𝐶𝐹 can be expressed in invariant form as 2,  

 
𝐻𝐶𝐹  =  ( 𝜁 −

𝛿

3
)  𝐿𝑥

2  + (− 𝜁 −
𝛿

3
)  𝐿𝑦

2 + ( 
2

3
𝛿)  𝐿𝑧

2, 
(S4) 

 where 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 are the x,y,z components of the orbital angular momentum operator, and  the 

crystal field parameters 𝛿, 𝜁 reflect symmetry breaking relative to the cubic phase in the 𝐳 and the 

𝐱, 𝐲 directions, respectively;  we call 𝛿, 𝜁 the “tetragonal” and “orthorhombic crystal fields, 

respectively.   The portion of the Hamiltonian 𝐻𝑜𝑟𝑡ℎ𝑜 given by  𝐻0 + 𝐻𝐶𝐹 is represented in the 

𝑆, 𝑋, 𝑌, 𝑍 orbital basis within a quasi-cubic approximation by 2, 
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𝐻̃0 + 𝐻̃𝐶𝐹 =

(

 
 
 
 

𝐸𝑣
0 0 0 0

0 𝐸𝑐
0 +

𝛿

3
− 𝜁 0 0

0 0 𝐸𝑐
0 +

𝛿

3
+ 𝜁 0

0 0 0 𝐸𝑐
0 −

2

3
𝛿 )

 
 
 
 

,     (S5) 

where 𝐸𝑣
0 and 𝐸𝑐

0  are valence and conduction band edges without SOC or CF splitting. The 

eigenvectors are found by diagonalizing the matrix  𝐻̃𝑜𝑟𝑡ℎ𝑜 in Eq. S3. Within the basis of 

eigenstates of total angular momentum, 𝐽 =  𝐿 +  𝑆, taken in the order 𝐽 =  1/2 (𝐿 = 0), 𝐽 =

 1/2 (𝐿 = 1), 𝐽 =  3/2 (𝐿 = 1), with the values of  𝐽𝑧  for each 𝐽 running over 𝐽 ≥ 𝐽𝑧 ≥ −𝐽 
ordered high to low, this has the matrix representation, 

 𝐻̃𝑜𝑟𝑡ℎ𝑜 = 

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝑣
0

0 0 0 0 0 0 0

0 𝐸𝑣
0

0 0 0 0 0 0

0 0 𝐸𝑐
0

0 0
√2

3
𝛿 0 √

2

3
𝜁

0 0 0 𝐸𝑐
0

−√
2

3
𝜁 0 −

√2

3
𝛿 0

0 0 0 −√
2

3
𝜁 𝐸𝑐

0
+ Δ +

𝛿

3
0

𝜁

√3
0

0 0
√2

3
𝛿 0 0 𝐸𝑐

0
+ Δ −

𝛿

3
0

𝜁

√3

0 0 0 −
√2

3
𝛿

𝜁

√3
0 𝐸𝑐

0
+ Δ −

𝛿

3
0

0 0 √
2

3
𝜁 0 0

𝜁

√3
0 𝐸𝑐

0
+ Δ +

𝛿

3
 
)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

,     
(S6) 

The conduction band edge states can be solved exactly in the tetragonal case, when  𝛿 ≠ 0 with 

vanishing   orthorhombic crystal field, 𝜁 = 0.  The lowest conduction band in this case has energy 

2-4 , 

𝐸𝑐(Δ, δ) = Ec
0 +

3Δ − δ

6
−
1

2
√δ2 −

2

3
δΔ + Δ2; ( 𝐽𝑧 = ±

1

2
). (S7) 

Note that the energy zero has been set so that with zero crystal field the conduction band edge is 

at energy 𝐸𝑐 = 𝐸𝑐
0.  The upper conduction bands, which originate   from the 𝐽 = 3/2 states of the 

cubic crystal, are split by the tetragonal crystal field.  In the tetragonal case  these bands have band-

edge energies given by 2-4 , 
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𝐸𝑙𝑒(Δ, δ) = 𝐸𝑐
0 +

3Δ − δ

6
+
1

2
√δ2 −

2

3
δΔ + Δ2; ( 𝐽𝑧 = ±

1

2
) (S8) 

𝐸ℎ𝑒(Δ, δ) = 𝐸𝑐
0 +

𝛿

3
+ Δ;                         (𝐽𝑧 = ±

3

2
) (S9) 

Finding a closed form expression for the band edge energies and Bloch functions in the presence 

of an orthorhombic crystal field is more complicated since the energy is a cubic function the 

orthorhombic crystal field.  However the band edge energies and eigenvectors can be readily found 

by numerical diagonalization.   An approximate result for the lowest band edge energy is [2], 

𝐸𝑐(Δ, δ, ζ) ≈
Ec(Δ, δ) + Ehe(Δ, δ)

2
+
1

2
√(𝐸ℎ𝑒(Δ, δ) − Ec(Δ, δ))2 + 4ζ2 cos2 θ  , 

(S10) 

where the phase angle 𝜃 is given in terms of the spin orbit coupling, Δ and the tetragonal crystal 

field 𝛿  by 3,4: 

tan 2θ =  
2√2  Δ

Δ − 3δ
,                    θ ≤

π

2
 , (S11) 

while the lowest energy conduction bands have band edge Bloch functions that can be expressed 

in the general form, 

 𝑢1
𝒞 = − 𝒞𝑍 𝑍 ↑ −(𝒞𝑋𝑋 +  𝑖𝒞𝑌𝑌) ↓ , 

 

 𝑢2
𝒞 = −(𝒞𝑋𝑋 −  𝑖 𝒞𝑌𝑌) ↑ +𝒞𝑍𝑍 ↓ . (S12) 

In these expression the symbols 𝑋, 𝑌, 𝑍 denote orbital functions that transform like x ,y, z under 

rotations, while 𝒞𝑋 , 𝒞𝑌, 𝒞Z are c-numbers that reflect the effect of the crystal field splitting. The 

coefficients 𝒞𝑋 , 𝒞𝑌, 𝒞Z can be written approximately in terms of two phase angles, 𝜃 and 𝜙, 

determined by the crystal fields, 𝛿, and 𝜁, as2, 

 
𝒞𝑋 ≈ 𝒞𝑋(𝜃, 𝜑) =

cos𝜙 cos 𝜃 − sin𝜙

√2
  , 

 

 
𝒞𝑌 ≈ 𝒞𝑌(𝜃, 𝜑) =

cos𝜙 cos 𝜃 + sin𝜙

√2
  , 

 

 𝒞𝑍 ≈ 𝒞𝑍(𝜃, 𝜑) = cos𝜙 sin 𝜃  . (S13) 

In these expressions, the phase angle 𝜃 is given in terms of the spin orbit coupling, Δ and the 

tetragonal crystal field 𝛿  by Eq. S11while the phase angle 𝜑 has non-zero values in the 

orthorhombic structure and is determined by2 , 

tan 2φ =  
−4 ζ cos θ

Δ + δ + √Δ2 −
2
3Δ δ + δ

2

.  . 
(S14) 

In applications in this work, the coefficients 𝒞𝑋 , 𝒞𝑌, 𝒞Z were determined numerically as a function 

of the crystal field parameters 𝛿, 𝜁 and the SOC parameter Δ  by diagonalizing the full Hamiltonian 

Eq. S6 rather than using approximate Eq. S13, in order to ensure accuracy.  The energies of  the 
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heavy- and light-electron band edges can also written in  approximate closed form, but in this work 

we find the energies by numerical diagonalization of Eq. S6.  The corresponding Bloch functions 

can be shown to have the following general forms:  For the heavy electron band,  

 𝑢1
ℋ = −(ℋ𝑋𝑋 +  iℋ𝑌𝑌) ↑ +ℋ𝑍𝑍 ↓ , 

 

 𝑢2
ℋ = ℋ𝑍  𝑍 ↑ +(ℋ𝑋𝑋 −  i ℋ𝑌𝑌) ↓ , (S15) 

where the coefficients ℋ𝑋 ,ℋ𝑌 ,ℋZ are found numerically as functions of 𝛿, 𝜁 and Δ. The 

corresponding result for the light-electron band is,  

 𝑢1
ℒ = ℒ𝑍𝑍 ↑ −(ℒ𝑋𝑋 +  iℒ𝑌𝑌) ↓ , 

 

 𝑢2
ℒ = (ℒ𝑋𝑋 −  i ℒ𝑌𝑌) ↑ +ℒ𝑍𝑍 ↓ . (S16) 

Here again, the coefficients ℒ𝑋 , ℒ𝑌, ℒZ are found numerically. 

 Supplementary Fig. 1 shows the calculated conduction band edge energies for the light-, heavy- 

and conduction electron bands computed by diagonalization of Eq. S6, parametrically as a function 

of the orthorhombic crystal field, 𝜁, with fixed SOC split off parameter Δ =1400meV 4 and  

tetragonal crystal field 𝛿 = + 349.8 meV, determined by fitting to the measured electron and hole 

g-factors as described in the main text.  Note that the tetragonal crystal field is positive, in 

agreement with density functional theory calculations of band-structure of tetragonal MAPbI3 

reported in Refs.[1,5], the hybrid density function theory calculations for both tetragonal and 

orthorhombic MAPbI3 reported in Ref. [2], and the 16-band K.P model for tetragonal MAPbI3 

reported in Ref.[6]. 

 

Supplementary Fig. 1. Band edge energies in orthorhombic perovskite. The figure shows 

calculated conduction band edge energies for the light-, heavy- and conduction electron bands computed 

by diagonalizing Eq S3 parametrically as a function of the orthorhombic crystal field, 𝜻, with fixed SOC 

split off parameter 𝚫 =1.4 eV4 and  tetragonal crystal field 𝜹 = + 349.8 meV, determined by fitting to the 

measured electron and hole g-factors as described in the main text.  The splitting between the heavy- and 

light- electron band edges for zero 𝜻 is approximately 𝟐/𝟑 𝜹. The legends labels he, le and ce stand for 

heavy-electron, light-electron, and conduction-electron bands, respectively. 



7 

 

Section S1.1: Calculation of the electron and hole g-factors. 

Using the results in the last section for the band edge energies and Bloch functions in the 

orthorhombic crystal structure, we can apply the K.P theory to calculate the electron and hole g-

factors.  To do we first write the full K.P Hamiltonian reflecting coupling between the conduction 

and valence bands near the zone center Γ point, the conduction band Hamiltonian 𝐻0 can be written 

as, 

 𝐻0 = 𝐻k + 𝐻𝐶𝐹 + 𝐻𝐿𝑆 , (S17) 

where 𝐻k represents the band edge energies in the absence of SOC and CF splitting plus the k-

dependent terms which give rise to dispersion of the band energies away from the zone center; 

while 𝐻𝐿𝑆 =
2

3
Δ 𝐋 ⋅ 𝐒 is the spin orbit coupling and 𝐻𝐶𝐹 is the crystal field Hamiltonian given in 

Eq. S4-S5 apart from the band edge energies 𝐸𝑣
0, 𝐸𝑐

0. The Hamiltonian 𝐻𝑘  for the cubic phase has 

the following representation in a basis of states 𝑆,X,Y,Z in the absence of spin orbit coupling:  

𝐻(𝒌)  = 

(

 
 
 
 
 
 
 

𝐸𝑣
0 𝑖 

ℏ

𝑚0
𝑘𝑥𝑃 𝑖 

ℏ

𝑚0
𝑘𝑦𝑃 𝑖 

ℏ

𝑚0
𝑘𝑧𝑃

−𝑖 
ℏ

𝑚0
𝑘𝑥𝑃 𝐸𝑐

0 +
ℏ2

2𝑚0
(𝐴k𝑥

2 + 𝐵(k𝑦
2 + k𝑧

2))
ℏ2

2𝑚0
𝐶 𝑘𝑥𝑘𝑦

ℏ2

2𝑚0
𝐶 𝑘𝑥𝑘𝑧

−𝑖 
ℏ

𝑚0
𝑘𝑦𝑃

ℏ2

2𝑚0
𝐶 𝑘𝑥𝑘𝑦 𝐸𝑐

0 +
ℏ2

2𝑚0
(𝐴k𝑥

2 + 𝐵(k𝑦
2 + k𝑧

2))
ℏ2

2𝑚0
𝐶 𝑘𝑦𝑘𝑧

−𝑖 
ℏ

𝑚0
𝑘𝑧𝑃

ℏ2

2𝑚0
𝐶 𝑘𝑥𝑘𝑧

ℏ2

2𝑚0
𝐶 𝑘𝑦𝑘𝑧 𝐸𝑐

0 +
ℏ2

2𝑚0
(𝐴k𝑥

2 + 𝐵(k𝑦
2 + k𝑧

2))
)

 
 
 
 
 
 
 

 . 

  (S18) 

Here 𝑃 =  −𝑖 ⟨𝑆|𝑝̂𝑥|𝑋⟩ =  −𝑖 ⟨𝑆|𝑝̂𝑦|𝑌⟩ = −𝑖 ⟨𝑆|𝑝̂𝑧|𝑍⟩ is the Kane momentum matrix element7 . 

Following Luttinger8 the terms 𝐴, 𝐵, 𝐶 can be expressed in terms of the well-known Luttinger 

mass parameters as follows: 

 𝐴 = 𝛾1 + 4 𝛾2,  

 𝐵 = 𝛾1 − 2 𝛾2 ,  

 𝐶 = 6 𝛾3  . (S19) 

Note that the quasi-cubic treatment here assumes that the effect of symmetry breaking from the 

cubic phase  is  due solely to the effect of the crystal field, i.e., the Kane  and   Luttinger parameters 

have the same symmetry relations  as in the cubic phase.  Our treatment differs in this sense from 

that in Ref.[4], where   for the tetragonal phase, separate Kane and Luttinger parameters are 

introduced for the directions parallel and perpendicular to the tetragonal c-axis, but this approach 

leads to a proliferation of undetermined parameters.    

Introducing spin orbit coupling as before, the 8x8 Hamiltonian 𝐻k + 𝐻𝐿𝑆 is diagonalized at 𝐤 =

 0 in  a basis of eigenstates of total angular momentum, 𝐉 =  𝐋 +  𝐒. Adding the crystal field 

Hamiltonian, as in the last section, the total Hamiltonian is diagonalized using Bloch functions Eq. 

S2 for the valence bands, Eq. S11 for the conduction bands and Eqs. S14, S15 for the heavy- and 

light- electron bands respectively. The matrix representation of the Hamiltonian can be written in 

closed form in this basis but we will not show it here;  it is represented as an 8x8 matrix. 
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With the Hamiltonian for the orthorhombic crystal determined, we can calculate the electron and 

hole g-factors by considering the effect of an externally applied magnetic field.  The magnetic 

Hamiltonian is given by8, 

 𝐻𝑚 =   −  
𝜇𝑏
ℏ
(3𝜅 + 1)   𝐋 ∙ 𝐁   + 𝑔0

𝜇𝑏
ℏ
  𝐒 ⋅  𝐁   , (S20) 

where 𝜇𝑏  =  𝑒ℏ 2𝑚0⁄  is the Bohr magneton,  𝑔0  =  |𝑔𝑒| is the free electron spin g-factor, 

approximately equal to 2.0023, and 𝜅 is Luttinger’s magnetic parameter8.   We evaluate the 

effective Zeeman Hamiltonian for the lowest conduction band and the valence band using 

Löwdin’s partition method9.  The effective magnetic Hamiltonian has the form for electrons 

(holes) given by, 

 𝐻𝑍,𝑒(ℎ)
𝑒𝑓𝑓

=  
𝜇𝑏
ℏ

 {𝑔𝑒(ℎ),𝑥 𝐽𝑒(ℎ),𝑥 𝐵𝑥 + 𝑔𝑒(ℎ),𝑦 𝐽𝑒(ℎ),𝑦 𝐵𝑦 + 𝑔𝑒(ℎ),𝑧 𝐽𝑒(ℎ),𝑧 𝐵𝑧}, 
(S21) 

which is represented in the band edge basis as a 2x2 matrix. We find the g-factors using Löwdin’s 

method9 for constructing the effective Hamiltonian from the 8x8 K.P Hamiltonian4 : 

 
𝐻̃𝑖𝑗
𝑒𝑓𝑓
(𝐤) =  𝐻̃𝑖𝑗(𝐤)  +  ∑

 𝐻̃𝑖𝑛(𝐤) 𝐻̃𝑛𝑗(𝐤)

𝐸𝑖(𝐤)  − 𝐻̃𝑛𝑛𝑛

. 
(S22) 

We apply this procedure using the 8x8 Hamiltonian derived from Eq. S17 plus the magnetic field 

Hamiltonian Eq. S20, approximate the energies 𝐸𝑖(𝐤)  and the matrix elements 𝐻𝑛𝑛 by the band 

edge values; and utilize the commutators [𝑘𝑥, 𝑘𝑦]  =  −𝑖 
𝑒

 ℏ
  𝐵𝑧 and its cyclic permutations8.  We 

retain only those terms linear in the applied magnetic field. Eliminating the Kane momentum 

matrix element in favor of the Kane energy, defined by, 

 
𝐸𝑝 = 

2 𝑃2

𝑚0
, 

(S23) 

We obtain the electron and hole g-factors   after a straightforward but lengthy calculation.  For 

the holes, the g-factor components are, 

 
𝑔ℎ,𝑥 =  𝑔0 − 2𝐸𝑝 (

𝒞𝑌 𝒞𝑍 

𝐸𝑐 − 𝐸𝑣
−  

ℒ𝑌 ℒ𝑍 

𝐸𝑙𝑒 − 𝐸𝑣
−
ℋ𝑌  ℋ𝑍 

𝐸ℎ𝑒 − 𝐸𝑣
) , 

 

 
𝑔ℎ,𝑦 =  𝑔0 − 2𝐸𝑝 (

𝒞𝑋𝒞𝑍
𝐸𝑐 − 𝐸𝑣

−  
ℒ𝑋 ℒ𝑍 

𝐸𝑙𝑒 − 𝐸𝑣
+
ℋ𝑋  ℋ𝑍 

𝐸ℎ𝑒 − 𝐸𝑣
) , 

 

 
𝑔ℎ,𝑧 =  𝑔0 − 2 𝐸𝑝 (

𝒞𝑋 𝒞𝑌 

𝐸𝑐 − 𝐸𝑣
+  

ℒ𝑋 ℒ𝑌 

𝐸𝑙𝑒 − 𝐸𝑣
−
ℋ𝑋  ℋ𝑌 

𝐸ℎ𝑒 − 𝐸𝑣
) . 

(S24) 

Here, the band edge energies 𝐸𝑐, 𝐸ℎ𝑒 , and 𝐸𝑙𝑒 are found by numerical diagonalization and 𝐸𝑣 is 

determined from the measured the bandgap via 𝐸v = 𝐸𝑐(Δ, δ, ζ) − 𝐸g.  The coefficients 𝒞𝑖, ℋ𝑖 and  

ℒ𝑖 that enter this expression are determined numerically as well.  We note that hole g-factor is the 

same in both the electron and hole representations as described in detail in Ref. [10]. The electron 

g-factors are found as,  

 
𝑔𝑒,𝑥 = 2 𝒞𝑌 𝒞𝑍  

𝐸𝑝

𝐸𝑔
−  {4 𝒞𝑌 𝒞𝑍 (3 𝜅2 + 1) −  𝑔0(𝒞𝑋

2 − 𝒞𝑌
2 − 𝒞𝑍

2)} 
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𝑔𝑒,𝑦 = 2 𝒞𝑋𝒞𝑍

𝐸𝑝

𝐸𝑔
− {4 𝒞𝑋𝒞𝑍(3 𝜅2 + 1) −  𝑔0(𝒞𝑌

2 − 𝒞𝑋
2 − 𝒞𝑍

2)} 
 

 
𝑔𝑒,𝑧 = 2 𝒞𝑋𝒞𝑌

𝐸𝑝

𝐸𝑔
− {4 𝒞𝑋𝒞𝑌(3 𝜅2 + 1) −  𝑔0(𝒞𝑍

2 − 𝒞𝑋
2 − 𝒞𝑌

2)} 
(S25) 

We verified that the expressions in Eqs. S24-S25 reproduce previously derived results4  for the 

tetragonal and cubic phases in the corresponding limits. 

We note that the six g-factors (x, y, z values for the electron and the hole, respectively) are fully 

determined by six parameters:  These are the band gap, 𝐸𝑔;  the Kane energy, 𝐸𝑝;  the spin orbit 

split-off parameter, Δ;  the tetragonal and orthorhombic crystal field parameters 𝛿, 𝜁, and 

Luttinger’s magnetic parameter, 𝜅.  In practice the bandgap is easily measured;  the split-off 

parameter  can be measured or calculated4, so that the remaining parameters 𝐸𝑝, 𝛿, 𝜁 and 𝜅 can be 

determined by measuring the electron and hole g-factors along two symmetry axes of the crystal 

as described in the main text.  The expressions are summarized in Supplementary Table 1. 

Section S1.1.1: Electron and hole g-factors in the cubic phase 

It is a useful to evaluate the expressions derived above for the orthorhombic crystal phase against 

the limit of cubic crystal symmetry, that is, when the crystal fields 𝛿 = 𝜁 = 0.  In this case, the 

lowest conduction bands have band-edge Bloch functions that can be represented as eigenstates of 

the total angular momentum, 𝐉 = 𝐋 + 𝐒, with 𝐽 = 1/2 , and the coefficients in Eq (S12) can be 

shown to take the values, 𝒞𝑋 = 𝒞𝑌 = 𝒞𝑍  =  1/√3.  Similarly, the upper conduction bands become 

4-fold degenerate, separated in energy by Δ from the lower 𝐽 = 1/2 conduction bands,  and have 

band-edge Bloch functions that can be represented as eigenstates of 𝐉 = 𝐋 + 𝐒 with 𝐽 = 3/2.  Then, 

the coefficients in Eqs. S15, S16 take the values, ℋ𝑋 = ℋ𝑌 =  1/√2;  ℋ𝑍 = 0, and ℒ𝑋 = ℒ𝑌 =

 1/√6;  ℒ𝑍 = √2/3. Using these coefficients leads to the following expressions for the isotropic 

electron and hole g-factors in the cubic crystal structure: 

 
 𝑔ℎ
𝑐𝑢𝑏𝑖𝑐 =  𝑔0 −

2

3
𝐸𝑝 (

 1

𝐸𝑔
−  

1

𝐸𝑔 + Δ
) ; 𝑔𝑒

𝑐𝑢𝑏𝑖𝑐 = 
2

3

𝐸𝑝

𝐸𝑔
 − (4 𝜅1 + 2), (S26) 

   

Supplementary Note 2:  Exciton fine structure model 

In this section we describe the Hamiltonian that determines the exciton fine structure in 

orthorhombic perovskite crystals such as MAPbI3. We consider the effects of the short-range (SR) 

electron-hole exchange interaction, 𝐻𝑆𝑅, and the effects of an applied magnetic field, B, through 

the Zeeman Hamiltonian 𝐻𝑍.  The magneto-exciton Hamiltonian is thus,  

 𝐻 = 𝐻𝑆𝑅 + 𝐻𝑍   (S27) 

We will determine the eigenstates of this Hamiltonian  for free excitons in orthorhombic MAPbI3.  

We write  the exciton state as the product wave function11,  

 𝜓𝑖,𝑗;𝐊;𝑛𝑙𝑚
𝑒𝑥 (𝐫e, 𝐫h) =  𝑢𝑖

𝑒(𝐫e)  𝑢𝑗
ℎ(𝐫h)  𝑓𝐊;𝑛𝑙𝑚(𝐫e, 𝐫h).    (S28) 
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Supplementary Table 1. Hole and electron g-factors in orthorhombic perovskites.   

The subscripts x, y, z denote the [1,0,0], [0,1,0] and [0,0,1] crystallographic directions.  The coefficients 

𝒞𝑋, 𝒞𝑌, 𝒞𝑍; ℒ𝑋 , ℒ𝑌, ℒ𝑍; and ℋ𝑋,ℋ𝑌,ℋ𝑍, determine the lowest conduction band Bloch functions, and the 

light- and heavy-electron band Bloch functions.  These are determined by numerical diagonalization of the 

8-band K.P Hamiltonian, Eq. S6, which includes the tetragonal and orthorhombic crystal fields  𝛿 and 𝜁, 

and the SOC parameter Δ. In the expressions, 𝑔0  ≈ 2.0023 is the free electron spin g-factor, 𝐸v =

𝐸𝑐(Δ, δ, ζ) − 𝐸g, where 𝐸𝑔 is the bandgap, 𝐸𝑝 is the Kane energy, and 𝜅 is Luttinger’s magnetic parameter;  

Δ is the SOC split-off parameter. 

Hole g-factors Electron g-factors 

𝑔𝑋
ℎ =   

𝑔0 − 2𝐸𝑝 (
𝒞𝑌 𝒞𝑍 

𝐸𝑐 − 𝐸𝑣
−  

ℒ𝑌 ℒ𝑍 

𝐸𝑙𝑒 − 𝐸𝑣
−
ℋ𝑌  ℋ𝑍  

𝐸ℎ𝑒 − 𝐸𝑣
) 

𝑔𝑋
𝑒  = 2 𝒞𝑌  𝒞𝑍  

𝐸𝑝

𝐸𝑔

−  {4 𝒞𝑌  𝒞𝑍 (3 𝜅2 + 1)

−  𝑔0(𝒞𝑋
2 − 𝒞𝑌

2 − 𝒞𝑍
2)} 

𝑔𝑌
ℎ = 

 𝑔0 − 2𝐸𝑝  (
𝒞𝑋𝒞𝑍
𝐸𝑐 − 𝐸𝑣

−  
ℒ𝑋 ℒ𝑍 

𝐸𝑙𝑒 − 𝐸𝑣
+
ℋ𝑋 ℋ𝑍  

𝐸ℎ𝑒 − 𝐸𝑣
) 

𝑔𝑌
𝑒  = 2 𝒞𝑋𝒞𝑍

𝐸𝑝

𝐸𝑔
− {4 𝒞𝑋𝒞𝑍(3 𝜅2 + 1)

−  𝑔0(𝒞𝑌
2 − 𝒞𝑋

2 − 𝒞𝑍
2)} 

𝑔𝑍
ℎ = 

 𝑔0 − 2 𝐸𝑝  (
𝒞𝑋 𝒞𝑌 

𝐸𝑐 − 𝐸𝑣
+  

ℒ𝑋 ℒ𝑌 

𝐸𝑙𝑒 − 𝐸𝑣
−
ℋ𝑋 ℋ𝑌  

𝐸ℎ𝑒 − 𝐸𝑣
) 

𝑔𝑍
𝑒  = 2 𝒞𝑋𝒞𝑌

𝐸𝑝

𝐸𝑔
− {4 𝒞𝑋𝒞𝑌(3 𝜅2 + 1)

−  𝑔0(𝒞𝑍
2 − 𝒞𝑋

2 − 𝒞𝑌
2)} 

This is a product of the band-edge periodic basis functions for the electron and hole, 𝑢𝑖
𝑒 and 𝑢𝑗

ℎ, 

respectively, which contain information pertaining to the spin of the exciton, and the envelope 

function for the exciton, 𝑓𝑛,𝐾(𝐫𝑒, 𝐫ℎ), which describes the relative and center of mass (COM) 

motion of the electron and hole in the exciton state.  For free excitons, the envelope  function is 

specified in terms of the COM wave vector 𝐊 and quantum numbers 𝑛, 𝑙, 𝑚 associated with the 

state of internal relative motion of the electron and hole, which we describe  in terms of a 

hydrogenic model. The lowest exciton is a 1s hydrogenic state with 𝑛 = 1 and 𝑙 = 0 so that, 

 
𝑓𝐊;1𝑠 (𝐫𝐞, 𝐫h) =

1

√𝑉
𝑒𝑖𝐊∙𝐑𝜙1𝑠(𝐫𝐞 − 𝐫h),    

(S29) 

where the wave function is the relative coordinate is given by, 

 
𝜙1𝑠(𝑟) =

2

𝑎𝑥3/2
𝑒−𝑟/𝑎𝑥

1

√4𝜋
   .     

(S30) 
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The  Bloch  functions for the hole and the electron, 𝑢ℎ and 𝑢𝑒 are given in Eqs. S2 and S12 

respectively. Using these expressions we form a Bloch function basis of electron hole pair states: 

 𝑃1 = 𝑢1
𝑒𝑢1
ℎ;     𝑃2 = 𝑢1

𝑒𝑢2
ℎ;    𝑃3 = 𝑢2

𝑒𝑢1
ℎ;   𝑃4 = 𝑢2

𝑒𝑢2
ℎ  (S31) 

With the wavefunction in hand, we start our  analysis by developing the electron-hole exchange 

Hamiltonian. 

Section 2.1:  Electron-hole exchange 

The short range exchange interaction can be written as an effective spin operator for the bulk 

exciton which can be written11, 

 
𝐻𝑆𝑅 =   

1

2
 𝐶 𝛩 [𝐈  −  𝛔e. 𝛔h] .    

(S32) 

Here,  𝛔e and 𝛔h are Pauli operators representing the true spin (not the total angular momentum) 

of the electron and the hole, respectively;  𝐫e  and 𝐫h are their respective position vectors, 𝐶 is the 

exchange constant for the material, and  Ω is the unit cell volume.  The term 𝛩 is the electron-hole 

overlap factor, representing the probability that the electron and hole reside in the same unit cell. 

For the exciton 𝑛, 𝐊 it can be written,  

 
𝛩𝑛,𝐊 =  Ω ∬ 𝑑3𝐫e𝑑

3

𝑉

𝐫h 𝑓𝑛,𝐾
∗ (𝐫e, 𝐫h)𝛿(𝐫e − 𝐫h)𝑓𝑛,𝑲(𝐫e, 𝐫h)

=  Ω ∫ 𝑑3𝐫
𝑉

 | 𝑓𝑛,𝐊(𝐫, 𝐫)|
2.                                          

(S33) 

The integration above is taken over the entire volume, 𝑉, of the crystal.  The “ground state” exciton, 

by which we mean the lowest energy exciton state for a given wave vector 𝐊, corresponds to the 

1s hydrogenic state of relative motion as discussed above. Using Eqs. S29-S30 for this state, the 

overlap factor is, 

 
𝛩1𝑠 = 

Ω

𝜋𝑎𝑥
3   ,           

(S34) 

where 𝑎𝑥 is the exciton Bohr radius. With this result we can rewrite Eq. S32 for the ground 

exciton in terms of the singlet triplet splitting ℏ𝜔𝑠𝑡 =  2/3 𝐶𝛩1𝑠, 
 

𝐻𝑆𝑅 = 
3

4
 ℏ𝜔𝑠𝑡 [𝐈  −  𝛔e. 𝛔h].     

(S35) 

This equation is our effective spin operator for the electron hole exchange interaction.  With the 

eh  pair basis Eq S31, we find the exchange Hamiltonian has the following representation: 

 

𝐻̃𝑃𝑎𝑖𝑟  =
3

2
 ℏ𝜔𝑠𝑡 × 

(

 
 

𝒞𝑥
2 + 𝒞𝑦

2 0 0 𝒞y
2 − 𝒞𝑥

2

0 𝒞z
2 𝒞z

2 0

0 𝒞z
2 𝒞z

2 0

𝒞y
2 − 𝒞𝑥

2 0 0 𝒞𝑥
2 + 𝒞𝑦

2
)

 
 
 . 

(S36) 

It is convenient to diagonalize this Hamiltonian with the transformation12, 

𝐻̃𝑋𝑌𝑍 =   𝑀̃2
†
𝑀̃1

†
𝐻̃𝑃𝑎𝑖𝑟   𝑀̃1 𝑀̃2 

Where the unitary transformation matrices   𝑀̃1, 𝑀̃2 are given by, 
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                          𝑀̃1 =

(

 
 

0 1 0 0
−1

√2
0

1

√2
0

1

√2
0

1

√2
0

0 0 0 1)

 
 

       and     𝑀̃2 =

(

 
 

1 0 0 0

0
−1

√2

𝑖

√2
0

0 0 0 1

0
1

√2

𝑖

√2
0
)

 
 
  . 

The first transformation ( 𝑀̃1) transforms the Hamiltonian to a basis of total angular momentum 

𝐹 = 𝐽𝑒 + 𝐽ℎ, taken in the order, |𝐹, 𝐹𝑧⟩  =  |0,0⟩, |1,1⟩, |1,0⟩, |1, −1⟩,  while the second 

diagonalizes the Hamiltonian in a basis of  exciton states |𝑢𝑋𝑖⟩, taken in the order |𝐷⟩, |𝑋⟩, |𝑌⟩, |𝑍⟩,  

whose  transition dipoles to the crystal ground state respectively vanish (D)   or are aligned along 

the symmetry directions X, Y, Z which correspond to the three mutually orthogonal 𝐶2  symmetry 

axes of the orthorhombic crystal system.  In this basis the exchange Hamiltonian is given by, 

 

𝐻̃𝐷𝑋𝑌𝑍 =   (

𝐸𝐷 0 0 0
0 𝐸𝑋 0 0
0 0 𝐸𝑌 0
0 0 0 𝐸𝑍

).         

(S37) 

In this expression, the exciton eigen-energies are given by2, 

 𝐸𝐷 = 0  ,  

 𝐸𝑋 = 3ℏ𝜔𝑠𝑡 𝒞𝑥
2  ,  

 𝐸𝑌 = 3ℏ𝜔𝑠𝑡  𝒞𝑦
2  ,  

 𝐸𝑍 = 3 ℏ𝜔𝑠𝑡 𝒞z
2  . (S38) 

The corresponding dipole transition moments, ⟨𝑢𝑋𝑖|𝐏|𝐺⟩, evaluated between  the Bloch functions 

of each state, |𝑢𝑋𝑖⟩  and the  |𝐺⟩ is the crystal ground state, are given by2, 

 𝐩̃ = 0  ,  

 𝐩̃𝑋 = √2 𝒞𝑥 𝑃 𝑥̂  ,  

 𝐩̃𝑌 = √2 𝒞𝑦 𝑃 𝑦̂  ,  

 𝐩̃𝑍 = √2 𝒞𝑧 𝑃 𝑧̂  . (S39) 

where 𝑃 = |⟨𝑆|𝐏|𝑍⟩| is the Kane momentum matrix element that appeared above. 

In Ref. [6] the exchange constant and exciton radius are given for orthorhombic MAPI as ℏ𝜔𝑠𝑡 =

 0.126 meV and   𝑎𝑥 = 4.8nm.  In our model, we use these parameters, and determine the crystal 

fields, 𝛿 and 𝜁, and the spin orbit coupling split-off parameter, Δ, by fitting the measured g-factors 

of the electron and hole using the orthorhombic model presented above.  This determines the phase 

angles and hence the phase angles 𝜃, 𝜑. 

Section 2.2:  Magnetic field splitting of the exciton – Zeeman  model 

The Zeeman Hamiltonian for the exciton, neglecting crystal anisotropy, can be written 4,10 , 

 𝐻𝑀 =  𝑔𝑒𝜇𝐵 𝐉𝐞 ∙ 𝐁 + 𝑔ℎ𝜇𝐵 𝐉𝐡 ∙ 𝐁 ,     (S40) 
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where, 𝐉𝐞, 𝐉𝐡 are the vector total angular momentum operators for the electron and hole, 

respectively,  𝜇𝐵 is the Bohr magneton, and 𝑔𝑒 , 𝑔ℎ are the electron and hole g-factors. Note that 

the hole term above is written with a positive sign, moreover the magnitude and the sign of the 

hole g-factor is the same in both the electron and hole representations as noted in Ref. [10]. The 

Zeeman Hamiltonian expression is easily generalized to the case of orthorhombic symmetry, 

 𝐻𝑀 =  𝜇𝐵 {(𝑔𝑒,𝑥𝐽𝒆,𝒙 + 𝑔ℎ,𝑥𝐽ℎ𝑥) 𝐵𝑥 + (𝑔𝑒,𝑦𝐽𝒆,𝒚 + 𝑔ℎ,𝑦𝐽ℎ𝑦) 𝐵𝑦

+ (𝑔𝑒,𝑧𝐽𝑒,𝑧 + 𝑔ℎ,𝑧𝐽ℎ,𝑧) 𝐵𝑧} 

(S41) 

Expressing the Hamiltonian in the pair basis Eq. S31 and then transforming to the exciton basis 

D,X,Y,Z as before, we find the representation of the Zeeman Hamiltonian as, 

 𝐻̃𝐷𝑋𝑌𝑍

=  
𝜇𝑏
2

(

 
 

0 𝐵𝑥(𝑔ℎ,𝑥 − 𝑔𝑒,𝑥) 𝐵𝑦(𝑔ℎ,𝑦 − 𝑔𝑒,𝑦) 𝐵𝑧(𝑔ℎ,𝑧 − 𝑔𝑒,𝑧)

𝐵𝑥(𝑔ℎ,𝑥 − 𝑔𝑒,𝑥) 0 −𝑖𝐵𝑧(𝑔𝑒,𝑧 + 𝑔ℎ,𝑧) +𝑖 𝐵𝑦(𝑔𝑒,𝑦 + 𝑔ℎ,𝑦)

𝐵𝑦(𝑔ℎ,𝑦 − 𝑔𝑒,𝑦) +𝑖𝐵𝑧(𝑔𝑒,𝑧 + 𝑔ℎ,𝑧) 0 −𝑖 𝐵𝑥(𝑔𝑒,𝑥 + 𝑔ℎ,𝑥)

𝐵𝑧(𝑔ℎ,𝑧 − 𝑔𝑒,𝑧) −𝑖 𝐵𝑦(𝑔𝑒,𝑦 + 𝑔ℎ,𝑦) +𝑖𝐵𝑥(𝑔𝑒,𝑥 + 𝑔ℎ,𝑥) 0 )

 
 
 . 

(S42) 

Inspection of this matrix indicates that in the presence of a magnetic field the dark exciton state D 

will mix with any bright exciton whose transition dipole has a non-zero projection along the 

magnetic field. If the magnetic field is along the Z direction, the states D and Z will mix; if B is 

along X, then the states D and X will mix.  At the same time,  a magnetic field component i will 

mix states 𝑗 ≠ 𝑖  and 𝑘 ≠ 𝑖, i.e., a z component of B will mix X and Y, while an x component of B 

will mix Y and Z.  The magnitude of the mixing will be determined by the magnetic energy 

~𝑔|𝜇𝑏𝐵| in relation to the exchange splitting For reference, at 700 mT,  𝜇𝑏𝐵 is 40 𝜇eV, which is 

not small relative to the singlet-triplet splitting ℏ𝜔𝑠𝑡 =  126 𝜇eV in orthorhombic MAPbI3. 

As an example, for a magnetic field applied along the [001] direction, taken as the Z direction, the 

magneto-exciton Hamiltonian, including exchange and the Zeeman effect, breaks down into two  

2x2 submatrices as follows: The first submatrix describes coupling between D and Z states: 

 

𝐻̃𝑧,𝑑(𝐵𝑧) =  (
𝐸𝐷 −𝐵𝑧

𝜇𝑏
2
(𝑔𝑒,𝑧 − 𝑔ℎ,𝑧)

−𝐵𝑧
𝜇𝑏
2
(𝑔𝑒,𝑧 − 𝑔ℎ,𝑧) 𝐸𝑍

) .  

(S43) 

The energy eigenstates that are formed from the magnetically coupled Z and D levels have 

energies, 

 
𝐸𝑧𝑑
± = 

1

2
  { 𝐸𝐷 + 𝐸𝑍 ± √(𝐸𝑍𝑅 − 𝐸𝐷)

2 + 𝜇𝑏
2𝐵𝑧

2(𝑔𝑒,𝑧 − 𝑔ℎ,𝑧)
2
}   , 

(S44) 

and eigenvectors given by, 

 

𝜓𝑧𝑑
+ = 

1

𝑁1
[

1
−𝐵𝑧𝜇𝑏(𝑔𝑒,𝑧 − 𝑔ℎ,𝑧)

2(𝐸1
+ − 𝐸𝑧)

]    ≡  [
𝛼1
−𝛽1

] ,  
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𝜓𝑧𝑑
− = 

1

𝑁1
[
−𝐵𝑧𝜇𝑏(𝑔𝑒,𝑧 − 𝑔ℎ,𝑧)

2 (𝐸1
− − 𝐸𝐷)

1

]    ≡  [
𝛽1
𝛼1
] . 

(S45) 

Here 𝑁1 is a normalization factor and we note that 𝛼1, 𝛽1are real.  The other submatrix describes 

magnetic coupling of the X and Y states: 

 

𝐻̃𝑥𝑦(𝐵𝑧) =  (
𝐸𝑋 −𝑖 𝐵𝑧

𝜇𝑏
2
(𝑔𝑒,𝑧 + 𝑔ℎ,𝑧)

+𝑖𝐵𝑧
𝜇𝑏
2
(𝑔𝑒,𝑧 + 𝑔ℎ,𝑧) 𝐸𝑌

)  

(S46) 

Solutions for the energies of the magnetically coupled  X and Y states are, 

 
𝐸𝑥𝑦
± = 

1

2
  { 𝐸𝑋 + 𝐸𝑌 ± √(𝐸𝑋 − 𝐸𝑌)2 + 𝜇𝑏

2𝐵𝑧2(𝑔𝑒,𝑧 + 𝑔ℎ,𝑧)
2
},  

(S47) 

Corresponding to eigenvectors given by, 

 

𝜓𝑥𝑦
+ = 

1

𝑁2
[

−𝑖 
𝐵𝑧𝜇𝑏(𝑔𝑒,𝑧 + 𝑔ℎ,𝑧)

2(𝐸2
+ − 𝐸𝑌)

]    ≡  [
−𝑖 𝛼2
 𝛽2

]   , 

 

 

𝜓𝑥𝑦
− = 

1

𝑁2
[
−𝑖𝐵𝑧𝜇𝑏(𝑔𝑒,𝑧 + 𝑔ℎ,𝑧)

2(𝐸2
− − 𝐸𝑥)

1

]    =      [
𝑖  𝛽2
𝛼2
]   . 

(S48) 

As above,  𝑁2 is a normalization factor and we note that 𝛼2, 𝛽2 are real.  It is important to note that 

as the magnetic energy increases, the triplet states X and Y mix, as do the Z and D states. The 

dipoles are given at zero magnetic field and at high magnetic field  in Supplementary Table 2 and 

the energies are plotted as a function of the magnetic field in Supplementary Fig. 2. 

Supplementary Table 2. Energies and transition dipoles for magneto excitons in a magnetic 

field oriented along the Z direction.  

Transition dipoles are given at zero field and at non-zero field. The state index 1 to 4 is assigned 

to each level for convenience in the discussion of quantum beating of the magneto-exciton. 𝐏 is 

the Kane matrix element. 

State 

index 

State 

index 

Energy Energy and Dipole at 

𝐵𝑧=0 

Dipole at 𝐵𝑧 ≠ 0  

𝜓𝑥𝑦
+  1 𝐸𝑥𝑦

+  𝐸𝑋;  √2 𝑃 𝒞𝑋𝑥̂ √2 𝑃 (𝑖 𝛼2𝒞𝑥𝑥̂  + 𝛽2𝒞𝑦𝑦̂) 

𝜓𝑥𝑦
−  2 𝐸𝑥𝑦

−  𝐸𝑦;  √2 𝑃 𝒞𝑌𝑦̂ √2 𝑃 (−𝑖 𝛽𝒞𝑥 𝑥̂ + 𝛼2𝒞𝑦 𝑦̂) 

𝜓𝑧𝑑
+  3 𝐸𝑧𝑑

+  𝐸𝐷;   0 −√2 𝑃 𝛽1𝒞𝑧𝑧̂ 

𝜓𝑧𝑑
−  4 𝐸𝑧𝑑

−  𝐸𝑍;   √2 𝑃 𝒞𝑧𝑧̂ √2 𝑃 𝛼1𝒞𝑧𝑧̂ 
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Supplementary Fig. 2. Energies and transition oscillator strengths for magneto-excitons in 

MAPbI3, B along [001].  Energies, panel (a) and oscillator strength, panel (b), are calculated with 

magnetic field applied along the [001] direction, taken as z. Lines are labelled according to the states in 

Supplementary Table 2, with the dipole character at zero magnetic field in parenthesis.  For these 

calculations, ℏ𝜔𝑠𝑡 =  126 𝜇eV6 ; Δ=1.4 eV4. The CF  parameters 𝛿 = +349.8 meV, 𝜁 = +147.7 meV; 𝜅 =

0.206  and the Kane energy, 𝐸𝑝=13.9 eV are determined by best fit to the measured electron and hole g-

factors, resulting in 𝑔[001]
𝑒 = 2.52, 𝑔[001]

ℎ = −0.28. 

 

Section 2.2: Quantum beating model for magneto-excitons 

In the transient photoinduced circular polarized reflection (c-PPR) quantum beating experiments 

described in the main text, a short optical pulse that is spectrally broad in comparison to the fine 

structure splitting is incident on the sample with wave vector K at time 𝑡 = 0.  With respect to the 

wave vector,  the  exciting pulse is arranged to be either left or right handed. For light propagating 

along the + Z direction, the left and right circular polarization vectors have  positive and negative 

helicity, respectively: 

 𝐞+ = 1 √2⁄  ( 𝐱̂ + 𝑖 𝐲̂),         (𝑙𝑒𝑓𝑡 ) 
 

 𝐞− = 1 √2⁄  ( 𝐱̂ − 𝑖 𝐲̂),         (𝑟𝑖𝑔ℎ𝑡 ) (S49) 

We consider the wavevector K along the X direction for which, 

 𝐞±(𝐊 = 𝐾𝐱̂) =     1 √2⁄  ( ±𝑖 𝐲̂ − 𝐳̂)    (S50) 

The magneto-exciton fine structure of the system consists of four states which we index, 𝑖, each 

with energy 𝐸𝑖 and a transition dipole from the crystal ground state with is the vector 𝐩i;  these 

are given in . 

Supplementary Table 2.  When the exciting pulse arrives at time 𝑡 = 0, an exciton is created by 

action of the electric field 𝐞± on the crystal ground state |𝐺⟩. This state, 𝛹𝑒𝑥
± , at time 𝑡 = 0 is 

given by13, 

 |𝛹𝑒𝑥
± ⟩ =  𝐞± ⋅  𝐏 |𝐺⟩  . (S51) 

 

We can represent this state as a superposition of the magneto-exciton fine structure levels 𝜓𝑖:   
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 𝛹𝑒𝑥
± = ∑( 𝐞± ∙  𝐩𝐢) 𝜓𝑖 

𝒊

   ≡ ∑𝐴𝑖
±

𝒊  

𝜓𝑖  ; 

 

 𝐴𝑖
± ≡ ( 𝐞± ∙  𝐩𝐢) (S52) 

 In this expression, the term  𝐞± ∙  𝐩𝐢 represents the relative strength of the dipole interaction of 

exciton level 𝑖 with the light field, whose transition dipole is, 𝐩𝐢  = ⟨𝜓𝑖|𝐏|𝐺⟩,  where 𝐺 is the 

crystal ground state. These are given for each level in Supplementary Table 2. The exciton state 

subsequently evolves in time as,  

 
𝛹𝑒𝑥
± (𝑡) =  ∑𝐴𝑖

±

𝒊

𝑒−𝑖 𝑡 
𝐸𝑖
ℏ

 

𝜓𝑖 = ∑( 𝐞± ∙  𝐩𝐢)

𝒊

  𝑒
−𝑖 𝑡 

𝐸𝑖
ℏ  𝜓𝑖     . 

(S53) 

In the c-PPR experiment, the system is interrogated by a + circularly polarized pulse, which we 

denote by 𝐝+ = 1 √2⁄  ( +𝑖 𝐲̂ − 𝐳̂), at a later time 𝑡.    The signal, 𝑆±(𝑡),  corresponding to the 

state initially prepared by a pump pulse with polarization 𝒆± is then proportional to, 

 𝑆±(𝑡) ~ |⟨𝛹𝑒𝑥,𝑑
+ |𝛹𝑒𝑥

± (𝑡)⟩|
2
 , (S54) 

where the state 𝛹𝑒𝑥,𝑑
+  is, 

 𝛹𝑒𝑥,𝑑
+ =∑(𝐝+ ∙  𝐩𝐢) 𝜓𝑖 

𝒊

 ≡ ∑𝐵𝑖
+

𝒊  

𝜓𝑖

 

 ;  

 

 𝐵𝑖
+ ≡ (𝐝+ ∙  𝐩𝐢) (S55) 

The measured signal, which we denote 𝑄𝐵(𝑡), is the difference between the plus and minus 

signals: 

 QB(t)~  𝑆+(𝑡) − 𝑆−(𝑡)      . (S56) 

Using the expressions worked out above and using the orthogonality of the states 𝜓𝑖 we find, 

 

𝑆±(𝑡) ~ |∑[𝐵𝑖
+]∗𝐴𝑖

±𝑒−𝑖 𝑡 
𝐸𝑖
ℏ  

𝑖

|

2

 , 
(S57) 

To determine the selection rules we will evaluate 𝑆±(𝑡) using the definition, 

 
𝐷𝑖
±(𝑡) = [𝐵𝑖

+]∗𝐴𝑖
± 𝑒−𝑖 𝑡 

𝐸𝑖
ℏ   

(S58) 

The expression for the signal then becomes, 

 

𝑆±(𝑡)~   |∑𝐷𝑖
±(𝑡)

𝑖  

 |

2

 .  (S59) 

This can be expanded out: 

 𝑆±(𝑡)~   ∑|𝐷𝑖
±(𝑡)|

2

𝑖

  +      ∑𝐷𝑖
±(𝑡)  [𝐷𝑗

±(𝑡)]
∗

𝑖≠𝑗

 . (S60) 
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The first term is constant in time and will not give rise to a beating signal. The second term is 

contains cross terms and is responsible for the beating.   Discarding the time independent piece  

we write, 

 𝛿±(𝑡)~        ∑𝐷𝑖
±(𝑡)  [𝐷𝑗

±(𝑡)]
∗

𝑖≠𝑗

     . (S61) 

Then, 

 𝑄𝐵(𝑡)~ 𝛿+(𝑡) − 𝛿−(𝑡)   . (S62) 

We now consider the selection rules.  In the general  case, we find that all terms  𝐷𝑖
±(𝑡) are in 

general non-zero, and that six frequencies appear corresponding to the six possible energy 

differences between the four fine structure levels of the magneto-exciton. However, evaluating Eq. 

S62 for  the special case of Voight geometry with applied magnetic field along the z-direction, and 

the light incident along a principal axis of the crystal (here taken as the x direction) we find two 

strong selection rules such that only four frequencies can appear in the quantum beating signature.  

To establish the selection rules explicitly we evaluate the terms 𝐷𝑖
±(𝑡) in Eq S58.    

First selection rule:  D/Z mixing:  We first analyze the interference term corresponding to the 

pair of states  𝜓𝑧𝑑
±  states which are magnetically coupled: Referring to Supplementary Table 2 

we index these states as state 3, 𝜓𝑧𝑑
+ , and state 4, 𝜓𝑧𝑑

+ .  Using 𝐝+ = 1 √2⁄  ( +𝑖 𝐲̂ − 𝐳̂) and 

referring to Supplementary Table 2 for the dipoles we find,  
 

𝑆𝑡𝑎𝑡𝑒 3:     𝐷3
±   =  [𝐵3

+]∗𝐴3
± 𝑒−𝑖 𝑡 

𝐸3
ℏ =  𝒞𝑧

2 𝛽1
2𝑃2𝑒−𝑖 𝑡 

𝐸3
ℏ    , 

  

 
𝑆𝑡𝑎𝑡𝑒 4:     𝐷4

±   =  [𝐵4
+]∗𝐴4

± 𝑒−𝑖 𝑡 
𝐸4
ℏ = 𝒞𝑧

2 𝛼1
2𝑃2𝑒−𝑖 𝑡 

𝐸4
ℏ    . 

(S63) 

We see that both terms are non-zero and the beating terms associated with right and left circular 

pump are equal.  The corresponding quantum beat term associated with states 3, 4  is, 

 
𝛿±
3,4(𝑡)~ 𝐷3

± [𝐷4′
±]
∗
+ 𝐷4

± [𝐷3
±]
∗
=  2 𝒞𝑧

4    𝛼1
2   𝛽1

2   𝑃4 cos (
(𝐸3 − 𝐸4)𝑡

ℏ
) . 

(S64) 

Consequently  in the quantum beating signal, Eq. S62, the interference terms involving states 3,4 

cancel:  

 𝑄𝐵3,4(𝑡)  = 𝛿+
3,4(𝑡) − 𝛿−

3,4(𝑡)  = 0  . (S65) 

We have arrived at the selection rule  that the magnetically coupled  𝜓𝑧𝑑
±  states cannot beat in the 

Voigt geometry, with the wave vector oriented along a principle symmetry axis of the crystal. 

Second selection rule:  X/Y mixing:   We next analyze the beating associated with the magnetically 

coupled  X,Y pair. For this case, again referring to . 

Supplementary Table 2. Energies and transition dipoles for magneto excitons in a magnetic field 

oriented along the Z direction.  and labelling 𝜓𝑥𝑦
+  as state 1 and  𝜓𝑧𝑑

−  as state 2, and using the    

dipoles listed in the table, we find, 

 
𝑆𝑡𝑎𝑡𝑒 1:     𝐷1

±   =  [𝐵1
+]∗𝐴1

± 𝑒−𝑖 𝑡 
𝐸1
ℏ =  𝒞𝑦

2 𝛽2
2𝑃2𝑒−𝑖 𝑡 

𝐸1
ℏ    , 
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𝑆𝑡𝑎𝑡𝑒 2:     𝐷2

±   =  [𝐵4
+]∗𝐴4

± 𝑒−𝑖 𝑡 
𝐸4
ℏ = 𝒞𝑦

2 𝛼2
2𝑃2𝑒−𝑖 𝑡 

𝐸2
ℏ    . 

(S66) 

We again find the  result that the beating terms associated with right and left circular pump are 

equal, 

 
𝛿±
1,2(𝑡)(𝑡)~ 𝐷1

± [𝐷2
±]
∗
+ 𝐷2

± [𝐷1
±]
∗
=  2 𝒞𝑦

4    𝛼2
2   𝛽2

2   𝑃4 cos (
(𝐸1 − 𝐸2)𝑡

ℏ
) . 

(S67) 

Consequently  in the quantum beating signal, Eq. S62, the state 1,2  interference terms cancel:  

 𝑄𝐵1,2(𝑡)  = 𝛿+
1,2(𝑡) − 𝛿−

1,2(𝑡)  =  0 . (S68) 

We have arrived at the second selection rule, that the magnetically coupled  𝜓𝑥𝑦
±  states cannot 

beat in the Voigt geometry, with the wave vector oriented along a principle symmetry axis of the 

crystal. 

Analysis of the other four possible combinations shows that non-zero quantum beating signals are 

in possible   with all four other combinations of states, with the exception of  the case of  zero 

applied magnetic field.  At zero field, only one quantum beat frequency is possible   for the light 

vector oriented along a principal axis of the crystal, as assumed above.    This is because, i) all 

interferences involving the D state vanish due to the vanishing oscillator strength of the D state at 

zero field; ii),  the X/Y mixing selection rule derived above leaves only two possible frequencies 

and iii),   because bright excitons whose dipole is oriented along the direction of the wave vector, 

is oriented a principal axis of the crystal, cannot couple to the light, leaving a single possible 

frequency.  Conversely, at finite magnetic field with the light wave vector oriented along a 

principal symmetry axis a total of four beat frequencies are possible.  Then, for an arbitrary k-

vector direction in Voight geometry, a total of six beat frequencies are possible at non-zero applied 

magnetic field, and two are allowed for zero applied field. The selection rules derived match those 

derived for time-resolved Faraday rotation in Voight geometry as developed in  Ref. [13] and are 

confirmed by direct diagonalization of the magneto-exciton Hamiltonian and evaluation of the 

time dependent cPPR QB signal  and its Fourier transform, shown in  Supplementary Fig. 3 and 

Supplementary Fig. 4. 

The calculations shown in these figures are made with the experimentally derived g-factors 

observed in the c-PPR quantum beating experiments described in the main text.  The results show 

that if the quantum beating observed were due to excitons, there would be a clear beat signal at 

zero applied magnetic field, due to electron-hole-exchange related fine structure splitting. In 

Supplementary Fig. 3, which shows the calculated QB signal with applied magnetic field, 𝐁 along 

[001] and incident light wavevector along [100], a principal axis, there is one allowed interference 

at zero field involving Y-Z fine structure levels. At high field, a clear signature associated with 

magnetic activation of the dark exciton oscillator strength would be observed, resulting in a total 

of four distinct beat frequencies, contrary to what is observed experimentally. In Supplementary 

Fig. 4. Calculated quantum beating signal for magneto-excitons in MAPbI3 for transient 

photoinduced circular polarized reflection, B along [-110]., calculated  with applied magnetic field, 

𝐁 along [-110] and incident light wavevector along [110], there are two allowed interferences at 
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zero field while at high field, a total of six distinct beat frequencies become allowed due to 

magnetic activation of the “dark” exciton, again, contrary to what is observed experimentally.  

We conclude from this analysis that the quantum beating signals experimentally observed in the  

c-PPR experiments are not due to excitons, but rather, are due either to the presence of resident 

carriers10; to formation of trions; or to resident carriers left behind after trion decay14.  We turn in 

the next section to an analysis of quantum beating due to trions. 

 

Supplementary Fig. 3. Calculated quantum beating signal for magneto-excitons in MAPbI3 

for transient photoinduced circular polarized reflection, B along [001]. Quantum beating is 

calculated for Voigt geometry, with applied magnetic field, 𝐁 = 𝐵𝑧 𝐳̂ along [001] and incident light 

wavevector along [100] taken as 𝐱̂. The magneto-exciton fine structure and material parameters used in 

these simulations are shown in Supplementary Fig. 2.   Panels (a, b) shows the time resolved c-PPR signal 

for zero magnetic field, panel (a), and an applied magnetic field of 700 mT, panel (b).  Panels (c) and (d) 

show the Fourier transforms of the time-resolved quantum beating traces shown in panels (a) and (b) 

respectively. Beat signals are labelled based on the zero-field states to which the interfering magneto-

exciton levels correspond, see Supplementary Fig. 2.  For these calculations, damping of 0.4 μeV was 

assumed, consistent with the measured damping.  Note that at zero field, there is one beat frequency 

corresponding to the interference between the Y and Z excitons; the Z/X exciton interference is forbidden 

with light wave vector along x, which cannot couple to the X state. All signals associated with the D state 

vanish at zero field due to the vanishing oscillator strength of this state at zero applied magnetic field.  At 

non-zero magnetic field, a total of four beat frequencies are possible due to magnetic activation of the “D” 

state as described in the text. 
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Supplementary Fig. 4. Calculated quantum beating signal for magneto-excitons in MAPbI3 

for transient photoinduced circular polarized reflection, B along [-110]. 
Quantum beating is calculated for Voigt geometry, with applied magnetic field, 𝐁 along [-110] and incident 

light wavevector along [110]. Panels (a, b) shows the calculated time resolved c-PPR signal for zero 

magnetic field, panel (a), and an applied magnetic field of 700 mT, panel (b).  Panels (c) and (d) show the 

Fourier transforms of the time-resolved quantum beating traces shown in panels (a) and (b) respectively. 

Beat signals are labelled based on the zero-field states to which the interfering magneto-exciton levels 

correspond, see Supplementary Fig. 2.  For these calculations, damping of 0.4 μeV was assumed, consistent 

with the measured damping.  Note that at zero field, two beat frequencies emerge corresponding to the 

interferences between the Y and Z excitons and the Z and X excitons. All signals associated with the D state 

vanish at zero field due to the vanishing oscillator strength of this state at zero applied magnetic field.  All 

six possible interferences are allowed for non-zero magnetic field since the light wave vector is not oriented 

along a principal axis of the crystal. 

 

Supplementary Note 3: Trion magnetic field splitting and quantum beating 

Here we analyze the level structure of trions in a magnetic field, the corresponding absorption 

spectra, and the expected quantum beating signature in the Voigt geometry.   We show that a trion 

of a given charge type can produce one quantum beat frequency (during its lifetime). For   trions 

with 𝐁 = 𝐵𝑧 𝐳̂ , the beat frequency is  𝜇𝐵 𝑔𝑒,𝑧𝐵𝑧 for positive trions, or, 𝜇𝐵 𝑔ℎ,𝑧𝐵𝑧 for negative 

trions.  This is in contrast with the result for resident electron or holes where there are two beat 

frequencies respectively corresponding to energies  𝜇𝐵 𝑔𝑒,𝑧𝐵𝑧 and 𝜇𝐵𝑔ℎ,𝑧 𝐵𝑧.   
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Trion creation- zero magnetic field 

Supplementary Fig. 1 shows a conceptual schematic of the process of resonant creation of a 

positive trion in its ground state.  The positive trion is visualized as two holes and one electron 

mutually bound. The electron representation is used for the conduction band (CB) and the hole-

representation is used for the valence band (VB).  Optical absorption promotes an electron from 

the VB into the conduction band. If the starting hole has spin up, this means that there is a missing 

electron with spin down.  The photon promotes the remaining electron into the CB so that the final 

configuration comprises two spin-paired holes plus the electron in the CB.  The bottom row in the 

figure shows the same process viewed in the electron representation.  Notably, a positive trion in 

its lowest energy configuration can be viewed as a single electron excitation in the electron 

representation. 

 

The matrix elements for creation of the trion are easiest to write in the electron representation. For 

the process shown in Supplementary Fig. 5, bottom row, the transition dipole matrix element 

between the initial state, i, and the final state, f,  is, ⟨𝑖|𝑃|𝑓⟩ =  ⟨𝑣𝑖|𝐏|𝑐𝑓⟩, where 𝑣𝑖 represents the 

initial state of the valence band electron while 𝑐𝑓 represents the final state of the conduction band 

electron.  Unlike transitions involving the creation of free electron hole pairs or excitons, the initial 

state is not the crystal ground state, |𝐺⟩, but rather, the state of crystal with the initial charge carrier. 

 

Supplementary Fig. 5. Creation of a positive trion by resonant optical absorption. System 

starts in the initial state with one hole, top left.  Absorption of a photon leaves the system in the final state 

with 2 spin-paired holes and an electron, top right. Bottom pictures show the same process viewed in the 

electron representation for both bands. The irreducible representation labels follow the convention of 

KDWS15 and for simplicity assume point symmetry 𝑶𝒉corresponding to a cubic perovskite. 

 

Trion has no fine structure in zero magnetic field 

For perovskites of cubic symmetry (point group Oh ), in zero magnetic field, electrons (holes) have 

symmetry 𝛤6
−(+)

 respectively, and are two-fold degenerate.  Therefore, a positive/negative trion in 

its lowest energy configuration has symmetry 𝛤6
−(+)

 and is also two-fold degenerate.  This follows 

since the two-like carriers are in a singlet configuration, i.e., 𝛤6
−(+)⊗𝛤6

−(+) → 𝛤1
+ for the singlet, 

and since 𝛤6
−(+)⨂𝛤1

+ = 𝛤6
−(+). Moreover, optical decay from a trion state to a single-carrier state 

is allowed for all polarizations: The x, y, and z components of the dipole operator all transform as 

𝛤4
−, since 𝛤4

−⨂𝛤6
−(+)contains 𝛤6

−(+). Furthermore, the matrix elements are equal for the x, y, and 

z components by symmetry.  This argument is easily generalized to the tetragonal and 
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orthorhombic cases2.  For the orthorhombic case, electrons (holes) have symmetry 𝛤5
−(+); 

therefore, a positive/negative trion has symmetry 𝛤5
−(+)

 and is also two-fold degenerate. 

 

Consequently the ground state of the trion in zero magnetic field has no fine structure splitting.  

This is well known in the literature, see for example 16,17. 

 
Section 3.1 Magnetic field splitting – Zeeman model for trion 

The Zeeman Hamiltonian for the positive trion can be written for cubic symmetry by summing the 

Zeeman terms of the three particles: 

 𝐻𝑀 =  𝑔𝑒𝜇𝐵 𝐉𝐞 ∙ 𝐁 + 𝑔ℎ𝜇𝐵 𝐉𝐡,𝟏 ∙ 𝐁  +  𝑔ℎ𝜇𝐵 𝐉𝐡,𝟐 ∙ 𝐁     ,   (S69) 

where, 𝐉𝐞, 𝐉𝐡 are the vector total angular momentum operators for the electron and hole, 

respectively,  𝜇𝐵 is the Bohr magneton, and 𝑔𝑒 , 𝑔ℎ are the electron and hole g-factors. For 

orthorhombic symmetry, this becomes, 

 𝐻𝑀 =  𝜇𝐵 {(𝑔𝑒,𝑥𝐽𝒆,𝒙 + 𝑔ℎ,𝑥(𝐽ℎ1,𝑥 + 𝐽ℎ2,𝑥)) 𝐵𝑥 + (𝑔𝑒,𝑦𝐽𝒆,𝒚 + 𝑔ℎ,𝑦(𝐽ℎ1,𝑦 + 𝐽ℎ2,𝑦)) 𝐵𝑦

+ (𝑔𝑒,𝑧𝐽𝑒,𝑧 + 𝑔ℎ,𝑧(𝐽ℎ1,𝑧 + 𝐽ℎ2,𝑧)) 𝐵𝑧}. 

(S70) 

In the electron/hole representation, we write the trion state as a direct product of the three carrier 

wavefunctions.  Consider a positive trion: 

 |𝑒ℎℎ⟩  = |𝑒⟩|ℎ1⟩|ℎ2⟩   . (S71) 

Then the Zeeman splitting of the positive trion in magnetic field field 𝐁  is, for cubic symmetry, 

 ⟨𝑒ℎℎ|𝐻𝑚|𝑒ℎℎ⟩ =  𝑔𝑒𝜇𝐵⟨𝑒|𝐉𝐞|𝑒⟩ ⋅ 𝐁 + 𝑔ℎ𝜇𝐵  (⟨ℎ1|𝐉𝐡𝟏|ℎ1⟩ + ⟨ℎ2|𝐉𝐡𝟐|ℎ2⟩)  ∙ 𝐁   . (S72) 

The generalization for orthorhombic symmetry is, 

  ⟨𝑒ℎℎ|𝐻𝑚|𝑒ℎℎ⟩ = ∑ {𝑔𝑒,𝑖𝜇𝑏𝐽𝑒,𝑖 + 𝑔ℎ,1𝜇𝑏 (𝐽ℎ1,𝑖 + 𝐽ℎ2,𝑖)}

𝑖=𝑥,𝑦,𝑧

𝐵𝑖. 
(S73) 

For 𝐁 = 𝐵𝑧 𝐳̂, this yields, for the positive trion, 

 
⟨𝑒ℎℎ|𝐻𝑚|𝑒ℎℎ⟩ = ±𝑔𝑒𝑧𝜇𝐵  

𝐵𝑧
2
. 

(S74) 

Parallel arguments lead to the conclusion that, a negative trion has energy, 
 

⟨𝑒𝑒ℎ|𝐻𝑚|𝑒𝑒ℎ⟩ = ±𝑔ℎ𝑧𝜇𝐵  
𝐵𝑧
2
. 

(S75) 

These results are summarized schematically in Supplementary Fig. 6.  A positive trion in a 

magnetic field will split into two lines separated in energy by 𝑔𝑒,𝑧𝜇𝐵 𝐵𝑧 , while the splitting for a 

negative trion is 𝑔ℎ,𝑧𝜇𝐵 𝐵𝑧;  these energy separations correspond to the Larmor precession 

frequencies observed in quantum beating experiments.  
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Supplementary Fig. 6. Positive trion level splitting in a magnetic field. Schematic that shows 

positive trion, |𝒆𝒉𝒉⟩, left.  The Zeeman splitting is depicted schematically on the right.  The splitting for a 

positive trion is 𝒈𝒆,𝒛𝝁𝑩 𝑩𝒛.  The splitting for a negative trion is 𝒈𝒉,𝒛𝝁𝑩 𝑩𝒛.   

Section 3.1:  Quantum beating signature of trion 

Now we analyze the quantum beating signature of the trion in Voigt geometry.  For definiteness 

we will discuss only the positive trion, and analyze the system for specificity with the applied 

magnetic field along z, with light with wave-vector 𝐊 = 𝐾 𝐱̂,  with associated polarization vectors 

 𝐞± given in Eq. S50.   We consider a short pulse at t=0 takes the system from initial state |𝑣1⟩, 

for specificity, to a trion state |𝛹𝑡,1
± ⟩.  This state at time 𝑡 = 0 is given by13, 

 |𝛹𝑡,1
± ⟩~ 𝐞± ⋅  𝐏 |𝑣1⟩  , (S76) 

where 𝐏 is the momentum operator.  This state can be represented as a coherent superposition of 

the two trion sublevels |𝑐1⟩ and|𝑐2⟩,   with amplitudes 𝐶1
± and 𝐶2

±, respectively. The amplitudes 

at t = 0  are proportional to  𝐞± ∙ ⟨𝑐1|𝐏|𝑣1⟩ and  𝐞± ∙ ⟨𝑐2|𝐏|𝑣1⟩: 
 𝐶1

± = ( 𝐞± ∙  ⟨𝑐1|𝐏|𝑣1⟩) = 𝑃 𝒞𝑍 √2  ⁄  ,    
 

  𝐶2
± = ( 𝐞± ∙  ⟨𝑐2|𝐏|𝑣1⟩) =  ± 𝑃 𝒞𝑌 √2  ⁄  .   (S77) 

Here, 𝑃 is the Kane momentum matrix element and we used the Bloch functions for the 

orthorhombic  phase, given for the valence and conduction bands in Eqs. S2 and Eq. S12 above. 

 After time 𝑡 has elapsed, the trion superposition state evolves due to the different energies of the 

trion with spin up versus spin down: 

 
𝐶1
± (𝑡)   =  𝐶1

± 𝑒−𝑖 𝑡 
𝐸𝑐1
ℏ  ;         𝐶2

± (𝑡)   =  𝐶2
± 𝑒−𝑖 𝑡 

𝐸𝑐2
ℏ   .   

(S78) 

Consequently the evolution of the trion state at time t is given by, 

 |𝛹𝑡1
±(𝑡)⟩~ 𝐶1

± (𝑡)|𝑐1⟩   +    𝐶2
± (𝑡)  |𝑐2⟩   .  (S79) 

In the c-PPR experiment, the system is interrogated by a + circularly polarized pulse, which we 

denote by 𝐝+ = 1 √2⁄  ( +𝑖 𝐲̂ − 𝐳̂), arriving at a later time 𝑡.    The signal, 𝑆±(𝑡),  corresponding 

to the state initially prepared by a pump pulse with polarization 𝐞± is proportional to, 

 𝑆±(𝑡) ~ |⟨𝛹𝑡1,𝑑
+ |𝛹𝑡1

±(𝑡)⟩|
2
 , (S80) 

where the state 𝛹𝑡,𝑑
+  is, 
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 |𝛹𝑡1,𝑑
+ ⟩~ 𝐝+ ⋅  𝐏 |𝑣1⟩  , 

 

 |𝛹𝑡1,𝑑
± ⟩~ 𝐶1

+ |𝑐1⟩   +    𝐶2
+   |𝑐2⟩   . (S81) 

The measured signal, which we denote 𝑄𝐵(𝑡), is the difference between the plus and minus 

signals 𝑄𝐵(𝑡)~  𝑆+(𝑡) − 𝑆−(𝑡) . 

Using the expressions worked out above and using the orthogonality of the states |𝑐𝑖⟩ we find, 

 

𝑆±(𝑡) ~ |∑[𝐶𝑖
+]∗𝐶𝑖

±𝑒−𝑖 𝑡 
𝐸𝑐𝑖
ℏ

2

𝑖=1

|

2

 . 

(S82) 

Substituting in the expressions in Eq. S77 and evaluating, we find the QB signal as,  

 𝑄𝐵(𝑡) ~ 𝑃4 𝒞𝑌
2𝒞𝑍

2  cos(𝑔𝑒,𝑧𝜇𝐵 𝐵𝑧𝑡) , (S83) 

where we used 𝐸𝑐1 − 𝐸𝑐2 = 𝑔𝑒,𝑧𝜇𝐵 𝐵𝑧.  Thus we see that the QB signal for the positive trion  is 

determined by the Zeeman splitting which is governed by the electron g-factor. 

Identical arguments apply in considering trion formation from initial state |𝑣2⟩.  Here, absorption 

of a photon with polarization  𝐞± leads to trion state |𝛹𝑡,2
± ⟩.  This state at time 𝑡 = 0 is given by13 

, 

  |Ψ𝑡,2
± ⟩~ 𝐞± ⋅  𝐏 |𝑣2⟩  , (S84) 

This state can again be represented as a coherent superposition of the two trion sublevels |𝑐1⟩ 

and|𝑐2⟩,   with amplitudes 𝐷1
± and 𝐷2

±, respectively. The amplitudes at t = 0  are proportional to 

 𝐞± ∙ ⟨𝑐1|𝐏|𝑣2⟩ and  𝐞± ∙ ⟨𝑐2|𝐏|𝑣2⟩: 
 𝐷1

± = ( 𝐞± ∙  ⟨𝑐1|𝐏|𝑣2⟩) = ∓ 𝑃 𝒞𝑌 √2  ⁄  ,    
 

  𝐷2
± = ( 𝐞± ∙  ⟨𝑐2|𝐏|𝑣2⟩) = − 𝑃 𝒞𝑍 √2  ⁄  .   (S85) 

The state evolves as before in time: 

 |𝛹𝑡2
±(𝑡)⟩~ 𝐷1

± (𝑡)|𝑐1⟩   +    𝐷2
± (𝑡)  |𝑐2⟩   .  (S86) 

The signal, 𝑆±(𝑡) in this case is proportional to, 

 𝑆±(𝑡) ~ |⟨𝛹𝑡2,𝑑
+ |𝛹𝑡2

±(𝑡)⟩|
2
 , (S87) 

where the state 𝛹𝑡2,𝑑
+  is, 

 |𝛹𝑡2,𝑑
+ ⟩~ 𝐝+ ⋅  𝐏 |𝑣2⟩  , 

 

 |𝛹𝑡2,𝑑
± ⟩~ 𝐷1

+ |𝑐1⟩   +    𝐷2
+   |𝑐2⟩   . (S88) 

The measured QB signal 𝑄𝐵(𝑡)~  𝑆+(𝑡) − 𝑆−(𝑡)  evaluates to,  

 𝑄𝐵(𝑡) ~𝑃4  𝒞𝑌
2𝒞𝑍

2  cos(𝑔𝑒,𝑧𝜇𝐵 𝐵𝑧𝑡) , (S89) 

Identical to what we found for the |𝑣1⟩ initial state.   
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Supplementary Note 4:  Supplementary data figures. 
 

 

Supplementary Fig. 7. Photoluminescence spectra of a MAPbI3 crystal measured at 10K as 

a function of pump fluence.  a PL spectra at different pump fluence that shows a dominant trion 

band ~ 1.62eV. b Plot of trion PL peak strength versus the pump fluence in log scale. The red line 

is a linear fitting with the slope  = 1.5. 
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Supplementary Fig. 8. Comparison between photoinduced QBs in ‘pristine’ (that is in fact 

slightly p-type) and ‘compensated’ MAPbI3 films. Panels a and b show the QBs measured by 

circular photoinduced absorption (c-PPA(t)); the insets show the corresponding FFT of the QB 

oscillations that contain two different QB components which we identify as due to photogenerated 

T(+) and T(-), respectively. Panels c and d show the excitation spectra of the FFT amplitude for the 

two trion, respectively. Here blue circles are for the ‘pristine’ film and red circles are for the 

‘compensated’ film. 
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Supplementary Fig. 9. The c-PPR(t) dynamics at various B’s and extracted spin relaxation 

time of the positive (fast oscillation) and negative (slow oscillation) trions measured along 

[100] with B directed along [001]. The red dashed lines are fittings using equation (2) in the main 

text. The extracted spin relaxation times are denoted. 
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Supplementary Fig. 10. The c-PPR(t) dynamics at various B’s and extracted spin relaxation 

time of the positive (fast oscillation) and negative (slow oscillation) trions measured along 

[110] with B directed along [𝟏𝟏̅0]. The red dashed lines are fittings using equation (2) in the main 

text. The extracted spin relaxation times for the two trions are denoted. 
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Supplementary Fig. 11. The spin relaxation time,  of positive and negative trions (𝝉𝒆
+and  𝝉𝒉

− 

, respectively) measured at 4K with k along [110] with B directed along [𝟏𝟏̅0]. Error bars 

derived from the least mean square fit of the c-PPR dynamics in Fig. 3 and Supplementary Fig. 10  

using Eq. (2) in the main text. The lines through the data points for B > 400 mT are fits using a 

model described in the text where  ~ 1/B. The longest  is about 1.2 ns, which is much shorter 

than the pulse to pulse time interval of ~ 12.5 ns. 
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Supplementary Fig. 12. Temperature dependence of the c-PPR(t) response dynamics and the 

extracted spin lifetime of positive (e
+) and negative (h

-) trions measured along [100] with B 

= 400 mT directed along [001]. The red dashed lines are fits using equation (2) in the main text. 

The extracted spin relaxation times for the two trions are denoted.  
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