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REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

n the paper by Nguyen P, et al, the authors comprehensively examined the immune subset changes 
in the different stages of HCC, by utilizing cutting-edge technologies, CyTOF, single cell RNA 

sequencing and exome sequencing. They found that the immunosuppression and exhaustion peaked 
in patients at stage II. The results of this research are of interesting and very important point to be 

addressed for future HCC therapy. However, some substantial issues are raised for the paper, 
especially in the study design and interpretation of the results. 

# Major points: 
1. One of the major drawbacks of the study is the case analyses were performed only cross

sectionally but not longitudinally. The authors categorized the patient group according to the TNM
staging system. Although this classification is of clinical importance, patients background, such as
tumor numbers, localizations, or vascular invasions, and liver function reserve, should be varied

significantly even in patients in the same TNM stage. It is arguably interesting to see that the
derangement of immune system peaked at the stage II but not at more advanced stage III. All the

data provided by the authors, including a mouse model of chemical carcinogenesis (DEN-induced
cancer), seemingly support for the results obtained from HCC patients. However, authors fail to

provide some evidence, or at least some clues, to explain why such immune dysregulation peaked in
the middle or intermediate stage of HCC patients. Do the authors think that CTNNB1 signature is a
key? Are there any cases that the authors could examine the immune subset changes as shown here

in some patients longitudinally, in the process of development from Stage I to II or III? And what are
most significant factors, T, N or M, impacting on immune exhaustive features in patients?

2. The authors utilized DEN-induced carcinogenesis model as a backup for confirming the changes of
immune cell alterations according to the tumor progression. Because it is well acknowledged that
DEN is a chemical carcinogen and induce liver tumors, the gene signature of which is completely

different from that of human HCC. In addition, how the authors define the mice at 8month should be
compatible with HCC patients at stage II? The authors need to explain the rationale for using DEN-

model for the comparison.

# Minor 

1. In mice, it is important to see the efficacy of immune checkpoint inhibitors with/without Wnt
inhibitors at different time points.

2. The single cell sequence analysis in Figure2e may be useful to identify the downstream or
upstream of S2 immune cell subset.

3. Same as Figure4c, are there any significance on receptors for chemotaxis?

Reviewer #2 (Remarks to the Author): 

Nguyen et al characterized immune microenvironnement in a series of 38 HCC with TNM stage I to III. 
They performed CyTOF analyses of tumor, non-tumor liver and blood samples for each patient. They 

identified immune depletion mainly in stage 2 patients. Immune evasion was validated in mice DEN 
model 

Criteria of selection of the patients should be better described. In particular, in sup table 1 and in the 
text it is mentioned that patients with stage I, II or III were comparable. However, in sup table 1 it 

appears that stage II tumors were more aggressive with more MVI and proliferation. Why? Does 
patients with stage III are highly selected as treatable by surgery? This is a major point to correctly 

interpret the “immune recovery” observed in stage III patients. 

In the analyses, cirrhotic patients should be compared to non-cirrhotic one. Also, in sup table 1 F4 
patients should be described separately. 

Editorial Note: Parts of this Peer Review File have been redacted as indicated to remove third-party
material where no permission to publish could be obtained.



Since the majority of the patients are HBV infected, the precise status of HBV infection should be 

included in the analysis. In particular antiviral therapy and viral infection activity should be described 
and correlated with the immune status. 

Figure 1c: stage II and stage III peripheral typing seems exactly SIMILAR 

Neo-antigen load in stage II and III: are they significantly different at figure 3f? 

Sup figure 5 list: over and under-expressed genes in CTNNB1 mutated tumors are unusual compared 
to previous publications. Please explain why? 

Reviewer #3 (Remarks to the Author): 

This manuscript seeks to characterize changes in immune cell populations and immune functions in 
hepatocellular carcinoma (HCC) across different disease stages. Using mass cytometry (CyTOF), the 

authors analyze immune clusters in HCC and normal liver samples, as well as peripheral blood. The 
authors report, stage 2 HCC exhibited lower levels of active NK cells and active memory CD8+ T-cells 

and higher levels of immunosuppressive CD8+ T-cells, T-reg and exhausted memory T-cells. Using 
IHC/IF, the authors identified the highest density of proportion of PD-1+ CD8+ T-cells in stage 2 
tumors. Single-cell RNA sequencing of tumor samples with trajectory analysis was reported to show 

reduced CD69 expression and increased PD-1, FOXP3 and CTLA4 expression in stage 2 HCC as 
compared to other tumor stages. In bulk RNA sequencing and pathway analysis, stage 2 disease 

presented with the highest expression of genes related to immune exhaustion while the expression of 
genes related to immune response and antigen presentation was lower in advanced disease. 

This manuscript potentially represents a relevant contribution to the literature as it may help to better 
understand the shifts occurring within the tumor immune microenvironment in HCC across disease 

stages. A “cold” TME is identified in stage 2 disease and partially validated through the different 
analyses performed, from mass cytometry and IHC, to bulk and single-cell RNA sequencing. 

However, there are still many issues that would need to be addressed: 
- Methods: more details needed. Examples include for enzymatic dissociation, how long was this 

performed for? Please include in methods additional details, such as catalog numbers for enzymes, 
timing of dissociation. What are the specific products used (catalog numbers for enzymes)? 

- For patient, list each sample, and how many cells were included in the final analysis? 
- Were any samples filtered out for QC reasons (i.e. low viable cell numbers)? If so, how many 
samples, and what were the criteria for this. This should be included in the methods. 

- What is the representation of each sample in each cluster? Are certain clusters patient specific (or 
compartment-specific)? Please include in the additional figures to address this, such as stacked bar 

graphs for each cluster by tissue origin and by patient origin. 
- The recovered immune population somehow appear off. First, compared to the work of Zhang et all, 

Cell, 2019, there appear to be many fewer myeloid cells. In reviewing the feature plots in the 
supplement, PD-L1 is not found in the myeloid compartment but rather in the T cell compartment. 
Within NK cells, The NKp46+ cells in cluster largely lack CD16 expression and granzyme expression, 

which is odd. Cluster 2 looks to be underclustered, with an NKp46+ population towards the top of the 
tSNE that looks lower in GZMB, and then the remaining part of cluster 2 towards the bottom that 

largely lacks NKp46 expression but has high granzyme B. Overall, this raises questions about the 
nature of the clustering and assignment of cell identities. I would suggest first utilizing other clustering 
methods (other than phonograph) and demonstrating that the observed results are robust to choice of 

clustering method. Second, I would suggest additional details about how cluster identity was 
assigned. 

- Figure 1c, the authors note that, descriptively, there appears to be more diverse immune 



phenotypes in the visualization for T compared to N and P. Can the authors please quantify this? 
- The reported results for figure 2 do not completely reflect what is shown in the figure. For instance, 

the authors broadly state that S2 tumors had lower pro-inflammatory or activated immune subsets 
(C2, C6, C9). But in the actual figure, The proportion of C2, for example is very similar in S1 and S2, 

and is only higher in S3. For C6, the proportion in S2 seems fairly similar to S3 this time, and it is 
lower in S1. Essentially, there is no common point of comparison – for some claims, S2 is higher or 
lower than compared only S1, and then for other claims, it is only higher or lower than compared to 

S3. 
- For the manual gating in supplemental figure 2B, additional graphs would be helpful to further justify 

the claims. PD-1 is a marker of antigen experience and not just exhaustion. Further, exhausted T cells 
can still have expression of granzymes (this is common in terminally exhausted T cells). I would 

suggest the authors (1) provide additional support for calling the population exhausted (does it have 
expression of additional inhibitor checkpoints like LAG3 or TIGIT), and would also examine any 
differences in the PD1+GB+ cells across disease stages. 

- For the scRNA-seq analysis, where samples all run at one time or in batches? If in batches, what 
were the batches and was batch correction performed. How was cluster identification performed? 

How many cells were used for each samples/patient, and does each cluster consist of cells from more 
than 1 patient? How many cells are in each cluster? These should be addressed in supplemental 
figures 

- It is truthfully a bit unclear what the trajectory analysis in Figure 2e is trying to show. Typically, 
trajectory analysis is performed for a specific cell type to examine continuous changes in 

transcriptional state has one progresses along a biological process. I would suggest separating out 
cell types (CD8s, CD4s, etc.)andperforming trajectory analysis on those individual, similar cell types. 
- For figure 3d-e, it is a bit unusual that there is so little patient-to-patient variation in expression of 

individual genes within a stage. Usually there is heterogeneity between patients and at least some 
distribution, but here, there error bars seem incredibly small. As a minor point, I would not assume 

TCF7 as an exhaustion marker – while it can be associated with a progenitor exhausted state (which 
is typically favorable), it can also be associated simply with memory T cells 

- For the neoantigen analysis, additional details would be helpful Was this truly whole genome 
sequencing, or whole exome? What protocol was used for sequencing? Further, the definition of 
clonal and subclonal are not typical. For instance, a subclonal mutation could be present in all biopsy 

sites, and would still be subclonal, not cloncal. 
- For figure 3g, it would be helpful to show a version of this exact plot but without PMA/ionomycin 

stimulation (i.e. showing the stim has an effect). 
- Figure 4B is a bit of a confusing representation. Perhaps a heatmap or correlogram for these 
correlations would be easier to follow. As a small point, for figure 4C the top column labels are not 

aligned. 
- For 4E, I would again caution against calling PD-1+ T cells exhausted, without any other indication, 

as fully functional antigen-experienced CD8+ T cells will also be PD-1+. 
- In Supplementary Figure 4, the authors present in a heatmap the differentially expressed genes 
between samples across disease stages. This unannotated figure (no gene names) is not 

interpretable. It should be adjusted accordingly (the number of genes included in the heatmap could 
be reduced and/or samples from the same stage could be grouped). 

- As a general but important point, there is not external validation of these findings, which would be 
important. A number of findings, for examples, are based on the expression of individual genes 

across disease stages. The authors could easily interrogate TCGA across disease stages to see if 
this validates. 
- The discussion should be expanded to put this work in the context of other single-cell analyses of 

HCC.



Point-by-point response to reviewers’ comments: 

We are grateful for the reviewers’ comments which help improve our manuscript tremendously. We 
have addressed their concerns with the point-by-point response below marked with R:. and added 
these following major additional data: 

1. We have expanded scRNA seq data analysis (new Fig. 3a-c), with this additional new data, 
all the rest of the figures numbers were shifted down by one (*Fig. 3=> 4; Fig. 4=> 5; 
Fig. 5 => 6).  

2. We have provided more detailed clinical analyses as in point-by-point response to 
reviewers’ comments below. 

3. We have also added another CyTOF clustering algorithm, FlowSom (new Suppl Fig. 2) 
to show robustness of our data. Likewise the original Suppl Fig 4 to 6 have been shifted to 
Suppl Fig. 5 to 7. 

All the other responses to each reviewer’s comments are provided as point-by-point below: 

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author):

In the paper by Nguyen P, et al, the authors comprehensively examined the immune subset changes 
in the different stages of HCC, by utilizing cutting-edge technologies, CyTOF, single cell RNA 
sequencing and exome sequencing. They found that the immunosuppression and exhaustion peaked 
in patients at stage II. The results of this research are of interesting and very important point to be 
addressed for future HCC therapy. However, some substantial issues are raised for the paper, 
especially in the study design and interpretation of the results.  

# Major points: 
1. One of the major drawbacks of the study is the case analyses were performed only cross 
sectionally but not longitudinally. The authors categorized the patient group according to the TNM 
staging system. Although this classification is of clinical importance, patients background, such as 
tumor numbers, localizations, or vascular invasions, and liver function reserve, should be varied 
significantly even in patients in the same TNM stage. It is arguably interesting to see that the 
derangement of immune system peaked at the stage II but not at more advanced stage III. All the 
data provided by the authors, including a mouse model of chemical carcinogenesis (DEN-induced 
cancer), seemingly support for the results obtained from HCC patients. However, authors fail to 
provide some evidence, or at least some clues, to explain why such immune dysregulation peaked in 
the middle or intermediate stage of HCC patients. Do the authors think that CTNNB1 signature is a 
key? Are there any cases that the authors could examine the immune subset changes as shown here 
in some patients longitudinally, in the process of development from Stage I to II or III? And what 
are most significant factors, T, N or M, impacting on immune exhaustive features in patients? 

R: Thank u for bringing up an excellent point, we believed the peak of immune evasion in 
intermediate stage of HCC is multifactorial, influenced by the tumour transcriptomic modification 
during tumour progression (Fig. 4), which impact and shape the tumour microenvironment as well 
as CTNNB1 upregulation and hence immune exclusion (Fig. 5) that concurrently push the TME 
towards exhaustion and evasion. We have added a sentence in discussion to discuss this view. “This 
immune evasion could be due to the modifications in tumour transcriptomic landscape, which 
concurrently mirrored the immune microenvironment, with lower expression of genes involved in 
several immune-related pathways as well as upregulation of CTNNB1-related genes associated to 
immune exclusion, both occurred at S2 HCC tumours.” 



As also stated in our manuscript in the discussion, “…Similar to other human solid cancer studies, 
our current study has been limited to inferring the parallel cancer and immune evolution using 
specimens taken from different patients at various stages of tumour11,35,36…” to obtain longitudinal 
tumour samples from different stages of HCC is in fact virtually impossible. This is mainly because 
once the patients are detected with HCC tumours, they will be subjected to first-line therapy which 
is surgical resection if they meet the surgery criteria. There are no incidences, in fact even unethical, 
to biopsy the tumours and wait for tumour to progress to later stages to biopsy again. Even though 
some patients might not be eligible for surgical resection, they will definitely be given some sort of 
therapies such as locoregional therapies like radiotherapy or systemic therapy like Sorafenib 
(multiple tyrosine kinase inhibitor), which will and are known to significantly change the immune 
landscapes of the tumorus. For those cases, without surgery, taking biopsies are very rare and not 
recommended in fear of spreading the tumour in the process.  
In view of these limitations, we have therefore performed pseudotime trajectory analysis on our 
scRNA seq data using monocle (Trapnell et al. Nat Biotech 2014), which uses an algorithm to learn 
the sequence of gene expression changes each cell must go through as part of a dynamic biological 
process. Once it has learned the overall "trajectory" of gene expression changes, Monocle can place 
each cell at its proper position in the trajectory and reconstruct a "branched" trajectory, which 
correspond to cellular "decisions". Monocle also provides powerful tools for identifying the genes 
affected by them and involved in making them. We have since expanded trajectory analysis to 
involve other immune cell types (new Fig. 3, see response to comments below). 
In addition to single-cell pseudotime analysis, we also used the murine model where longitudinal 
study is possible to validate the continuous and progressive immune evasion along tumour 
progression. 
We adopted version 8 TNM staging system (Kamarajah et al. J Surg Oncol. 2017;1–7) specified in 
method, for T, N or M which each represents T (primary tumour), N (regional lymph nodes) and M 
(Distant metastasis). According to the TNM staging v8 as illustrated in the table below, for all the 
stages I-III tumours involved in the current study, both N and M were not involved. Therefore, we 
are focusing primarily only on the T (primary tumour) status. 

Table 1 extracted from Kamarajah et al. J Surg Oncol. 2017;1–7 

2. The authors utilized DEN-induced carcinogenesis model as a backup for confirming the changes

[REDACTED]



of immune cell alterations according to the tumor progression. Because it is well acknowledged that 
DEN is a chemical carcinogen and induce liver tumors, the gene signature of which is completely 
different from that of human HCC. In addition, how the authors define the mice at 8month should 
be compatible with HCC patients at stage II? The authors need to explain the rationale for using 
DEN-model for the comparison.

R: We deeply understand the concerns from the reviewer on the compatibility of the genetic 
signature and progression of HCC between the DEN model and human patients. The genetic 
signature of DEN-induced HCC in mice has been extensively studied and compared to human HCC 
in the past two decades. Although DEN-induced HCC was initially found to closely recapitulate the 
advanced form of human HCC (Lee et al., Nat Genetics, 2004, 36:1306-1311), a more recent study 
revealed that other models such as STAM, MUP-uPA and TAK1 models could better recapitulate 
human HCC (Dow et al., PNAS, 2019, 115:E9879-E9888). Despite the differences in the genetic 
signature in the DEN and the other three mouse models, their immune cell infiltration, as indicated 
by the levels of mature CD4 T cells, T regulatory cells and dendritic cells, were found to be 
comparable between these mouse models, as well as to the human HCC (Dow et al., PNAS, 2018, 
115:E9879-E9888). Furthermore, a previous study also demonstrated striking similarities in the 
regulation of T cell-associated genes between human HCC and the DEN model (Schneider et al., 
Gut, 2012, 61:1733–1743). In addition, DEN-induced HCC model went through a chronic 
inflammation process before HCC development where immunosurveillance has been demonstrated 
to suppress tumour development and progression much similar to human HCC (Schneider et al., 
Gut, 2012, 61:1733–43). Therefore, we reason that the DEN-induced tumors in mice provides a 
reliable model relevant to human HCC for investigating the changes in the immune landscape 
during HCC progression. 
In fact, we did try another model which develops HCC model much faster within 21 days (typical 
endpoint) - hydrodynamic tail vein induced HCC model (Lin et al Cancer Res 2016). As a 
comparison (see figure below), even though indeed, level of PD-1+CD8+ T cells exhausted T cells 
are comparable between two models, active CD69+CD8+ T cells and Foxp3+CD25+CD4+ Treg 
are far lower for interrogating the changes in immune landscapes as intended. Given all 
considerations, we have decided to use DEN-induced HCC model despite the fact that we have to 
wait a longer duration of 6-12 months to complete the entire timeline experiment. 

Figure: Mouse model comparison 

For the comparison of stages between the DEN model and HCC patients, it is currently not possible 
to use the same TNM staging to define the tumor grades in the DEN model. In the DEN model, the 
tumor size increases progressively from 6, 8 to 12 months (Fig. 5b), this is indicative of tumour 
progression similar to human HCC. Prior to this study, whether the immune landscape undergoes 
remodelling during tumor progression in the DEN model remained largely unknown. When 
comparing the tumor size to the immune infiltration, activation and exhaustion within the tumors, 
we observed remarkable similarities between the 8-month DEN tumors and stage II human HCC in 
that the immune evasion appears to peak at these stages during the HCC progression.  
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# Minor 
1. In mice, it is important to see the efficacy of immune checkpoint inhibitors with/without Wnt 
inhibitors at different time points. 

R: We have in fact planned this as the future work to test several immune checkpoint inhibitors and 
also to explore Wnt inhibitors in mice from different stages. However, this on its own involved a 
long time line (up to 12 months for advanced stages tumours in DEN-induced model) which will 
produce massive data. We therefore aim for it to be a separate study which we hope to complete in 
the near future. To acknowledge this important future study, we have included one sentence in the 
discussion to mention this. 

“The efficacy of immune checkpoint inhibitors as well as Wnt inhibitors remain an interesting area 
for further research.”

2. The single cell sequence analysis in Figure2e may be useful to identify the downstream or 
upstream of S2 immune cell subset.

R: Indeed this is an excellent suggestion, we have since expanded Fig. 2e to a new Fig.3 (also 
shown below) to explore other immune subsets from S1-S3 by single-cell analysis with the revised 
text in the manuscript as marked (also shown below).  

New Fig. 3: Single-cell pseudotime trajectory analysis of immune cells along HCC progression 

“Single-cell immune trajectory along tumour progression 
To validate the above observation, we performed single-cell RNA sequencing on the tumour-
infiltrating immune cells as previously described18 (Supplementary Fig. 3a and Supplementary 
Table 5) and analyzed their pseudotime trajectory along tumour progression using Monocle R 
package (Version 3.0), an algorithm to learn the sequence of gene expression changes each cell 



must go through as part of a dynamic biological process19. Setting S1 tumours as the starting point, 
we first explored the T cells trajectory along tumour progression S1-S3. Consistently, we observed 
a more distinct immune phenotype at S2 tumours with reduced CD69 and enriched PDCD1 (PD-1), 
FOXP3 and CTLA4 compared to N or S1 and S3 tumours (Fig. 3a). Consistent trend was also 
observed when analysed on CD4+ T and CD8+ T cells separately where Treg markers and 
exhaustion markers were found to be enriched in S2 tumours respectively; while proinflammatory 
gene GZMB were depleted in S2 tumours from both T cell subsets (Supplementary Fig. 3b). 
From the NK cell subsets, proinflammatory cytokines such as IFNG and TNF; chemokine, XCL1, 
which could promote cDC1 recruitment critical for antitumor immunity20 as well as TNFSF14, 
which is important for antitumour function of NK cells via DC maturation21; were all depleted from 
S2 tumours but enriched in S1 or S3 tumours (Fig. 3b). In addition, we also explored mononuclear 
phagocytes (MNPs) populations with monocle pseudotime trajectory analysis (Fig. 3c) found 
several genes as enriched in S2 such as: SPP1, which has been shown highly expressed in tumour-
associated macrophages (TAM) that promotes polarization to M2 phenotype facilitating immune 
escape22 as well as TREM2, which marks TAM with highly immunosuppressive activity23. On the 
other hand, CD38, where its expression on myeloid cells predicts favourable prognosis in HCC 
hence suggesting its anti-tumoural acitvity24 and proinflammatory cytokine TNF, were both 
depleted in S2 and S3 tumours.  
Taken together, this data further corroborates a peak of phenotypic immune evasion in S2 HCC 
tumours.” 

* Note: Due to the additional Fig.3, the manuscript now has a total of 6 figures. All the rest of the 
figures have been shifted down accordingly (*Fig. 3=> 4; Fig. 4=> 5; Fig. 5 => 6).  

3. Same as Figure4c, are there any significance on receptors for chemotaxis?

R: We have in fact included chemokine receptors  in Fig. 4c (* revised Fig. 5c) such as CCR6, 
XCR1, S1PR1, ACKR3. We have now also added few more corresponding chemokines receptors 
for the chemokines presented in Fig. 4c: CCR1 (receptor for CCL23 and CCL8), CXCR1 (receptor 
for CXCL6), CXCR2 (receptor for CXCL1, CXCL6) and CXCR3 (receptor for CXCL9, CXCL10 
& CXCL11). All of these chemokine receptors showed consistent trend with their corresponding 
chemokines (please see the revised Fig. 5c and also presented below with chemokine receptors 
marked as arrows). The text referring to result in Fig. 5c has also been revised as marked to describe 
this result. 

“Notably, the chemokines and their corresponding chemokine receptors: CCR1 (receptor for 
CCL23 and CCL8), CXCR2 (receptor for CXCL1, CXCL6) and CXCR3 (receptor for CXCL9, 
CXCL10 & CXCL11) showed consistent trend in correlation with the key immune subsets (Fig. 
4c).” 

Revised Fig. 5c
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Reviewer #2 (Remarks to the Author):

Nguyen et al characterized immune microenvironnment in a series of 38 HCC with TNM stage I to 
III. They performed CyTOF analyses of tumor, non-tumor liver and blood samples for each patient. 
They identified immune depletion mainly in stage 2 patients. Immune evasion was validated in 
mice DEN model  

Criteria of selection of the patients should be better described. In particular, in sup table 1 and in the 
text it is mentioned that patients with stage I, II or III were comparable. However, in sup table 1 it 
appears that stage II tumors were more aggressive with more MVI and proliferation. Why? Does 
patients with stage III are highly selected as treatable by surgery? This is a major point to correctly 
interpret the “immune recovery” observed in stage III patients.  

R: As shown in Sup table 1 (table below), the significant difference in MVI lies in fact between 
stage I and stage II (p < 0.0001) , stage I and stage III (p = 0.0009) but not between stage II and 
stage III (p = 0.35) (p values calculated using Fisher’s exact test, see graphs in figure below). In fact 
more advanced stages tumours are expected to have higher MVI incidence however no significant 
statistical difference was observed between S2 and S3. Therefore, we would rule out the possibility 
of selected S3 patients that contribute to our immune recovery data. 

MVI S1 S2 S3 

Y 0 (0.0%) 10 (83.3%) 6 (60.0%) <0.0001**** 
N 16 (100.0%) 2 (16.7%) 4 (40.0%) 

Figure: S1 vs S2, S1 vs S3 and S2 vs S3 Fisher’s exact test

In the analyses, cirrhotic patients should be compared to non-cirrhotic one. Also, in sup table 1 F4 
patients should be described separately. 

R: We tried breaking down to detailed Fibrosis scoring for the patients from F0 to F4 and analyse 
them separately for each Fibrotic status and the p val remained insignificant using Chi-square test 
(p= 0.7884) when compared among three tumour stages: 

Fibrotic status S1 S2 S3 P val

F0 3 1 0 0.7884
F1 1 2 2
F2 4 2 1
F3 4 3 4
F4 4 4 3

We have also tried F0 vs F1-3 vs F4 as suggested. Likewise p val is also insignificant (p val = 
0.6426): 
Fibrotic status S1 S2 S3 P val

F0 3 1 0 0.6426
F1-F3 9 7 7
F4 4 4 3
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We hence concluded that fibrotic status of the liver does not affect our conclusion in the current 
study and provided the detailed F0-F4 data in the revised suppl Table 1. 

Since the majority of the patients are HBV infected, the precise status of HBV infection should be 
included in the analysis. In particular antiviral therapy and viral infection activity should be 
described and correlated with the immune status. 

R: In fact as shown in Suppl Table 1 (also shown below), viral status does not contribute 
significantly to different tumour stages (p val= 0.8979). In the current study, our focus is on the 
immune landscapes from different stages of tumours, as far as viral hepatitis is concerned, the 
distribution of viral vs non-viral cases are comparable among three stages of HCC, hence not 
likely to impact on the analysis. Furthermore, the separate effect of viral hepatitis and HCC immune 
microenvironment has already been reported in Lim & Lee et al. Gut 2019 
(https://gut.bmj.com/content/gutjnl/68/5/916.full.pdf). We therefore concluded that viral hepatitis 
status does not impact on our current findings. 

Viral status S1 S2 S3

Hep B 11 (68.8%) 8 (66.7%) 6 (60.0%) 0.8979 

NV 5 (31.2%) 4 (33.3%) 4 (40.0%) 

Figure 1c: stage II and stage III peripheral typing seems exactly SIMILAR

R: Thank you very much for spotting this error. We apologize for the error made when copying and 
pasting the image. Previously we mistakenly pasted the P_S3 images twice and the S1 image was 
actually missing. We have since corrected the mistake, as can also been seen before and after 
correction, with the headings from the data generated by the software directly. We now confirmed 
that all data presented in the revised Fig. 1c is correct for P, T or N compartments and stages: S1, 
S2 or S3. Due to the small prints of the headings, we have removed the labels in the final revised 
fig. 1c after confirming they are all accurate. 

Before correlation: 

P

Stage I Stage II Stage III



After correction in Revised Fig. 1c: 

Neo-antigen load in stage II and III: are they significantly different at figure 3f? 

R: The p val comparing stage II & III is p= 0.9515 due to the large standard division of S3 tumours. 
To make this clearer, we have included the p val in the revised Fig 4f (*please note that we have 
expanded the single-cell data analysis to new Fig.3 and hence all the rest of the figures have been 
shifted down by 1 to a total of 6 figures). Even though comparing S2 vs S3 neoantigen load is not 
significantly different but the trend is clear especially it is higher compared to earlier stage 1 
tumours, which is also been shown in our earlier study Nguyen & Ma et al. Nat Com 2021, the 
accumulation of neoantigen corresponds to tumour progression and immune evasion. 

Stage I Stage II Stage III

P

N

T



Revised Fig. 4f 

Sup figure 5 list: over and under-expressed genes in CTNNB1 mutated tumors are unusual 
compared to previous publications. Please explain why? 

R: In fact, the CTNNB1 mutation genes are in line with previous publications, where up-regulation 
of Wnt signalling pathway or activation of the CTNNB1 pathway that has been linked with immune 
exclusion. For instance, Luke et al. Clin Cancer Res 2019 which concluded across multiple cancer 
types that “Activation of tumor-intrinsic WNT/β-catenin signaling is enriched in non-T-cell-
inflamed tumors.” https://pubmed.ncbi.nlm.nih.gov/30635339/. However, most of these previous 
studies examine DNA mutation (such as CTNNB1, AXIN1, AXIN2, APC) instead of 
transcriptomic gene signature as we have shown in the current study.  
Hence for HCC specific transcriptomic signature, we referred to CTNNB1-signature specifically 
from HCC reported by Lachenmayer, A. et al. Clin Cancer Res 2012 (Genes shown in Supl Fig.6 * 
note with additional new suppl. 2 for FlowSom CyTOF analysis, this fig number has been 
shiftdown). Our data in Fig. 5a showed upregulation of over-expressed genes and downregulation 
of under-expressed genes in CTNNB1 signature specifically at S2 tumours, which coincides with 
immune exclusion or immune “cold” TME from S2 HCC tumours (Fig. 5e,f). 



Reviewer #3 (Remarks to the Author):

This manuscript seeks to characterize changes in immune cell populations and immune functions in 
hepatocellular carcinoma (HCC) across different disease stages. Using mass cytometry (CyTOF), 
the authors analyze immune clusters in HCC and normal liver samples, as well as peripheral blood. 
The authors report, stage 2 HCC exhibited lower levels of active NK cells and active memory 
CD8+ T-cells and higher levels of immunosuppressive CD8+ T-cells, T-reg and exhausted memory 
T-cells. Using IHC/IF, the authors identified the highest density of proportion of PD-1+ CD8+ T-
cells in stage 2 tumors. Single-cell RNA sequencing of tumor samples with trajectory analysis was 
reported to show reduced CD69 expression and increased PD-1, FOXP3 and CTLA4 expression in 
stage 2 HCC as compared to other tumor stages. In bulk RNA sequencing and pathway analysis, 
stage 2 disease presented with the highest expression of genes related to immune exhaustion while 
the expression of genes related to immune response and antigen presentation was lower in advanced 
disease.  

This manuscript potentially represents a relevant contribution to the literature as it may help to 
better understand the shifts occurring within the tumor immune microenvironment in HCC across 
disease stages. A “cold” TME is identified in stage 2 disease and partially validated through the 
different analyses performed, from mass cytometry and IHC, to bulk and single-cell RNA 
sequencing. 

However, there are still many issues that would need to be addressed: 
- Methods: more details needed. Examples include for enzymatic dissociation, how long was this 
performed for? Please include in methods additional details, such as catalog numbers for enzymes, 
timing of dissociation. What are the specific products used (catalog numbers for enzymes)? 

R: The isolation of tissues-infiltrating immune cells was performed using enzymatic dissociation
with 500ug/mL collagenase IV (Thermo Fisher Scientific, Cat#:  17104019) and 50ug/mL DNase 
I (Roche, Indianapolis, IN, Cat#: 4716728001) with the incubation of 30min in 37C. We have 
now provided all these information in revised Methods under “Patient samples” as marked. 

- For patient, list each sample, and how many cells were included in the final analysis?

R: The enzymatic dissociation and the following processing and data acquisition for CyTOF 
yielded different number of cells which ranges from 10,000 to 200,000 cells. However for data 
analysis, we down-sampled the data consistently for EPIC analysis to 10,000 cells per sample, the 
same process was described in our previous EPIC pipeline paper in Yeo et al. Nat Biotech 2020. 
This is now highlighted as “underlined” in Methods under “CyTOF”. 

- Were any samples filtered out for QC reasons (i.e. low viable cell numbers)? If so, how many 
samples, and what were the criteria for this. This should be included in the methods. 

R: Indeed, some of the sectors were excluded from analysis if the number of isolated cells were less 
than 100,000 of viable cells, as freezing, thawing and staining process for CyTOF will not likely 
yield sufficient high quality results for downstream CyTOF analysis. However, this does not affect 
our general analysis and conclusion as: 1. This is in fact a rare occasion, only 2 tumour sectors were 
excluded from the entire cohorts. 2. we obtained multiple sectors from each tumour, all of the 
tumours analyzed have at least two representative tumour sectors where the average values could 
well represent the immune landscapes of each tumour. To clarify this, we have revised the Methods 
to elaborate on this: 



“Only samples with more than 100,000 cells after thawing will be subjected to downstream CyTOF 
analysis (note: two tumour sectors were excluded from the entire cohort and data was collected 
from at least two sectors of each tumour in the study.” 

Also of note, since we did not exclude any data for analysis per se, rather they were excluded 
upstream when they did not pass QC for any downstream data acquisition and analysis hence the 
report summary remains as “no data are excluded from analysis”. 

- What is the representation of each sample in each cluster? Are certain clusters patient specific (or 
compartment-specific)? Please include in the additional figures to address this, such as stacked bar 
graphs for each cluster by tissue origin and by patient origin.

R: We have also performed patient level analysis of the clusters (See figure below) and concluded 
that no particular clusters were patient specific and indeed they were more distinct when compared 
with tissue origin as already shown in Suppl Fig. 1b, where diversity is more apparent in Tumour 
(T) compartment. We have now included this pat level comparison UMAP in revised Supl Fig. 1b.

Revised Supl Fig. 1b

- The recovered immune population somehow appear off. First, compared to the work of Zhang et 
all, Cell, 2019, there appear to be many fewer myeloid cells. In reviewing the feature plots in the 
supplement, PD-L1 is not found in the myeloid compartment but rather in the T cell compartment. 
Within NK cells, The NKp46+ cells in cluster largely lack CD16 expression and granzyme 
expression, which is odd. Cluster 2 looks to be underclustered, with an NKp46+ population towards 
the top of the tSNE that looks lower in GZMB, and then the remaining part of cluster 2 towards the 
bottom that largely lacks NKp46 expression but has high granzyme B. Overall, this raises questions 
about the nature of the clustering and assignment of cell identities. I would suggest first utilizing 
other clustering methods (other than phonograph) and demonstrating that the observed results are 
robust to choice of clustering method. Second, I would suggest additional details about how cluster 
identity was assigned.

R: Indeed, it may seem that only few clusters are myeloid populations from our current study, this 
is because unlike the single-cell RNA seq data in Zhang et al Cell 2019, our current data is obtained 
from CyTOF analysis with defined surface and intracellular protein markers expression focusing 
more on T and NK cells but less on Myeloid cells (List of markers provided in Suppl Table 2). 
Furthermore, the current study analyze protein immune markers expression, which is more direct 
and crucial for the actual immune functions, compared to the RNA expression data shown in Zhang 
er al Cell 2019 previously.  
Indeed, some of the markers expression are low such as PD-L1 and CD16, where the relative 
expression may appear in the “wrong” subsets but we relied on other more hallmark markers to 
define these clusters. For instance, APC, we used HLA-DR or in some cases CD14 expression for 
its definition. For NK, these subsets express the bona feta CD56 as well as CD244, well know NK 

Pat level
Tissue levelb



markers. Cluster 2 vs 16 are indeed two different NK populations, where with more clustering using 
FlowSom clustering (10x10= 100 clusters as shown below) could actually result in many more 
clusters but with similar phenotypes with only subtle differences between one another.  
Secondly, to address the reviewer’s concerns for alternative clustering method, we have repeated 
the analysis using another well-established methods FLOWSOM (10x10=100 clusters to provide 
the most detailed clustering) and showed robust conclusion as now included in new suppl Fig. 2a-
c. The results section were also revised as “marked” to describe this additional supporting data.  

“We also validated the above data using another clustering methods FlowSOM 17 and found 
consistent trend of immune changes. Particularly, the immunosuppressive Treg and exhausted 
CD8+ T cells peaked in S2 tumours while the active CD8+ T cells and NK cells showed the lowest 
frequencies in S2 tumours (Supplementary Fig. 2a,b). Likewise, we validated the depletion of Treg 
in S2 PBMC and reduction of NKT cluster in S2 NILs (Supplementary Fig. 2c).” 

However due to more clusters with similar phenotypes with FlowSom clusters, we still prefer to use 
the phonograph clustering. Furthermore, we went on to provide manual gating validation (Suppl 
Fig. 2b => Fig. 2e * in view of the importance of this data, we have move it to main fig 2e. Also to 
accommodate more scRNA seq data now expanded to new Fig. 3) to support the trends in these 
clusters with specific immune subsets.

New Supl Fig. 2: HCC immune landscapes analysis from different stages using FlowSom 
algorithm 
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- Figure 1c, the authors note that, descriptively, there appears to be more diverse immune 
phenotypes in the visualization for T compared to N and P. Can the authors please quantify this?

R: Indeed, Fig. 1c was meant only to provide a global landscape presentation of immune changes 
among different stages of tumour. The increased diversity of immune phenotypes was also 
demonstrated in Suppl Fig. 1b. In addition, the quantification of clusters with significant changes 
were provided in Fig. 2b-d (shown below for reference), where indeed more clusters showed 
significant changes in T compartment compared to N & P. The similar findings were found also in 
10x10 FlowSom analysis provided in new Suppl Fig. 2a-c as described above. 

Suppl Fig. 1b: Increased immune diversity in T 

Fig.2b-d 
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- The reported results for figure 2 do not completely reflect what is shown in the figure. For 
instance, the authors broadly state that S2 tumors had lower pro-inflammatory or activated immune 
subsets (C2, C6, C9). But in the actual figure, The proportion of C2, for example is very similar in 
S1 and S2, and is only higher in S3. For C6, the proportion in S2 seems fairly similar to S3 this 
time, and it is lower in S1. Essentially, there is no common point of comparison – for some claims, 
S2 is higher or lower than compared only S1, and then for other claims, it is only higher or lower 
than compared to S3.

R: Indeed, the comparison of these clusters among three stages was meant to show the general trend 
where the most differences occurred between S2 with either S1 or S3 tumours. To avoid confusion, 
we have now added more detailed description with specific p values and comparison pairs for each 
cluster when describing fig. 2b-d in the revised manuscript. 

“The tumour tissue exhibited the greatest inter-stage heterogeneity…with the majority of these 
showing significant differences at S2 (Fig. 2a). S2 tumours exhibited lower levels of pro-
inflammatory or activated immune subsets including GB+CD16+CD56+ active NK cells (C2, p= 
0.0471, S2 vs S3), PD-1-GB+CD45RO+ (C6, p= 0.0220, S1 vs S2), and PD-1-CD69+CD45RO+ 
(C9, p= 0.009, S1 vs S2; p= 0.0184, S2 vs S3) active memory CD8+ T cells (Fig. 2d). Conversely, 
the frequencies of exhausted and immunosuppressive clusters PD-1+GBlowCD45RO+CD8+ T 
cells (C1, p= 0.0458, S2 vs S3), Treg (C4, p= 0.0188, S1 vs S2), and PD-
1+GBlowCD45RO+CD4+ exhausted memory T cells (C19, p= 0.0073, S2 vs S3) were significantly 
higher in S2 tumours than in either S1 or S3 (Fig. 2d).” 

More importantly, the conclusion of significant immune evaision peaking at S2 was supported by 
manual gating of key immune subsets in suppl Fig. 2b. In view of this important data, we have 
moved this to main Fig. 2e. 

Suppl Fig. 2b => Fig. 2e 

- For the manual gating in supplemental figure 2B, additional graphs would be helpful to further 
justify the claims. PD-1 is a marker of antigen experience and not just exhaustion. Further, 
exhausted T cells can still have expression of granzymes (this is common in terminally exhausted T 
cells). I would suggest the authors (1) provide additional support for calling the population 
exhausted (does it have expression of additional inhibitor checkpoints like LAG3 or TIGIT), and 
would also examine any differences in the PD1+GB+ cells across disease stages.

R: Indeed, PD-1 could also be a sign of antigen exposure and may not necessarily mean exhaustion, 
therefore, to show its exhausted phenotype we did gate for granzyme B and showed these cells 
express low GzmB (Median 21.85% ± 23.05%, new supl fig. 3b-d and shown below for reference).  
Also, we looked into other exhaustion markers including CTLA-4, Tim-3 and Lag3 and found that 
these PD-1+CD8+ T cells indeed co-expressed a number of exhaustion markers (shown below): 
CTLA-4 (Median 66.2% ± 21.71%), Tim3 (Median= 72.4%± 17.61%) and to a lesser extent Lag3 
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(Median 36.3%± 17.07%), again supporting its exhausted phenotypes (new supl Fig.3b-d). Also, as 
shown by our previous paper in Chew et al. PNAS 2017, we have done comprehensive analysis of 
PD-1+CD8+ T cells and showed their exhausted phenotypes in HCC TME. We added one sentence 
“marked” in the revised result section to describe this new data.  

“Of note, the PD-1+CD8+ T cells expressed very low level of granzyme B (Median 21.85% ± 
23.05%) and co-expressed high level of CTLA-4 (Median 66.2% ± 21.71%), Tim3 (Median= 
72.4%± 17.61%) and to a lesser extent Lag3 (Median 36.3%± 17.07%) (Supplementary Fig. 3c-e)), 
supporting its exhausted phenotypes as also shown by our previous study of exhausted PD-
1+CD8+ T cells in HCC18.” 

New Suppl Fig. 3b-d 

- For the scRNA-seq analysis, where samples all run at one time or in batches? If in batches, what 
were the batches and was batch correction performed. How was cluster identification performed? 
How many cells were used for each samples/patient, and does each cluster consist of cells from 
more than 1 patient? How many cells are in each cluster? These should be addressed in 
supplemental figures

R: Indeed, the scRNA-seq has to be run fresh after isolation hence each patient data was acquired in 
batches and all data were then aggregated using cellranger aggr by normalizing all runs to the same 
sequencing depth as also described in our collaborator’s previous publication in Sharma et al. Cell 
2020. For clustering, best matched k-Nearest Neighbor is automatically weighted by the algorithm 
to compute the best UMAP topology (scanpy.api.tl.umap, minimum distance between 0.3 to 0.5). 
The Louvain method (scanpy.api.tl.louvain) is then used to detect a community of similar cells with 
resolution parameter 0.6 to 1. This detailed method is now added to revised Methods section under 
“Single-Cell RNA sequencing” as marked. Each of the T, NK and MNPs clusters with total cell 
numbers as well as proportions contributed by each patient sample are now also provided in 
Supplementary Fig. 3a and Supplementary Table 5. 
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Revised Suppl Fig. 3a 

- It is truthfully a bit unclear what the trajectory analysis in Figure 2e is trying to show. Typically,
trajectory analysis is performed for a specific cell type to examine continuous changes in
transcriptional state has one progresses along a biological process. I would suggest separating out
cell types (CD8s, CD4s, etc.) and performing trajectory analysis on those individual, similar cell
types.

R: Pseudotime trajectory analysis in Fig. 2e (now new Fig. 3) is based on scRNA seq data analysis 
using monocle (Trapnell et al. Nat Biotech 2014), which is an algorithm to learn the sequence of 
gene expression changes each cell must go through as part of a dynamic biological process. Once it 
has learned the overall "trajectory" of gene expression changes, Monocle can place each cell at its 
proper position in the trajectory and reconstruct a "branched" trajectory, which correspond to 
cellular "decisions". Monocle also provides powerful tools for identifying the genes affected by 
them and involved in making them. To clarify this, we have also added more description in the 
results referring to monocle analysis as “marked” in the revised manuscript. More information is 
also available online: https://cole-trapnell-lab.github.io/monocle3/docs/introduction/
For T cell trajectory analysis, we also tried performing the trajectory analysis separately for CD4+ 
(due to low CD4 gene expression, we used CD8-CD3+ as CD4+ T cells) and CD8+ T cells 
(CD8+CD3+ T cells) and concluded consistent and robust findings as also marked in revised 
manuscript: “Consistent trend was also observed when analysed separately in CD4+ T and CD8+ 
T cells where Treg markers and exhaustion markers were enriched in S2 tumours respectively;  
while proinflammatory gene GZMB were depleted in S2 tumours from both T cell subsets 
(Supplementary Fig. 3b).”

[REDACTED]



New Suppl Fig. 4b 

- For figure 3d-e, it is a bit unusual that there is so little patient-to-patient variation in expression of 
individual genes within a stage. Usually there is heterogeneity between patients and at least some 
distribution, but here, there error bars seem incredibly small. As a minor point, I would not assume 
TCF7 as an exhaustion marker – while it can be associated with a progenitor exhausted state (which 
is typically favorable), it can also be associated simply with memory T cells 

R: We chose to present the data as Mean±SEM as this does provide better representation of the data 
where SD would have bigger error bars that may block the trend of other genes when all were 
presented together on the same graph (see the graphs below presented as SD). We did specify that 
data are presented as this in the figure legend that we have presented the data as “mean with 
standard error of the mean” as we do find this presentation as neater and clearer. Furthermore all 
the pairwise comparison p values were provided on top of the graph to support the significant 
differences comparing among groups in colours.  

Original Fig. 3d & 3e as presented as mean ±SD: 

As for TCF7, indeed, recent studies have indicated that TCF7 is found to be expressed on the stem 
like memory T cells involved in better response to immunotherapy (e.g. Siddiqui et al., 2019-ref 21 
& Immunity or Krishna et al Science 2020-ref 22). However, another Immunity paper in Chen et al 
2019 (ref 20) did also show that TCF1 plays an central role in establishing exhausted T cells:  
https://www.cell.com/immunity/pdf/S1074-7613(19)30409-1.pdf



To illustrate these point better, we have revised the manuscript to describe both its potential stem-
like memory phenotypes as well as exhausted phenotype in the revised manuscript as marked. 

“Of note, TCF7 despite being a key factor in establishing exhausted T cells20, could also present a 
stem-like memory T cell phenotype associated to response to immunotherapy21,22.” 

- For the neoantigen analysis, additional details would be helpful Was this truly whole genome 
sequencing, or whole exome? What protocol was used for sequencing? Further, the definition of 
clonal and subclonal are not typical. For instance, a subclonal mutation could be present in all 
biopsy sites, and would still be subclonal, not cloncal. 

R: Yes, we did use whole genome sequencing (WGS) with details provided in methods “Whole 
genome sequencing and neoantigen prediction”. It is also the same methods we used in our 
previous paper in Nat Com Nguyen & Ma et al. 2021 (https://www.nature.com/articles/s41467-020-
20171-7). We have now mentioned this in the text (under Results section) when describing 
neoantigen data: 
“We then quantified neoantigens in tumour samples from each stage using the WGS data (Methods) 
and found…”
We took the definition of clonal and subclonal neoantigens from McGranahan et. al (Science 2016) 
(https://science.sciencemag.org/content/351/6280/1463), which has defined clonal neoantigens as 
expressed ubiquitously in every tumor region and subclonal neoantigens as shared in multiple tumor 
regions but not all. To specify this, we have now cited this paper in Methods to provide reference to 
our definition. 

- For figure 3g, it would be helpful to show a version of this exact plot but without PMA/ionomycin 
stimulation (i.e. showing the stim has an effect). 

R: We did not include this data before as without stimulation with PMA/Ionomycin, the level of 
cytokines are very low in fact almost all are 0% across all samples (representative dot plots now 
included in new suppl fig. 3e for reference). As a control, we have now included unstimulated data 
at the side for comparison in the revised Fig. 4g (*note the shift from Fig. 3g to Fig. 4g). 

New Suppl Fig. 3e 
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Revised Fig. 4g: 

- Figure 4B is a bit of a confusing representation. Perhaps a heatmap or correlogram for these 
correlations would be easier to follow. As a small point, for figure 4C the top column labels are not 
aligned. 

R: Indeed, Fig. 4B (now shifted to Fig. 5b) was meant to provide a visual correlation landscapes of 
some of the key genes of interest with different immune subsets, which we later elaborated further 
with further selected key genes using heatmap and correlogram in Fig 5c. In fact Fig. 4b does 
provide valuable general correlation landscapes when most negative correlations were with CD4 T 
cells but positive correlations were with CD8 T cells subsets. 

- For 4E, I would again caution against calling PD-1+ T cells exhausted, without any other 
indication, as fully functional antigen-experienced CD8+ T cells will also be PD-1+.

R: We agree that there is a possibility that PD-1+ T cells could still be functional as newly activated 
by tumour antigen. However, in this case, these are TILs within TME, which are most likely 
chronically exposed tumour antigens and hence more likely to be exhausted. Also resonating our 
data from manual gating as shown above (New Suppl Fig. 3b-d) , we would hence like to think 
they are exhausted.  

- In Supplementary Figure 4, the authors present in a heatmap the differentially expressed genes 
between samples across disease stages. This unannotated figure (no gene names) is not 
interpretable. It should be adjusted accordingly (the number of genes included in the heatmap could 
be reduced and/or samples from the same stage could be grouped).

R: We agree that these genes list are too large for presentation visually hence we have in fact 
selected few key genes and presented them in Fig. 4d, 4e, 5c & 5d (*Note: Fig number have been 
shifted). However, we also think that it is important to provide a global picture of all the 
differentially expressed genes (DEGs) when compared among stages (now as Suppl. Fig. 5a). To 
allow better understanding of these DEGs, we have also provided the list of genes significantly 
associated with several functional pathways in Suppl Table 6 and Suppl Table 7, as part of the 
requirements from Nature Comm to report the global data as much as possible. 

- As a general but important point, there is not external validation of these findings, which would be 
important. A number of findings, for examples, are based on the expression of individual genes 
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across disease stages. The authors could easily interrogate TCGA across disease stages to see if this 
validates.

R: We thank the reviewer for this suggestion and have interrogated the TCGA HCC cohort across 
S1, S2 & S3. In general as consistent to Fig. 4d, 4e, 5d, we observed a progressive downtrend of 
multiple key genes involved in antigen presentation, inflammatory response, exhaustion and CD8 T 
chemotaxis (see figure below), however with a more modest differences among stages. We believe 
the differences seen here may due mainly to a different background of these HCC patients in 
TCGA cohort, who may receive different prior therapies, such as radiotherapy and systemic 
therapy, which will change the immune landscapes. Our cohort of HCC patients however are 
treatment naïve hence showing the natural progression of tumour. In view of this, we have decided 
not to include this data to the revised manuscript. 

Figure: TCGA interrogation of key genes in manuscript: 

- The discussion should be expanded to put this work in the context of other single-cell analyses of 
HCC.

R: Thank you for the suggestion and we have now expanded the discussion to also comment on 
other recent single-cell analyses in HCC most relevant to our current study such as Zheng et al Cell 
2017 (https://doi.org/10.1016/j.cell.2017.05.035), Zhang et al 2019 and the study from our own 
liver cancer team, Sharma et al. Cell 2020. We added the following sentences as marked in the 
discussion section: 

“Immune evolution in HCC was  proposed in our recent study to be manifested as immune 
intratumoural heterogeneity (immune-ITH)14. In addition, single-cell transcriptomic analysis of 
TILs in HCC also revealed immune evasion with T cell exhaustion38 (Zheng et al Cell 2017), 
myeloid/lymphoid cross-interaction (Zhang et al 2019) and onco-fetal reprogramming of 
endothelial cells and macrophages17 (Sharma et al Cell 2020). In this study, we  revealed an 
unprecedented progressive immune evolution alongside tumour progression peaking at the 
intermediate stage of HCC.” 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors added several analytical data and responded mostly to the comments by the reviewer. 
However, the major points regarding to the peak immune derangement at intermediate HCC stage 

still remain ambiguous. It is understandable that longitudinal sampling of HCC tissues from patients is 
clinically impossible. Admittedly, the data from DEN or hydrodynamic mice model did not well support 

for the patients data. Only minor issues are raised as below. 

# Minor points: 

It is reported that the mutation of Wnt signaling molecules including CTNNB1 and Axin1 correlates 
with not only immunologically cold phenotype, but also with pathologically large and well-differentiated 

HCC. The pathological phenotype in the patients list would be more helpful to understand the 
background of the donors. 

Reviewer #2 (Remarks to the Author): 

I have no additional comments. In my point of view, this paper include a huge amount of data, 
however, the peak of immune evasion at stage II remains to be validated and elucidated since the 
number of patients is limited 

Reviewer #3 (Remarks to the Author): 

The authors have revised the manuscript, and adjustments were performed in a number of instances. 
Clear explanations were provided for the different steps in the study (e.g. QC metrics, CyTOF, 
scRNA-seq), and corrections were applied to the different sections. 

However, some substantial issues remain to be further addressed: 

(1) For the CyTOF analysis: the authors were asked to assess if the identified clusters are patient-
specific and compartment-specific. A proposed visualization method was clearly specified for how to 

assess this (“stacked bar graphs for each cluster by tissue origin and by patient origin”). The authors 
responded to this by only adding two UMAP plots (one for tissue of origin and one for patients) that do 

not help assess if any cluster is patient- or compartment-specific. 

(2) The authors were asked to quantify immune diversity in tumor samples (as opposed to non-tumor 

and blood samples), to substantiate their statement (“the presence of more distinct immune clusters in 
T and to a lesser extent in N and P across all stages”). Supplementary Figure 1B (a UMAP plot 

showing distributions of immune clusters according to tissue level) helps to show an increased 
heterogeneity in tumor (T) tissues compared non-tumor (N) and blood (P) tissues, but does not help 

to quantify the immune diversity. Moreover, Figure 2b-d shows changes in clusters within individual 
tissue types for different stages of disease but does not help to compare or quantify immune diversity 
across sample types. 

(3) When comparing clusters across different disease stages, no common point of comparison was 

found across the different clusters, with S2 being compared to S1 in some clusters and to S3 in other 
clusters. The authors didn’t address this point clearly, as only a specification was added in the text for 
the nature of each comparison performed (i.e. the control stage vs. S2). While the results of the 

manual gating of key immune subsets helps to partially address this problem, the previously 



presented results remain to be further adjusted, with the potential removal of some of the findings. 

(4) For the scRNA-seq analysis, the authors were asked to specify the number of cells used for each 
samples/patient and each cluster, and to state whether each cluster consisted of cells from more of 

one patient. Supplementary Figure 3A shows the distribution of clusters in each patient. However, the 
inverse should have been evaluated (i.e. the contribution of patients to each cluster), hence helping to 
appreciate whether some clusters were driven by few patients. Additionally, the authors indicate that 

“each of the T, NK and MNPs clusters with total cell numbers as well as proportions contributed by 
each patient sample” are provided in Supplementary Table 5. However, Supplementary Table 5 

displays the “Top 25 genes for T, NK and myeloid/DC clusters by scRNA sequencing analysis 
(adapted from Sharma et al. Cell 2020)”, and the specified numbers/proportions are not found in any 

of the Supplementary Tables. This should be adjusted accordingly. 

(5) The definitions of clonal and subclonal mutations presented by the authors are not typical. 

Importantly, a mutation can be present in all biopsy sites (or tumor regions) and still be subclonal. The 
authors didn’t address this issue appropriately and cited the paper by McGranahan N. et al. (Science, 

2016) to justify their definition of subclonality and clonality. However, it is clearly stated in the same 
paper (referenced by the authors in their response) that clonal mutations are “present in all tumor 
cells” (as opposed to all biopsy sites of a tumor), while subclonal mutations are “present in only a 

subset [of cells]”. A simple and clear example of this would be a mutation that is present in only 10% 
of tumor cells, but is found in 10% of tumor cells in all biopsy sites / tumor regions. This is still, by 

definition, a SUBCLONAL mutation (found in only 10% of tumor cells), even though it might be seen 
in all tumor regoins. 

(6) In their response, the authors argue that PD-1+ T-cells represent most likely an exhausted 
population as “these are TILs within TME, which are most likely chronically exposed tumor antigens”. 

This statement is not completely correct, as it has been previously shown that CD8+ PD-1+ tumor-
infiltrating cells correlate with high levels of T-cell activation and are associated with better outcomes 

(Pignon J.C. et al., Clinical Cancer Research, 2018; PMID: 30670497). While the analysis of immune 
checkpoint markers (i.e. LAG-3, TIM-3) on PD-1+ cells favors the exhausted nature of these cells, the 
first statement should be clarified. 

(7) The authors were asked to externally validate their findings using publicly available datasets, such 

as the TCGA. The findings do not appear to validate in the TCGA. The authors note that this “may 
due mainly to a different background of these HCC patients in TCGA cohort, who may receive 
different prior therapies, such as radiotherapy and systemic therapy, which will change the immune 

landscapes”. I do not believe this is correct – the sample inclusion criteria for HCC for TCGA (from the 
original 2017 Cell manuscript) specifically states it is patients who had not received prior treatment for 

their disease. With this in mind, it is concerning that the findings to not appear to validate in an 
external dataset.



Point-by-point response to reviewers' comments:

Reviewer #1 (Remarks to the Author):

The authors added several analytical data and responded mostly to the comments by the 
reviewer. However, the major points regarding to the peak immune derangement at 
intermediate HCC stage still remain ambiguous. It is understandable that longitudinal 
sampling of HCC tissues from patients is clinically impossible. Admittedly, the data from 
DEN or hydrodynamic mice model did not well support for the patients data. Only minor 
issues are raised as below. 

# Minor points: 
It is reported that the mutation of Wnt signaling molecules including CTNNB1 and Axin1 
correlates with not only immunologically cold phenotype, but also with pathologically large 
and well-differentiated HCC. The pathological phenotype in the patients list would be more 
helpful to understand the background of the donors. 

R: We thank the reviewer for the additional suggestion to explore if Wnt signalling is also 
linked to pathological phenotypes: tumour size and tumour differentiation. Herein, we 
provide the analysis in the fig below based on correlation of CTNNB1 signature with tumour 
Edmondson Grade, which reflects tumour differentiation (Fig. a) and tumour size (Fig.b). 
We concluded that in our dataset, they are not significantly correlated to tumour 
differentiation or size. 

As the demographic characteristics of the patients are already summarized in Supplementary 
Table 1. Herein, we provide the pathological phenotypes of our patient cohort in the list 
below for your kind reference: 
Patient demographic characteristics: 

Pat 
ID 

Age Gender Race Stage 
(TNM) 

Grade 
(Edmondson) 

Viral 
status 

Tumour 
size 
(cm) 

Tumour 
multiplicity 

AFP 
level 
(ng/ml) 

MVI 

A001 66 M Chinese I IV NV 2 1 6.7 N 

A002 74 M Chinese I II Hep 
B 

3.5 1 2.8 N 

A004 77 M Chinese II II Hep 
B 

3 1 38 Y 

A005 65 M Chinese I III Hep 
B 

1.8 1 69.3 N 

A008 70 F Malay IB II NV 3.8 1 248 N 

A009 47 F Chinese II III NV 7.5 1 2203 Y 

B002 52 M Chinese I II Hep 
B 

2.5 1 4.7 N 

B003 60 M Chinese IIIC III NV 11 1 1.9 Y 
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B004 52 M Chinese I III Hep 
B 

2.9 1 13.5 N 

B006 67 F Chinese I III Hep 
B 

3.6 1 8592 N 

B008 78 M Chinese IIIC III Hep 
B 

7 1 36.6 Y 

B009 67 M Malay IIIC III Hep 
B 

9.5 1 >60500 Y 

B010 74 F Chinese I I NV 2.5 1 5.4 N 

B012 62 M Chinese I I Hep 
B 

2.6 1 4.2 N 

B013 57 M Chinese IIIA II Hep 
B 

8 multifocal 
satellite 

49.9 N 

B014 73 M Chinese II II Hep 
B 

14 1 1.5 Y 

B015 63 M Chinese IB II Hep 
B 

2.2 1 6.1 N 

B016 71 M Chinese IB II Hep 
B 

4.7 1 8920 N 

B017 75 M Chinese II III Hep 
B 

6.2 1 504 Y 

B018 46 M Chinese I III Hep 
B 

4.7 1 657 N 

B019 63 M Chinese III II Hep 
B 

5.5 2 62 Y 

C002 69 M Chinese IIIA II NV 12.7 2 1069 N 

C003 72 M Chinese II II Hep 
B 

3.5 2 3 N 

C004 69 F Chinese I II Hep 
B 

8.5 1 999.99 N 

C005 61 M Others IIIB III NV 8 1 144.1 N 

C008 75 M Chinese IIIA II Hep 
B 

14 Satellite 
nodule 

13.7 N 

C010 55 M Indian IB II NV 15 1 9.3 N 

C011 70 M Chinese II II Hep 
B 

4 Satelite 
nodules 

6.5 N 

C012 71 M Chinese II III NV 14 1 54458 Y 

C014 60 M Chinese II II Hep 
B 

12.2 1 2.7 Y 

C015 75 M Chinese II II Hep 
B 

11.2 1 2.8 Y 

H156 66 M Chinese I III Hep 
B 

3 1 4.3 N 

H247 82 F Chinese II III NV 3.5 1 27.3 Y 

H255 71 F Chinese II III Hep 
B 

5 1 >10000 Y 

H264 64 M Malay II II NV 8 1 20.1 Y 

H276 76 M Chinese I III NV 5.5 1 3.2 N 

H319 69 M Indonesian IIIC III NV 5.6 1 14483 Y 

H526 43 M Others III II Hep 
B 

6.5 2 2985 Y 

Footnotes: 
Gender: M- Male; F-Female  
Viral status: HBV- Hepatitis B virus; NV- non-viral 
AFP: Alpha-Fetoprotein  
MVI: microvascular Invasion; Y- Yes; N- No



Reviewer #2 (Remarks to the Author):

I have no additional comments. In my point of view, this paper include a huge amount of 
data, however, the peak of immune evasion at stage II remains to be validated and elucidated 
since the number of patients is limited 

R: We acknowledge this point and are actively recruiting more patients for future validation 
under our observational clinical trial: https://clinicaltrials.gov/ct2/show/NCT03267641

Reviewer #3 (Remarks to the Author):

The authors have revised the manuscript, and adjustments were performed in a number of 
instances. Clear explanations were provided for the different steps in the study (e.g. QC 
metrics, CyTOF, scRNA-seq), and corrections were applied to the different sections. 

However, some substantial issues remain to be further addressed: 

R: We appreciate the reviewer for the thorough assessment and further comments to help us 
improve our manuscript. We are happy to provide further supporting data and clearer 
explanation to address each comment as below. 

(1) For the CyTOF analysis: the authors were asked to assess if the identified clusters are 
patient-specific and compartment-specific. A proposed visualization method was clearly 
specified for how to assess this (“stacked bar graphs for each cluster by tissue origin and by 
patient origin”). The authors responded to this by only adding two UMAP plots (one for 
tissue of origin and one for patients) that do not help assess if any cluster is patient- or 
compartment-specific. 

R: It is definitely possible to provide the data as stacked or colour graded bar graphs (see 
below) even though we proposed to present the same data using UMAP plots as the 
differences between tissues and stages can be appreciated more easily with this visual 
representation. We would propose to show this bar graph in new Suppl. Fig. 1a (as shown 
below) where the cluster frequencies, represented by colour gradient, for each patient are 
plotted in each column. As expected, there are definitely some smaller clusters which have 
lower frequencies across samples, despite that the clusters frequencies were subjected to 
statistical test with all significant clusters as reported in Fig. 2b, where the individual data 
point was also plotted supporting the robustness and statistical significance of our data. 

New Suppl. Fig. 1a:



(2) The authors were asked to quantify immune diversity in tumor samples (as opposed to 
non-tumor and blood samples), to substantiate their statement (“the presence of more distinct 
immune clusters in T and to a lesser extent in N and P across all stages”). Supplementary 
Figure 1B (a UMAP plot showing distributions of immune clusters according to tissue level) 
helps to show an increased heterogeneity in tumor (T) tissues compared non-tumor (N) and 
blood (P) tissues, but does not help to quantify the immune diversity. Moreover, Figure 2b-d 
shows changes in clusters within individual tissue types for different stages of disease but 
does not help to compare or quantify immune diversity across sample types.

R: Suppl Fig. 1B (now suppl Fig. 1c due to additional data added) in fact does provide 
indication of immune diversity/heterogeneity as the fundamental principle of UMAP plot is 
to show distribution of (immune) clusters according to their phenotypic similarity whereby 
the closer the immune clusters are clustered together, the more similar or homogeneous (e.g. 
P & N) and the further apart means more heterogeneous (T) they are. However, as requested 
by the reviewer, we also specifically quantified the immune diversity. Heterogeneity of 
immune cell phenotypes was quantified by calculating the multivariate beta-dispersion of 
the Bray-Curtis distances between immune clusters for each tissue type using the ‘vegan’ 
R package. The beta-dispersion were compared among tissues and p values were determined 
using Tukey’s HSD (honestly significant difference) test.  
As shown below and now included as new suppl. Fig. 1d, we observed significant diversity 
(enhanced distance) between immune clusters comparing T vs N (p= 0.0012**) and T vs P 
(p= 0.0041**) while no significant difference when comparing P vs N (p=0.6997). 

New Suppl. Fig. 1d 
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Tissues Difference P adj.

P vs N 0.01344680 0.6997266
T vs N 0.05640242 0.0001230
T vs P 0.04295562 0.0040921

With regards to the second request “to compare or quantify immune diversity across sample 
types”, we have in fact performed the comparison across tissues types at different tumour 
stages before however we did not show this data as we were concerned there might be too 
much data and confusing for the readers. Furthermore, we found that the immune differences 
are heavily skewed by tissue types where across all three tumour stages where we see 
consistently 13 immune clusters showing the apparent more immune exhaustion in T as 
compared to P or N, a conclusion which has already been reported by many previous studies 
including our own earlier study in Chew et al PNAS 2017.:  

Despite all that, as requested we have performed statistical analysis comparing P vs N vs T 
(across sample types) at each individual stage I, II & III and now present the full data in new 
suppl Table 3 and suppl Fig. 2 with the descriptions in the manuscript text provided as 
below: 

“From all three tumour stages, 13 cluster showed significant differences in their frequencies 
across tissue types: P, N and T using One-way Anova test (Supplementary Fig. 2a and
Supplementary Table 3). Among these, we observed enrichment of potentially exhausted and 
suppressive immune subsets in tumours: Foxp3+CD152+TIGIT+CD4+ regulatory T cells 
(Treg) (C4), PD1+CD103+CD45RO+CD8+ resident memory T cells (TRM) (C7) and PD1+

CD45RO+CD4+ memory T cells (C19) (Supplementary Fig. 2b). Conversely, the frequencies 
of immunoactive subsets including GB+CD56+ NK cells (C2) and GB+CD56+CD8+ NKT 
cells (C18) were significantly lower in T than N or P (Supplementary Fig. 2c). Moreover, we 
saw PD-1+GBloCD45RO+CD8+ memory T (C1), CD69+CD8+ memory T cells (C9) and PD-
L1+CD45RO+CD4+ memory T cells (C13) were enriched in both N and T compared to P 
(Supplementary Fig. 2d); while the antigen-presenting HLA-DR+CD19+ B cells (C8) and 
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HLA-DR+CD14+ myeloid cells (C10), as well as CD27+CD45RO-CD4+ naïve T cells (C17) 
were significantly reduced in both N and T compared to P (Supplementary Fig. 2c). This 
shows a general accumulation of memory subsets and depletion of antigen-presenting cells in 
the N and T compartments as compared to P. Together, these data indicate that the immune 
evasion is established early and maintained throughout the following stages of tumor 
development.” 

New suppl. Table 3: 

Supplementary Table 3: 13 clusters showing significant differences 
comparing P, N and T at different tumour stages

Stage I:

Cluster= C pvalOwa p_MWU_
P_S2 vs N_S2

p_MWU_
P_S2 vs T_S2

p_MWU_
N_S2 vs T_S2

Median_P_S2Median_N_S2 Median_T_S2

0 0.0000 *** 0.7987 0.0000 *** 0.0000 *** 6.480 6.291 14.633
1 0.0002 *** 0.0000 *** 0.0000 *** 0.6177 0.470 9.393 13.842
2 0.0000 *** 0.0045 ** 0.0000 *** 0.0001 *** 20.092 11.190 1.470
4 0.0000 *** 0.3121 0.0000 *** 0.0000 *** 0.510 0.290 11.830
5 0.0000 *** 0.0000 *** 0.0088 ** 0.0000 *** 0.560 12.903 1.550
7 0.0005 *** 0.0000 *** 0.0000 *** 0.2781 0.330 5.250 4.500
8 0.0015 ** 0.2189 0.0008 *** 0.0316 * 2.660 1.910 0.700
9 0.0053 ** 0.0000 *** 0.0002 *** 0.0027 ** 0.410 3.310 1.610
10 0.0001 *** 0.0011 ** 0.0000 *** 0.2324 6.881 1.020 0.741
13 0.0000 *** 0.0432 * 0.0000 *** 0.0136 * 1.370 1.870 3.030
17 0.0000 *** 0.0001 *** 0.0000 *** 0.7726 5.620 0.220 0.180
18 0.0145 * 0.0780 . 0.0000 *** 0.0030 ** 2.290 1.560 0.550
19 0.0000 *** 0.0044 ** 0.0000 *** 0.0000 *** 0.060 0.360 2.930

Stage II:

Cluster= C pvalOwa p_MWU_
P_S3 vs N_S3

p_MWU_
P_S3 vs T_S3

p_MWU_
N_S3 vs T_S3

Median_P_S3Median_N_S3Median_T_S3

0 0.0003 *** 0.0770 . 0.0075 ** 0.0003 *** 8.280 5.360 16.690
1 0.0028 ** 0.0001 *** 0.0000 *** 0.0092 ** 1.200 10.927 3.710
2 0.0022 ** 0.0770 . 0.0011 ** 0.0353 * 19.600 11.520 3.810
4 0.0001 *** 0.0770 . 0.0002 *** 0.0000 *** 1.800 0.780 8.900
5 0.0000 *** 0.0000 *** 0.0000 *** 0.0000 *** 0.580 12.420 3.193
7 0.0000 *** 0.0004 *** 0.0000 *** 0.0482 * 0.320 2.660 6.536
8 0.0193 * 0.0142 * 0.0006 *** 0.1276 6.540 3.620 2.400
9 0.0189 * 0.0005 *** 0.0000 *** 0.8973 0.400 3.143 3.050
10 0.0000 *** 0.0400 * 0.0003 *** 0.0630 . 8.380 1.640 0.831
13 0.0045 ** 0.2508 0.0031 ** 0.0649 . 1.060 1.260 2.680
17 0.0000 *** 0.0004 *** 0.0000 *** 0.0726 . 10.160 0.560 0.260
18 0.0000 *** 0.1903 0.0001 *** 0.0015 ** 2.128 1.960 0.510
19 0.0002 *** 0.0315 * 0.0001 *** 0.0208 * 0.300 0.700 1.510

Stage III:

Cluster= C pvalOwa p_MWU_
P_S1 vs N_S1

p_MWU_
P_S1 vs T_S1

p_MWU_
N_S1 vs T_S1

Median_P_S1 Median_N_S1 Median_T_S1

0 0.0024 ** 0.7283 0.0107 * 0.0020 ** 6.460 5.304 10.924
1 0.0025 ** 0.0001 *** 0.0000 *** 0.2261 1.320 9.767 7.862
2 0.0021 ** 0.4059 0.0025 ** 0.0467 * 10.560 10.300 3.641
4 0.0000 *** 0.0135 * 0.0000 *** 0.0000 *** 1.860 0.880 6.343
5 0.0003 *** 0.0001 *** 0.0001 *** 0.0073 ** 0.920 10.985 3.820
7 0.0001 *** 0.0015 ** 0.0000 *** 0.7777 0.400 3.462 4.400
8 0.0061 ** 0.0066 ** 0.0052 ** 0.7679 5.762 2.440 2.001
9 0.0000 *** 0.0004 *** 0.0000 *** 0.1640 0.700 4.820 2.961
10 0.0000 *** 0.0160 * 0.0008 *** 0.2985 7.640 1.190 0.900
13 0.0346 * 0.0868 . 0.0078 ** 0.3422 1.260 1.970 2.760
17 0.0000 *** 0.0003 *** 0.0000 *** 0.5549 10.746 0.500 0.400
18 0.0201 * 0.4371 0.0043 ** 0.0703 . 1.481 1.370 0.940
19 0.0000 *** 0.0682 . 0.0000 *** 0.0004 *** 0.200 0.780 2.260

Note: Statistical test by repeated measure one-way ANOVA test with paired-wise Mann-Whitney U 
test between groups.



New Suppl. Fig. 2:

(3) When comparing clusters across different disease stages, no common point of comparison 
was found across the different clusters, with S2 being compared to S1 in some clusters and to 
S3 in other clusters. The authors didn’t address this point clearly, as only a specification was 
added in the text for the nature of each comparison performed (i.e. the control stage vs. S2). 
While the results of the manual gating of key immune subsets helps to partially address this 
problem, the previously presented results remain to be further adjusted, with the potential 
removal of some of the findings. 
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R: We examined the immune changes across tumour stages: I, II & III using one-way 
ANOVA test with Tukey post-hoc multiple comparison test to identify any cluster showing 
differences in an unbiased manner. Of course we then used the manual gating to validate 
these immune subsets with the defined immune phenotypes from the initial unbiased CyTOF 
analysis. We feel that it is necessary to present all data in the unbiased manner rather than 
removing some of them.  

(4) For the scRNA-seq analysis, the authors were asked to specify the number of cells used 
for each samples/patient and each cluster, and to state whether each cluster consisted of cells 
from more of one patient. Supplementary Figure 3A shows the distribution of clusters in each 
patient. However, the inverse should have been evaluated (i.e. the contribution of patients to 
each cluster), hence helping to appreciate whether some clusters were driven by few patients. 
Additionally, the authors indicate that “each of the T, NK and MNPs clusters with total cell 
numbers as well as proportions contributed by each patient sample” are provided in 
Supplementary Table 5. However, Supplementary Table 5 displays the “Top 25 genes for T, 
NK and myeloid/DC clusters by scRNA sequencing analysis (adapted from Sharma et al. 
Cell 2020)”, and the specified numbers/proportions are not found in any of the 
Supplementary Tables. This should be adjusted accordingly.

R: To address this concern, we have revised and represented this data in reversed, by plotting 
proportion of each patient’s contribution towards each cluster (see the revised Suppl Fig. 3a 
below). As the number of patient samples are more, particularly as we performed 
multiregional tumour (T) sequencing as specified in Methods, hence they have to be 
presented vertically. That is also why we hesitated to present the data this way and thought 
that the original presentation is clearer and could somewhat provide the information on 
distribution of clusters within each patient. However, we understand and agree to present the 
data to illustrate patient samples’ contribution to each cluster. From the data below, 
inevitably, some samples contributed more while others less to some clusters as the natural 
variation of the sample characteristics. However, overall, there is no obvious over-
representation by any sample, particularly if segregated according to stages (actual cell 
number per sample and per cluster as attached in a separate table).  

Revised Suppl Fig. 3a: patient samples are presented as each colour bar: 

Second, we believe there might be misinterpretation of our data in Suppl. Table 5 (now Suppl 
Table 6 as we incorporated new data). The exact description in the revised manuscript was: 
“Pseudotime trajectory analysis of tumour-infiltrating immune cells were performed using 

Clusters Pat ID



the Monocle R package (version 3.0)20, on T cells (further sub-divided to CD3+CD8- and 
CD3+CD8+ T cells), NK cells and MNPs clusters (Supplementary Fig. 4a and 
Supplementary Table 6).” In fact, Suppl Table 6 (original Suppl Table 5) shows the top 25 
genes for each scRNA seq clusters while the total number of cells for each of the immune 
lineages (T, NK and MNPs) were represented in Suppl Fig. 4a. We have now provided the 
actual number of cells per pat sample per cluster as a table separately attached. However, 
we felt that this data might be too much and less relevant as the most important and 
relevant data for our current study is actually the immune trajectory data (Figure 3 & 
Suppl Fig.5 b), which focused on specific markers expressions. The clustering data was 
adapted from Sharma et al. Cell 2020 paper, which was already published by our co-
author Prof R. DasGupta (https://doi.org/10.1016/j.cell.2020.08.040) and they were used 
merely as supporting data to demonstrate the various clusters from the scRNA seq data. 
Therefore, we believe that Revised Suppl Fig. 3a could sufficiently address the concerns on 
the contribution of each patient sample to each cluster and would suggest that it is not 
necessary to include the attached table with actual cell numbers in the manuscript. 

(5) The definitions of clonal and subclonal mutations presented by the authors are not typical. 
Importantly, a mutation can be present in all biopsy sites (or tumor regions) and still be 
subclonal. The authors didn’t address this issue appropriately and cited the paper by 
McGranahan N. et al. (Science, 2016) to justify their definition of subclonality and clonality. 
However, it is clearly stated in the same paper (referenced by the authors in their response) 
that clonal mutations are “present in all tumor cells” (as opposed to all biopsy sites of a 
tumor), while subclonal mutations are “present in only a subset [of cells]”. A simple and clear 
example of this would be a mutation that is present in only 10% of tumor cells, but is found 
in 10% of tumor cells in all biopsy sites / tumor regions. This is still, by definition, a 
SUBCLONAL mutation (found in only 10% of tumor cells), even though it might be seen in 
all tumor regoins. 

R: We can see why the definition can be rather misleading in the McGranahan et al Science 
2016 paper (https://science.sciencemag.org/content/351/6280/1463). The description: “clonal 
(present in all tumor cells) versus subclonal (present only in a subset) neoantigens” were 
estimated from TCGA cohort, where only a single biopsy or tumour samples were 
sequenced. Hence, as quote from the article “to determine clonality from sequencing of a 
single sample, the cancer cell fraction, which describes the proportion of cancer cells 
harboring a mutation, was determined for each neoantigen”. This itself in fact is an 
estimation using an artificial ITH threshold cut off as illustrated in Fig. 1B from 
McGranahan et al Science 2016. Also since they did not perform single cell sequencing in 
their paper, it is actually not likely to accurately assess data from “all tumour cells”. 
Instead, in their own cohort, they performed multi-region sequencing, a method we also 
adopted in our HCC cohort as Prof Charlie Swanton was actually the science advisory board 
member who helped us to establish the sampling protocols for our HCC study at the initial 
phase: https://clinicaltrials.gov/ct2/show/NCT03267641. To further support our clonal and 
subclonal definitions, the description was actually provided in the supplementary materials 
and methods from the same paper: 
https://science.sciencemag.org/content/sci/suppl/2016/03/02/science.aaf1490.DC1/McGranah
an-SM.pdf. 
“Clonal architecture analysis
For samples subject to multi-region sequencing, clonal status of each mutation was 
estimated based on multi-region sequencing calls. In brief, each mutation was 



classified as clonal if identified and present in each and every tumor region sequenced 
within the tumor. Conversely, any mutations not ubiquitously present in every tumor 
region were classified as subclonal.” 
The same definition was also applied to our previously published papers: Nguyen et al Nat 
Com 2021 (https://www.nature.com/articles/s41467-020-20171-7) and Zhai et al Nat Com 
2017. Therefore, we are confident that the definition of clonal and subclonal neoantigens are 
correct and is the most relevant definitions for our multiregional whole genome sequencing 
cohort. 

(6) In their response, the authors argue that PD-1+ T-cells represent most likely an exhausted 
population as “these are TILs within TME, which are most likely chronically exposed tumor 
antigens”. This statement is not completely correct, as it has been previously shown that 
CD8+ PD-1+ tumor-infiltrating cells correlate with high levels of T-cell activation and are 
associated with better outcomes (Pignon J.C. et al., Clinical Cancer Research, 2018; PMID: 
30670497). While the analysis of immune checkpoint markers (i.e. LAG-3, TIM-3) on PD-1+ 
cells favors the exhausted nature of these cells, the first statement should be clarified. 

R: Indeed, we acknowledged and agreed with the reviewer on this idea, therefore we actually 
did not include this statement on “chronic exposure to tumour antigens” in the manuscript 
text but rather toned down the claim as much as possible. The hypothesis was suggested 
merely as a possible explanation for the exhaustion status of these cells, which is supported 
by the expression of multiple exhaustion markers on these cells (Suppl. Fig. 4c, 4d). We 
reassure that such statement does not appear in the manuscript text and as much as possible 
as underlined in the text we did not make strong claim that these cells are “exhausted” rather 
we included the word “potentially” exhausted. 

(7) The authors were asked to externally validate their findings using publicly available 
datasets, such as the TCGA. The findings do not appear to validate in the TCGA. The authors 
note that this “may due mainly to a different background of these HCC patients in TCGA 
cohort, who may receive different prior therapies, such as radiotherapy and systemic therapy, 
which will change the immune landscapes”. I do not believe this is correct – the sample 
inclusion criteria for HCC for TCGA (from the original 2017 Cell manuscript) specifically 
states it is patients who had not received prior treatment for their disease. With this in mind, it 
is concerning that the findings to not appear to validate in an external dataset. 

R: According to the TCGA cohort we downloaded from 
https://portal.gdc.cancer.gov/projects/TCGA-LIHC
The clinical record of these patients does indicate multiple treatments including Radiation 
therapy and pharmaceutical therapy (see the excel file, below, in the last column) this was 
confusing for us at first. Although we do also note the statement regarding no prior treatment 
in the Cell paper. 



Despite that, from the TCGA data, as also provided in our previous rebuttal letter, we did in 
fact observe a progressive downtrend of multiple key genes (Two-way Anova p< 0.05) 
involved in antigen presentation, inflammatory response, exhaustion and CD8 T chemotaxis 
validating the key immune processes downregulated along tumour progression (see figure 
below), despite a more modest differences among stages. A possible reason for this small 
discrepancy is because our data is based on the averaged data from multiregional tumour 
sampling (rather than a single biopsy data from TCGA cohort), which given the known 
intratumoural heterogeneity of HCC (Nguyen et al Nat Com 2021 and Zhai et al Nat Com 
2017), would provide a more accurate data. We have now included this TCGA validation 
data in the new suppl Fig. 6b as additional support for our data. 

New Suppl. Fig. 6b: TCGA interrogation of key genes in manuscript: 





REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

There is no additional point to address for the review on my part. Although this study still holds the 

considerable limitations in the size of human sample and the discrepancy between the mouse model 
and the clinical cases, the author had reached out the reasonable conclusions. The data in this study 

open to the public would be useful to further study for HCC. 

Reviewer #2 (Remarks to the Author): 

After this round of revision, my comments are the same: 

-Impressive huge amount of data 

-Without external validation, there is a major risk of an over-interpretation of the main conclusion of 
the paper that could be related to the selection of the S3 group of patients as it was reported in R1 

rebuttal by the authors 

Reviewer #3 (Remarks to the Author): 

The authors have addressed many of our prior comments. The following outstanding issues remain: 

Comment (1): (adjustment of CyTOF analysis to understand if clusters are patient-specific) 

- The authors added a heatmap trying to address this point, however, in the heatmap designed by the 

authors in New Supp. Fig. 1a, the authors show the composition of each sample in terms of clusters 
(i.e. the color scale corresponds to the percentage of clusters within each sample, and not to the 

percentage of each sample within clusters). This doesn't illustrate the composition of each cluster in 
terms of samples and consequently doesn't help to tell appropriately if a cluster is patient-specific or 
not. This could be corrected by inverting the color scale so that it corresponds to percentage of 

samples with each cluster. 

Comment (2): (quantifying immune diversity in tumor samples) 

- While the authors addressed this comment through a well-defined approach and assessed 

quantitatively the immune diversity, I am not familiar with the metric used (i.e. the multivariate beta-
dispersion of the Bray-Curtis distances between immune clusters for each tissue type). I would 
suggest review of this method by a statistician. 

Comment (5): (concerning the definitions of clonal and subclonal events adopted by the authors) 

- I again respectfully disagree with the authors. As a simple example, if a mutation is present in only 
10% of tumor cells and not all tumor cells, it is, by definition, a subclonal event. Now if it is present in 
only 10% of tumor cells when multiple regions are sample, but is still NOT found in 90% of tumor cells 

in every region sampled, it is still, by definition, a subclonal event. While single-cell sequencing was 



not performed, the fraction of tumor cells harboring a mutation can be inferred using a number of 
available tools (they can calculate a cancer cell fraction, which should be 1 for a clonal mutation) 

For comment (7): (regarding validation using the TCGA data) 

- Two small points here. First, I would ask the authors double check the statement about TCGA 
samples receiving treatment PRIOR to specimen collection (my understanding is that the treatment 
annotation is AFTER the samples were collected, and so any subsequent treatment would not affect 

the analyzed tumor itself). Second, I would ask the authors ensure they are using the same statistical 
methods in their analysis of TCGA data as in the analysis of their own primary data (e.g. if they used 

pairwise testing they should continue to do so, if they used ANOVA previously then continue to do so, 
etc.). 



Point-by-point response to reviewers' comments marked with “R”: 

Reviewer #1 (Remarks to the Author): 

There is no additional point to address for the review on my part. Although this study still 
holds the considerable limitations in the size of human sample and the discrepancy between 
the mouse model and the clinical cases, the author had reached out the reasonable 
conclusions. The data in this study open to the public would be useful to further study for 
HCC.

R: We thank this reviewer for the comments. We acknowledge the limitation of the current 
study and will work towards collecting more samples in the future.  

Reviewer #2 (Remarks to the Author): 

After this round of revision, my comments are the same: 
-Impressive huge amount of data 
-Without external validation, there is a major risk of an over-interpretation of the main 
conclusion of the paper that could be related to the selection of the S3 group of patients as it 
was reported in R1 rebuttal by the authors

R: Once again we thank the reviewer for the comments and we fully acknowledge the 
limitation of our data. Even though, we did provide further validation of our main findings in 
an independent single-cell RNA seq trajectory analysis (n=14 patients, Fig. 3), another 
independent FFPE tissue-microarray (TMA) cohort (n= 102 patients, Fig. 5e and 5f), TCGA 
cohort (n= 297 patients, suppl. Fig. 6b) as well as a HCC murine model (Fig. 6). Despite 
that, we do acknowledge and agree with the fact that in clinical practice more advanced 
patients will definitely be more carefully considered for resection. Given this point, we have 
chosen to tone down all our claims specific to Stage 3 as “potential” immune recovery. We 
also agree that this is an important observation that needs further validation in future and 
hence have added the following statements in Discussion (as underlined): 

“However, given the fact that most advanced HCC patients may not undergo resection as 
first-line therapy, this interesting finding will require careful interpretation against this 
inevitable confounding factor.” 

We hope this will help readers fully understand the limitation of our study when interpreting 
our findings. 

Reviewer #3 (Remarks to the Author):

The authors have addressed many of our prior comments. The following outstanding issues 
remain: 

Comment (1): (adjustment of CyTOF analysis to understand if clusters are patient-specific) 
- The authors added a heatmap trying to address this point, however, in the heatmap 
designed by the authors in New Supp. Fig. 1a, the authors show the composition of each 
sample in terms of clusters (i.e. the color scale corresponds to the percentage of clusters 
within each sample, and not to the percentage of each sample within clusters). This doesn't 
illustrate the composition of each cluster in terms of samples and consequently doesn't help 



to tell appropriately if a cluster is patient-specific or not. This could be corrected by 
inverting the color scale so that it corresponds to percentage of samples with each cluster. 

R: Thank you for the suggestion. We have plotted the heatmap inverted by showing the 
proportions of samples within each cluster (revised suppl Fig. 1a and below). As shown, 
most clusters have relatively even contributions by the samples, except for smaller clusters 
(<0.5% e.g. cluster 31 and 33) which could be unevenly represented by the samples. Most 
importantly, the clusters that we identified as significantly different across tumours from 
Stage 1-3 HCC: i.e. C1, C2, C4, C6, C9 and C19 (Fig. 2d) showed relatively equivalent 
sample distributions. 

Revised suppl Fig. 1a: 

Comment (2): (quantifying immune diversity in tumor samples) 
- While the authors addressed this comment through a well-defined approach and assessed 
quantitatively the immune diversity, I am not familiar with the metric used (i.e. the 
multivariate beta-dispersion of the Bray-Curtis distances between immune clusters for each 
tissue type). I would suggest review of this method by a statistician. 

R: We understand this may be a new and unfamiliar approach. This data is actually generated 
by our co-first author, Dr Martin Wasser, who is a bioinformatics scientist and principal 
biostatistician in our institution with 20 years’ experience. 
To provide further information, multivariate beta-dispersion of the Bray-Curtis distances or, 
in short, Bray-Curtis dissimilarity is a well-established method in ecology to compare species 
diversity (1). Our and other labs have also used Bray-Curtis dissimilarity in microbiome 
studies (2).  For dissimilarity of our CyTOF data, we first determined the median centroids of 
all groups (P, N, T) based on the percentages of the clusters. Subsequently, 
distances/dissimilarities of all samples to their respective centroid are calculated based on the 
Bray-Curtis distance metric that ranges between 0 (minimum) to 1 (maximum dissimilarity). 
For the implementation, we used the well-known vegan (version 2.5.7) R package (3).  

References: 
1. Bray, J. R. & Curtis, J. T. An Ordination of the Upland Forest Communities of Southern 
Wisconsin. Ecological Monographs27, 325–349 (1957).  
2. Mishra, A. et al. Microbial exposure during early human development primes fetal 
immune cells. Cell 184, 3394-3409.e20 (2021).  
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3. Oksanen, J. et al. vegan: Community Ecology Package. (2020). https://CRAN.R-
project.org/package=vegan

Comment (5): (concerning the definitions of clonal and subclonal events adopted by the 
authors)  
- I again respectfully disagree with the authors. As a simple example, if a mutation is present 
in only 10% of tumor cells and not all tumor cells, it is, by definition, a subclonal event. Now 
if it is present in only 10% of tumor cells when multiple regions are sample, but is still NOT 
found in 90% of tumor cells in every region sampled, it is still, by definition, a subclonal 
event. While single-cell sequencing was not performed, the fraction of tumor cells harboring 
a mutation can be inferred using a number of available tools (they can calculate a cancer 
cell fraction, which should be 1 for a clonal mutation) 

R: We totally agree with the reviewer that % mutation could help in estimating clonal or 
subclonal mutation within one particular tumour sector, commonly used when a single 
tumour was assayed. We have adopted a “presence” or “absence” approach with multi-
regional tumour sampling where we defined neoantigens as expressed by all tumour 
sectors/regions or not following the methods from McGranahan et al Science 2016 detailed in 
supplementary materials and methods 
https://science.sciencemag.org/content/sci/suppl/2016/03/02/science.aaf1490.DC1/McGranah
an-SM.pdf. We however agree with the reviewer that this shows more of the “spatial" 
intratumoural heterogeneity and that we could not assume clonality in each region. Even 
though the significant link to stages we observed is with the subclonal neoantigens, which 
will remain true as they were absent in some tumour sectors based on our definition. Hence 
we would like to propose to use the terms ubiquitous and heterogenous neoantigens instead 
(changes underlined in revised manuscript and shown below), the same definition was used 
to evaluate the intratumor heterogeneity of nonsilent mutations, according to regions instead 
of all tumour cells, in Swanton’s paper in Science 2014 
https://www.science.org/doi/10.1126/science.1253462

“We quantified neoantigens in tumour samples from each stage using whole-genome 
sequencing (Methods) and found significantly more heterogenous (occurring in at least one 
but not all tumour sectors) but not ubiquitous (occurring in all tumour sectors) neoantigens in 
S3 than S1 tumours (Fig. 4f).” 

For comment (7): (regarding validation using the TCGA data) 
- Two small points here. First, I would ask the authors double check the statement about 
TCGA samples receiving treatment PRIOR to specimen collection (my understanding is that 
the treatment annotation is AFTER the samples were collected, and so any subsequent 
treatment would not affect the analyzed tumor itself). Second, I would ask the authors ensure 
they are using the same statistical methods in their analysis of TCGA data as in the analysis 
of their own primary data (e.g. if they used pairwise testing they should continue to do so, if 
they used ANOVA previously then continue to do so, etc.). 

R: To clarify these points, we have managed to download the full clinical data for the TCGA 
cohort including information on prior treatment (see the screenshot shown below). Hence 
we would like to clarify that yes indeed, most of the TCGA data is without prior treatment 
and from the data we downloaded from the website (n=299), we have only two patients who 
have received prior treatment. Therefore, we repeated our analysis by filtering off these two 
samples from patients who received prior treatment and updated them in Suppl Fig. 6b. As 



expected it hardly changed the p values at all, except for one of two cases with marginal 
changes observed (e.g. p values from 0.0014 to 0.0013). Therefore, our conclusion remains 
robust. 
We however do not find further information/explanation on the types of treatment indicated 
in the clinical info (as also shown in the screenshot shown below) but we believe these could 
likely be post-surgical treatment types. In the Cell paper, we believe that the authors have 
filtered the data or selected the data containing only patients without prior treatment as stated 
in their paper "196 cases from LIHC batches 100, 131, 153, 173, 203, 231, 275, 287, 303, 
314, 327, 341, 345, and 365” (quote from their method). 
https://www.cell.com/cell/fulltext/S0092-8674(17)30639-6.  

To the second point, yes we did use consistent statistical tests for the analysis in our own 
cohort and TCGA cohort analysis. For comparison of multiple genes representing the same 
pathways across different stages of HCC, we used Two-way Anova (used to analyze the 
difference between the means of more than two groups) followed by respective p values from 
Tukey’s comparison test between different stages. As patients from different stages are 
different patients the test is unpaired. All these are already specified in the figure legends
for both Fig. 4d & e and Fig. 5d (our dataset) and suppl. Fig. 6b (TCGA validation data). 



REVIEWER COMMENTS 

Reviewer #3 (Remarks to the Author): 

The authors have addressed all of the reviewer comments.


