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Supporting Information Text12

Methods13

Images for Experiments. All images used in this study come from the ImageNet Large Scale Visual Recognition Challenge14

(ILSRVR) 2012 database (1). The training set from this database contains a total of 1,281,167 images corresponding to 100015

image categories. For the purpose of the human classification experiment, we created a subset of 16 categories (chair, oven,16

knife, bottle, keyboard, clock, boat, bicycle, airplane, truck, car, elephant, bear, dog, cat, and bird). This 16-class-ImageNet17

was created following a similar procedure as in (2) by mapping the 16 categories to subsets of the 1000 ImageNet categories18

using a hierarchical mapping from WordNet (e.g. the bear category combined ImageNet classes such as brown bear, American19

black bear, ice bear, and sloth bear). In this mapping, 207 of the 1000 ImageNet classes were used for the 16 class dataset.20

From the subset of 262,369 16-class-ImageNet images, we randomly selected 75 images per category, resulting in 1200 unique21

images for the human classification experiments.22

To vary the degree of difficulty in the human and machine classifier experiments, we applied phase noise distortion to the23

images (2, 3). The phase noise distortion was applied at each spatial frequency, uniformly distributed in the interval [−ω, ω].24

Four levels of phase noise, ω = {80, 95, 110, 125}, were applied to each of the 1200 unique images resulting in 4800 images.25

Given that images in the ILSRVR 2012 database are of different sizes and shapes, we preprocessed the images by first selecting26

the largest central square region of the image, resizing the image to 224 x 224 pixels, and finally applying the phase noise27

transform. Examples of the resulting preprocessed images at the four image distortion levels are shown in Figure S3.28

Human Classification Data. We collected human classifications data from 145 participants from Amazon Mechanical Turk. After29

obtained informed consent, participants were instructed to classify noisy images as accurately as possible into 16 categories. At30

the start of each trial, a noisy image was shown, and the participant selected their response by clicking one of 16 response icons,31

arranged in a 4 x 4 grid. In contrast to (2), the image was presented for the entire duration of the trial and response confidence32

was assessed. After selecting the category, participants indicated their response confidence by selecting one of three confidence33

levels, “low”, “medium”, and “high”. No feedback was provided after selecting a category and submitting a confidence response.34

Each participant classified a total of 200 images. For each participant, the images were randomly selected from the set of35

4800 images with the constraint that each unique image could only be shown once and that the four noise levels were equally36

represented across the 200 trials. The resulting human classification dataset consists of 28,997 classifications containing (at37

least) six human classifications for each of the 4800 images.38

Before being eligible to participate in the study, all participants were given instructions of the task and were required to pass39

a comprehension check by classifying four out of five images correctly. They were given two attempts to accomplish this. Only40

participants who successfully completed the comprehension check were allowed to continue with the study. Participants took a41

median of 24 minutes for the classification phase of the experiment. A payment of $6 USD was provided through Amazon42

Mechanical Turk, for successful completion of the study.43

Machine Classifier Predictions. We created a set of machine classifiers with varying degrees of classification performance44

(relative to human performance) by selecting different types of machine classifiers and applying to each classifier a variable45

degree of fine-tuning to the image noise. The set of classifiers included 5 pre-trained ImageNet models: AlexNet (4), DenseNet16146

(5), GoogleNet (6), ResNet152 (7), and VGG-19 (8). All models are based on implementations provided by PyTorch. Before47

any fine-tuning, the pretrained classifiers showed poor performance for the noisy images even at the lowest noise level. To48

fine-tune, the pretrained model was loaded and default ImageNet training parameters for that model were used. Given that the49

models were initially trained using all 1000 ImageNet categories, we decided to fine-tune each model using the entire ILSRVR50

2012 database, excluding the 1200 images selected for this study. During the fine-tuning process, each particular batch of51

images was distorted by random phase noise that ranged from 0 to 130 in increments of 5. For each type of classifier, we varied52

the amount of fine-tuning to the image noise across four levels. The models were finetuned for either 0 epochs (baseline),53

between 0 and 1 epochs, 1 epoch, and 10 epochs. The second level of finetuning (0-1 epochs) is based on a checkpoint during54

training before 1 epoch was reached that led a performance level intermediate between baseline and 1 epoch of training.55

The output of the classifiers after fine-tuning is based on the softmax probabilities for 1000 ImageNet classes. This output56

was transformed to a probability vector for the 16 classes by taking the maximum ImageNet class probability corresponding to57

each of the 16 classes, and renormalizing. For example, to create a score for the bear category in our 16 classes set, we took the58

maximum score from the set of four ImageNet classes that were mapped to the bear category.59

Training and Validation data for Classifier Pairs. For the Bayesian combination model, we created a number of data sets based60

on three different types of pairs: human-human, human-machine, and machine-machine classifier pairs. The datasets were61

constructed with the following constraints: 1) only a single level of image distortion was used within each dataset, 2) each62

unique image occurs only a single time within each dataset, 3) only one type of machine classifier at a single level of fine-tuning63

is used within each dataset. Based on these constraints, we created 12 datasets for the homogeneous human-human pairs64

by combining four image noise levels with three ways to create random pairs for each image (note that each image had65

classifications from at least six different human participants). For the heterogeneous human-machine classifier pairs, we created66

360 datasets by combining 5 types of machine classifiers, 3 levels of fine-tuning, 4 image noise levels, with 6 different human67

participants (the 6 participants corresponded to either the first or second of the human participant pairs in the human-human68
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data sets). Finally, for the homogeneous machine-machine classifier pairs, we created 120 data sets by combining 10 pairing of69

machine classifiers, 3 levels of fine-tuning, with 4 levels of image noise.70

Each dataset constructed involved exactly 1200 predictions (corresponding to 1200 unique images). The datasets were71

split into four random partitions for the purpose of four-fold cross-validation. Therefore, in any particular cross-validation72

partition, 800 predictions were used to train the Bayesian combination model (i.e., the true class labels were observed) and 40073

predictions were used for validation.74

Model Details75

Ordered Probit Model. To model the human confidence ratings, we use an ordered probit model that probabilistically maps the76

latent probability score γi,yi corresponding to the classification made by the human to an ordinal confidence rating, ri. For our77

data, we have three confidence ratings (1=“Low”, 2=“Medium”, and 3=“High”) generated according to:78

ri ∼ OrderedProbit(γi,yi , c, δ) [1]79

The ordered probit model is constructed in the following way:80

xi,1 = Φ(δ(c1 − γi,yi ))
xi,2 = Φ(δ(c2 − γi,yi ))− Φ(δ(c1 − γi,yi ))
xi,3 = 1− Φ(δ(c2 − γi,yi ))
ri ∼ Categorical(xi,1, xi,2, xi,3)

[2]81

where Φ is the cumulative standard normal distribution, and x1, x2, and x3 represent the latent probabilities for producing a82

low, medium, or high confidence rating. The two cutpoint parameters c1 and c2 determine the intervals that map the latent83

confidence score into a confidence rating. The δ parameter determines the sharpness of the rating probability curves (i.e., the84

degree of randomness in the probabilistic mapping from the confidence score to a rating). Figure S2 shows an example of how85

the latent probabilities are mapped to three ordinal ratings (“high”, “medium”, and “low”) for two values of δ and criterion86

values c1 = 0.2 and c2 = 0.4. Note that δ controls the degree of noise in mapping from latent probabilities to ordinal ratings.87

Computing the zone of complementarity. For the predictions in Fig. 4, we assume ρHM = 0.33, ρHH = 0.62, and ρMM = 0.71,88

approximately matching the correlations inferred by the Bayesian combination model. We use numerical methods to find the89

zone of complementarity represented by the red area in Fig. 4. The variable aH is varied between 0.1 and 5 in 40 steps. For90

each value of aH , the lower bound of aM that produces complementarity is identified by finding the roots of the function91

rHM − rHH using Eq. 6. Next, we find the upper bound of aM that produces complementarity by finding the roots of the92

function rMM − rHM . We apply Eq. 5 to the aH and aM pairs to find the coordinates AH and AM in Fig. 4.93

Assessing the effect of a class-specific error model and presence of confidence scores. In Table 1 (full results shown in Table94

S2), we consider how the performance of the hybrid human-machine pairs depends on a number of combinations of different95

factors. First, we consider the presence of a class-specific error-model that can correct for human and machine-classifier specific96

errors and biases for individual labels. For example, relative to a machine classifier, a human might be better at discriminating97

a particular label from other labels or might display a response bias for some labels such that that those labels are predicted98

more often than expected by chance. In the error model extension, means a and b in Eq. 1 become class-specific but not the99

covariance. The second factor is the presence of human confidence scores. If human confidence ratings are present, we apply100

the model with the generative process for human confidence ratings as specified by Eq. 4 Otherwise, Eq. 4 is left out of the101

model. Finally, the third factor is the presence of machine confidence scores. If the machine classifier confidence scores are102

present, the logit scores for the machine classifier in Eq. 1 are observable. Otherwise, the logit scores become latent variables103

and Eq 3 is used to model the classification from the machine classifier.104

For each particular combination of these three factors, we applied the model separately to each of the 5 CNNs and 4 image105

noise levels. Each entry in Table 1 is based on 36,000 observations by combining the results across CNNs (5), unique images106

(1200) and unique human participants per image (6).107

Model Inference. For posterior inference, we used a JAGS Markov chain Monte Carlo sampler (9) and ran the sampler with 8108

chains with a burnin of 1000 iterations before taking 50 samples per chain. The chains mixed appropriately. For each instance,109

the mode of the latent classifications z across the 400 samples was used to determine the aggregate classifications ẑ.110

For prior distributions, we place a uniform prior on the latent true label, zi ∼ Uniform({1, ..., L}). This prior can be replaced111

by other priors to allow for skew in the label distribution. For the correlation between classifiers, we used ρ ∼ Uniform(−1, 1).112

For the machine classifiers, we use priors: a ∼ N (0, 10), b ∼ N (0, 10), σ ∼ Uniform(0, 15). For human classifications, the113

same priors were used but with added constraints b = 0 and σ = 1 for the purpose of identifiability. In addition, we used114

δ ∼ Uniform(0, 100) for the scaling parameter and uniform priors on the cutpoints, c ∼ Uniform(0, 1), with the constraint that115

the cutpoints are ordered (i.e. cr < cr+1 for r = 1, .., R− 1). Finally, after experimenting with a number of values for τ , we set116

τ = 0.05 for best convergence results.117
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Additional Results118

Distribution of Machine Classifier Logit Scores. Supplemental Figure S5 shows the empirical distributions of the λ logit scores119

for correct and incorrect classes for the 16-class ImageNet dataset. The distributions are approximately normal (with some left120

and right skew for the incorrect and correct label distributions).121

Pattern of class-specific errors by human and machine classifiers. Some of the differences between human and machine122

classifiers can be summarized by looking at the pattern of correct and incorrect classifications at the level of individual classes.123

Figure S8 shows the class-wise confusion matrices for humans and each of the four machine classifier for the most challenging124

level of image distortion in the experiment. The machine classifiers are fine-tuned for one epoch. The machine classifier125

VGG-19, for example, makes more correct classifications for classes such as truck, dog and bird, whereas the human makes126

more correct classifications for the car class. In addition, there are a number of class-confusions that are more prevalent in the127

machine classifier relative to humans (e.g., confusing cats with dogs). These results show that human and machine classifiers128

make different types of errors at the class level.129

To further evaluate the class-specific errors, we analyze the parameters inferred by the class-specific error model. Specifically,130

we assess a discrimination score dj = (aj − bj)/σ for each label j. This score represents the separation between the logit scores131

for the correct and incorrect label normalized by the standard deviation. This score determines the ability of the classifier to132

discriminate between that label and all other labels, analogous to the discriminability index in signal detection theory (10).133

The baseline parameter bj determines the response bias for label j. If bj is relatively high for one particular label, the model134

predicts higher confidence scores and a larger number of responses (a priori) for that label. To facilitate interpretation, we will135

report mean centered b values (i.e.,
∑

j
bj = 0).136

Table S1 shows the resulting estimates of discrimination and bias scores when the model extension is applied to a hybrid137

ensemble of a single human and the VGG-19 classifier. Across image noise levels, the VGG-19 classifier is biased towards the138

labels “dog”, “truck”, and biased away from “airplace” and “knife” whereas the human participants reveal small response139

biases toward “boat”, “car”, and “dog” and away from “knife”. In terms of the relative discrimination ability (i.e., dH − dM ),140

the human participants are better able to detect the “car”, “clock”, and “knife” labels relative to VGG-19, whereas the CNN141

classifier is relatively good at detecting “boat” and “bird”. Overall, the results show systematic differences between human and142

machine classifiers in terms of response biases and ability to discriminate between individual classes.143

Robustness to confidence scoring. One potential contributing factor to complementarity is the difference in the type and144

amount of information available from machine and human classifier. The machine classifier provides a full set of confidence145

scores across all classes whereas the human classifier provides only a single confidence score (associated with the classification146

made for the instance). In addition, the machine classifier scores are continuous whereas the human confidence score is discrete147

(three responses, “high”, “medium”, and “low”).148

To verify that our findings are robust to changes in the way confidence scores are produced, we also applied the Bayesian149

combination model when the machine classifier confidence score are only observed for the winning class for each instance and150

the scores are discretized to three bins (analogous to the three confidence levels for the human classifiers). The discretization151

was performed to create uniform distributions of responses across the three bins. With this procedure, human and machine152

classifier provide the same type of confidence scores.153

Supplemental Figures S6 and S7 show the results. To facilitate comparison, the original results (with fully observed and154

continuous machine classifier scores) are shown in the bottom half of the Figures along with the new results in the top half.155

The results show that the hybrid pair performance with partially observed, discretized machine classifier scores are somewhat156

lower relative to pairs with the full machine classifier information and fewer hybrid classifiers exceed the performance of two157

humans. However, the overall pattern of accuracy is qualitatively similar. Critically, the pattern of correlations is qualitatively158

the same. Hybrid combinations of classifiers produce the lowest correlations, and machine-only combinations produce the159

highest correlations. As expected, posterior uncertainty for pairs of machine classifier combinations has increased due to the160

decrease in available confidence scores.161

Therefore, these results show that human-machine classifier complementarity is in part influenced by the type of confidence162

scores available. Having a full set of continuous confidence scores contributes to improved pair performance.163

Theoretical Analysis164

Predicting complementarity. Given the structure and parameters of our Bayesian model, we derive expressions for the accuracy165

of individual classifiers as well as combinations of two classifiers. This allows us to analytically determine the conditions that166

lead to complementarity.167

Consider a set of two human and two model classifiers C = {H1, H2,M1,M2}. Let C1, C2 ∈ C be any two classifiers selected168

from this set. The accuracy of a single classifier C ∈ C is denoted AC , and the accuracy of the Bayesian combination model derived169

from the pair of classifiers C1 and C2 is denoted AC1,C2 . Recall that we have complementarity if AHM > max{AH1H2 , AM1M2}170

for some H ∈ {H1, H2} and some M ∈ {M1,M2}.171

We make the following assumptions on the parameters of our Bayesian models to simplify our analysis: (i) bC = 0 for172

each C ∈ C; (ii) The Bayesian model parameters for the humans are equal, i.e. aH1 = aH2 =: aH and σH1 = σH2 =: σH ;173

(iii) The Bayesian model parameters for the machine classifiers are equal, i.e. aM1 = aM2 =: aM and σM1 = σM2 =: σM ;174
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(iv) The marginal distribution over classes is uniform, i.e. the marginal probability of seeing class i is p(z = i) = 1/L for175

i ∈ {1, 2, . . . , L}.176

Assumption (ii) implies that H1 and H2 are exchangeable under our Bayesian model (respectively for assumption (iii) and177

M1,M2). Without loss of generality, we can additionally assume that the true class is the first one. We use ρHH , ρMM to178

denote the correlation parameter between the human (respectively model) labelers above and ρHM to denote the correlation179

between any human with any machine classifier.180

An illustrative special case: L = 2 classes. To demonstrate our analysis, we begin with the special case of binary (L = 2)181

classification.182

For an individual classifier C, there are two logit scores sampled in the model, λ1 ∼ N (a, σ) and λ2 ∼ N (0, σ), associated183

with the correct and incorrect class respectively. The accuracy for this classifier conditional on model parameters is184

AC = p{z = y|a, σ}
= p{φ(λ1|a, σ)φ(λ2|0, σ) > φ(λ1|0, σ)φ(λ2|a, σ)}
= p{λ1 > λ2}
= p{λ1 − λ2 > 0}

= Φ
(

1√
2
a

σ

) [3]185

where φ(λ|µ, σ) is the normal density for x given mean µ and standard deviation σ and Φ denotes the cumulative distribution186

function for the standard normal distribution. Hence, for two individual classifiers, C1 and C2, we will have AC1 > AC2 if and187

only if a1
σ1
> a2

σ2
.188

For two classifiers, we have two pairs of logit scores. For the correct and incorrect class, the pairs of logit scores are189

sampled from the bivariate normals,
( λ1,1
λ1,2

)
∼ N

[(
a1
a2

)
,Σ
]
and

( λ2,1
λ2,2

)
∼ N

[(
0
0

)
,Σ
]
respectively, with covariance matrix190

Σ =
[ σ2

1 σ1σ2ρ

σ1σ2ρ σ2
2

]
. The accuracy for the combined classifier is then191

AC1,C2 = p{z = y|a1, a2, σ1, σ2, ρ}

= p{φ
(( λ1,1

λ1,2

)
|
(
a1
a2

)
,Σ
)
φ
(( λ2,1

λ2,2

)
|
(

0
0

)
,Σ
)
> φ
(( λ1,1

λ1,2

)
|
(

0
0

)
,Σ
)
φ
(( λ2,1

λ2,2

)
|
(
a1
a2

)
,Σ
)
}

= p{λ1,1(a2ρ− a1) + λ1,2(a1ρ− a2) > λ2,1(a2ρ− a1) + λ2,2(a1ρ− a2)}

= Φ

(
a2

1 + a2
2 − 2a1a2ρ√

2σ2
1(a2ρ− a1)2 + 2σ2

2(a1ρ− a2)2 + 4ρσ1σ2(a2ρ− a1)(a1ρ− a2)

) [4]192

In order to facilitate the study of complementarity, we specialize the above results to the case of homogeneous and193

heterogeneous pairs.194

For the sake of simplicity, we describe the homogeneous analysis in the case of an pair of two humans H1 and H2. The195

analysis can translated to that of homogeneous pairs of models by making the necessary changes in notation.196

In this case, under the set of assumptions outlined above, by simplifying Equation Eq. (4) we can express the pair accuracy197

as198

AH1,H2 = Φ
(

1√
1 + ρHH

aH
σH

)
[5]199

where ρHH ∈ [0, 1] is the human-human correlation. As we would expect, as ρHH increases, the accuracy of the pair will200

decrease.201

To illustrate these results, we compare to the accuracy of a single human. By Equation Eq. (3) and Eq. (4), we have202

AH1,H2 > AHi when203

aH
σH

1√
1 + ρHH

>
1√
2
aH
σH

[6]204

Note that ρHH ≤ 1, so that this inequality will always hold, i.e. under our assumptions the pair of two humans will always205

have a higher accuracy than a single human.206

In the case of a heterogeneous pair consisting of a human labeler and model labeler, assume further that the models and207

humans have the same variance, i.e. σ := σH = σM . We can express the heterogeneous human-model pair accuracy AHM as208

AHM = Φ

(
1√
2σ

1√
1 + ρHM

√
a2
H + a2

M − 2aHaMρHM
1− ρHM

)
[7]209
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Conditions for complementarity. We derive a necessary and sufficient condition on the correlation ρHM to achieve complemen-
tarity. Since Φ(·) is a strictly increasing function, it suffices to compare the arguments of Equation Eq. (5) and Equation
Eq. (7). Doing so, we have AHM > AHH if and only if

1
1 + ρHM

(
1
2
a2
H + a2

M − 2aHaMρHM
1− ρHM

)
>

1
1 + ρHH

a2
H

and we similarly have AHM > AMM if and only if

1
1 + ρHM

(
1
2
a2
H + a2

M − 2aHaMρHM
1− ρHM

)
>

1
1 + ρMM

a2
M

Hence, we have complementarity if and only if both of the previous inequalities are satisfied, which in turn is equivalent to210

a2
H + a2

M

2aHaM
= 1

2

(
aH
aM

+ aM
aH

)
> ρHM +

(
1− ρ2

HM

)
max

{
aH
aM

1
1 + ρHH

,
aM
aH

1
1 + ρMM

}
[8]211

This is quadratic in ρHM , allowing us to solve for the conditions on ρHM that will lead to complementarity.212

Complementarity for L ≥ 2 classes. In this section, we derive expressions for the accuracy of an individual classifier and for213

the accuracy of our Bayesian pair in the more general multi-class classification setting.214

For an individual classifier C, one of the logit scores, λ1 ∼ N (a, σ) corresponds to the correct class. For the remaining215

j = {2, ..., L} classes, the logit score for the incorrect class is λj ∼ N (0, σ). To make a correct prediction in this setup would216

mean that λ1 > λj for j = 2, 3, . . . , L, i.e. the score for the correct label is greater than the score for every other class.217

Ac = p{z = y|a, σ}

= p{φ(λ1|a, σ)φ(λk|0, σ)
∏
j 6=1,k

φ(λj |0, σ) > φ(λ1|0, σ)φ(λk|a, σ)
∏
j 6=1,k

φ(λj |0, σ) ∀k = 2, . . . , L}

= p{φ(λ1|a, σ)φ(λk|0, σ) > φ(λ1|0, σ)φ(λk|a, σ) ∀k = 2, . . . , L}
= p{λ1 > λk ∀k = 2, . . . , L} (by Equation Eq. (3))

=
∫ ∞
−∞

Φ (x)L−1 φ
(
x− a

σ

)
dx

[9]218

We can perform a similar analysis for the pair of C1 and C2:219

AC1,C2 = p{z = y|a1, a2, σ1, σ2, ρ}

= p{φ
(( λ1,1

λ1,2

)
|
(
a1
a2

)
,Σ
) L∏
j=2

φ
(( λj,1

λj,2

)
|
(

0
0

)
,Σ
)
>

φ
(( λ1,1

λ1,2

)
|
(

0
0

)
,Σ
)
φ
(( λk,1

λk,2

)
|
(
a1
a2

)
,Σ
) L∏
j 6=1,k

φ
(( λj,1

λj,2

)
|
(

0
0

)
,Σ
)

∀k = 2, . . . , L}

= p{φ
(( λ1,1

λ1,2

)
|
(
a1
a2

)
,Σ
)
φ
(( λk,1

λk,2

)
|
(

0
0

)
,Σ
)
> φ
(( λ1,1

λ1,2

)
|
(

0
0

)
,Σ
)
φ
(( λk,1

λk,2

)
|
(
a1
a2

)
,Σ
)

∀k = 2, . . . , L}

= p{λ1,1(a2ρ− a1) + λ1,2(a1ρ− a2) > λk,1(a2ρ− a1) + λk,2(a1ρ− a2) ∀k = 2, . . . , L}

=
∫ ∞
−∞

Φ (x)L−1 φ

(
x− a2

1 + a2
2 − 2a1a2ρ√

σ2
1(a2ρ− a1)2 + σ2

2(a1ρ− a2)2 + 2ρσ1σ2(a2ρ− a1)(a1ρ− a2)

)
dx

[10]220

We can use the above integral forms to derive an if and only if condition for complementarity. Let rC1,C2 be the ratio that221

appears in the argument of φ(·) in Equation Eq. (10):222

rC1,C2 = a2
1 + a2

2 − 2a1a2ρ√
σ2

1(a2ρ− a1)2 + σ2
2(a1ρ− a2)2 + 2ρσ1σ2(a2ρ− a1)(a1ρ− a2)

[11]223

Under our assumptions, this ratio can be simplified to a more interpretable form in the hybrid and non-hybrid cases:224

rH1,H2 = |aH |
σH

√
2

1 + ρHH
rM1,M2 = |aM |

σM

√
2

1 + ρMM

rHM = 1
σ
√

1− ρHM

√
a2
H + a2

M − 2aHaMρHM
1 + ρHM

[12]225
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The following claim shows that complementarity can be determined entirely by the r terms above. Note that this ratio is226

the same as the argument of Φ(·) in Equation Eq. (4), up to a constant factor of
√

2. As we studied this extensively in the227

binary case, we then see that complementarity in the multi-class case reduces to complementarity in the binary case.228

Claim: We have complementarity if and only if rHM > max{rHH , rMM}.229

Proof. We prove that rHM > rHH is sufficient for AHM > AHH . The proof for the pair of two models is analogous, and so230

rHM > max{rHH , rMM} will satisfy AHM > AHH and AHM > AMM simultaneously. The same argument also works (with231

minor modifications) to prove the "only if" part of the statement.232

Set ∆H = rHM − rHH . We have ∆H > 0 by assumption. We can evaluate the accuracies with the above formulae and use a
change of variables to prove the claim:

AHM =
∫ ∞
−∞

Φ(x)L−1φ(x− rHM ) dx

=
∫ ∞
−∞

Φ(x+ ∆H)L−1φ(x− rHM + ∆H) dx (change of variables)

=
∫ ∞
−∞

Φ(x+ ∆H)L−1φ(x− rHH) dx (definition of ∆H)

≥
∫ ∞
−∞

Φ(x)L−1φ(x− rHH) dx (∆H > 0 and Φ(·) is increasing)

= AHH

233
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Fig. S1. Illustration of the generative process of the
Bayesian model that produces the classification and confi-
dence scores for a single human (H) and machine clas-
sifier (M ). In the example, there are three classes and
the ground truth (z) for a particular image is “Bear”. The
ground truth selects for each label a bivariate normal distri-
bution with means (aM ,aH ) shown in green or (bM ,bH )
shown in red when the ground truth matches or mis-
matches the label respectively. A single sample (white
circle) is taken from each selected bivariate normal distri-
bution to produce the correlated logit scores (λ) for the hu-
man and machine classifier. The separation of the means
between matching and mismatching distribution (a−b) de-
termines the discrimination ability of the classifier for that
class whereas the mean of the mismatching distribution (b)
determines response bias for that class. In this example,
the human classifier has a response bias for “Dog”. For
the machine classifier, the logit scores are transformed to
observable probabilities (γ). For the human, a softmax is
applied to the latent confidence scores (γ) to determine
the classification (dog) and an ordinal probit model is used
to sample the observed confidence rating (“Medium”).
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Fig. S2. Illustration of the ordered probit model for three ratings. Top and bottom panels are produced with δ = 20 and δ = 60 respectively
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Fig. S3. Examples of images from different categories without phase noise (leftmost column) and the four noise levels used in the image classification experiments (ω=80, 95,
110, and 125.)
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Fig. S4. Classification performance of individual humans
(dashed line) and five different machine classifiers as a
function of image noise. For the machine classifiers, per-
formance is shown across levels of fine-tuning. Human
performance is replicated across panels to facilitate visual
comparison. Error bars reflect 95% confidence intervals of
the mean based on a binomial model.
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machine classifiers were fine-tuned for 1 epoch.
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Fig. S6. Accuracy results for the Bayesian combination model with machine classifiers scores that are partially observed and discretized (a), fully observed and continuous (b).
Results are shown as a function of image noise (horizontal axis) and classifier (columns). Error bars reflect 95% confidence interval of the mean based on a binomial model.
Machine classifiers are finetuned for 1 epoch.
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Fig. S7. Posterior distributions of the latent correlation in the Bayesian combination model with machine classifiers scores that partially observed and discretized (a), fully
observed and continuous (b). Colored areas reflect 95% credible intervals. Machine classifiers are finetuned for 1 epoch.
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Fig. S8. Confusion matrix for human (left-half circles) and machine classifier (right half circles) predictions for four types of machine classifiers (panels a-d: Alexnet, Googlenet,
Resnet152, and Densenet161). Circle sizes represent the proportion of correct (blue) and error (orange) responses. Numbers on right side indicate the overall proportion of
predicted class labels for the human (left) and machine classifier (right). Highlighted boxes have significantly different proportions as assessed by a Bayes factor test for the
difference between two binomials (BF > 10, thin black box; BF > 100, thick black box). The data is based on the most challenging image noise (ω=125) condition in the
classification experiment. The machine classifiers were fine-tuned for 1 epoch.
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Fig. S9. Accuracy (a) and correlation (b) results for the Bayesian combination model with machine classifiers finetuned for 0 epochs (baseline). Results are shown as a function
of image noise (horizontal axis) and classifier (columns). Error bars reflect 95% confidence interval of the mean based on a binomial model.
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Fig. S10. Accuracy (a) and correlation (b) results for the Bayesian combination model with machine classifiers finetuned for 1 epoch. Results are shown as a function of image
noise (horizontal axis) and classifier (columns). Error bars reflect 95% confidence interval of the mean based on a binomial model.
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Fig. S11. Accuracy (a) and correlation (b) results for the Bayesian combination model with machine classifiers finetuned for 10 epochs. Results are shown as a function of
image noise (horizontal axis) and classifier (columns). Error bars reflect 95% confidence interval of the mean based on a binomial model.
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Table S1. Posterior means of discrimination (d) and mean-centered response bias (b) parameters for the human (H) and the VGG-19 machine
classifier (M) for two levels of image noise (ω). The relative discrimination advantage of human participants over the machine classifier
(dH −dM ) is visualized with color bars. Results are based on the Bayesian combination model with the VGG-19 machine-classifier fine-tuned
for 1 epoch and both human and machine confidence scores are used.

ω = 110 ω = 125
Class bH bM dH dM dH − dM bH bM dH dM dH − dM

chair +0.15 −0.18 2.41 2.32 +0.09 +0.11 −0.27 1.77 2.04 −0.27
oven +0.26 −0.01 2.05 2.26 −0.21 +0.07 +0.09 1.73 1.97 −0.25
knife −0.52 −1.19 3.96 2.85 +1.11 −0.41 −1.19 3.19 2.54 +0.65
bottle −0.24 +1.11 2.89 2.51 +0.37 −0.40 +1.01 2.45 2.19 +0.26
keyboard +0.29 −0.98 3.05 2.76 +0.29 +0.23 −0.95 2.34 2.39 −0.05
clock −0.13 −0.47 3.58 2.79 +0.80 −0.23 −0.54 3.25 2.49 +0.77
boat +0.43 +0.68 2.44 3.05 −0.61 +0.46 +0.57 1.73 2.72 −0.99
bicycle −0.59 −0.88 3.97 3.29 +0.68 −0.36 −0.75 2.95 2.86 +0.09
airplane +0.08 −1.63 3.65 3.35 +0.30 +0.11 −1.59 3.02 3.06 −0.04
truck −0.02 +1.64 3.04 2.74 +0.30 −0.11 +1.46 2.39 2.48 −0.09
car +0.33 −0.77 3.51 2.13 +1.37 +0.26 −0.78 2.98 1.94 +1.03
elephant −0.16 −1.12 3.13 2.86 +0.26 −0.16 −0.91 2.09 2.29 −0.20
bear −0.29 −0.07 2.44 2.18 +0.27 +0.05 +0.13 1.49 1.81 −0.32
dog +0.32 +2.09 2.23 2.50 −0.27 +0.28 +1.98 1.46 2.11 −0.66
cat +0.15 +0.34 2.97 2.66 +0.31 +0.24 +0.46 2.25 2.16 +0.09
bird −0.07 +1.44 2.94 3.44 −0.50 −0.15 +1.27 2.26 3.01 −0.74
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Table S2. Accuracy for human-machine classifier combinations across image noise and different types of combination models that vary the
presence or absence of an error model, human confidence scores, and machine classifier confidence scores. The results are separated by
the 5 machine classifiers. Each accuracy result is based on 7,200 observation.

Image Noise (ω)
Error Human Machine

Machine Classifier # Model Confidence Confidence 80 95 110 125
AlexNet

1 3 3 3 0.917 0.889 0.828 0.712
2 7 3 3 0.915 0.886 0.821 0.676
3 3 7 3 0.911 0.884 0.819 0.701
4 7 7 3 0.914 0.881 0.809 0.662
5 3 3 7 0.900 0.869 0.804 0.654
6 7 3 7 0.897 0.866 0.799 0.651
7 3 7 7 0.887 0.853 0.779 0.628
8 7 7 7 0.896 0.861 0.766 0.588

DenseNet161
1 3 3 3 0.934 0.907 0.853 0.755
2 7 3 3 0.929 0.902 0.843 0.733
3 3 7 3 0.932 0.902 0.851 0.744
4 7 7 3 0.926 0.898 0.836 0.721
5 3 3 7 0.915 0.885 0.831 0.710
6 7 3 7 0.906 0.876 0.819 0.691
7 3 7 7 0.904 0.874 0.812 0.689
8 7 7 7 0.894 0.859 0.771 0.663

GoogleNet
1 3 3 3 0.934 0.913 0.852 0.749
2 7 3 3 0.925 0.901 0.841 0.726
3 3 7 3 0.930 0.908 0.845 0.739
4 7 7 3 0.922 0.895 0.828 0.706
5 3 3 7 0.910 0.887 0.826 0.710
6 7 3 7 0.900 0.881 0.818 0.698
7 3 7 7 0.902 0.882 0.815 0.679
8 7 7 7 0.897 0.857 0.762 0.634

ResNet152
1 3 3 3 0.934 0.903 0.848 0.745
2 7 3 3 0.927 0.894 0.839 0.722
3 3 7 3 0.929 0.900 0.841 0.736
4 7 7 3 0.927 0.894 0.825 0.708
5 3 3 7 0.906 0.875 0.815 0.694
6 7 3 7 0.900 0.867 0.811 0.679
7 3 7 7 0.899 0.865 0.794 0.663
8 7 7 7 0.893 0.859 0.762 0.618

VGG-19
1 3 3 3 0.944 0.921 0.868 0.779
2 7 3 3 0.940 0.913 0.858 0.754
3 3 7 3 0.939 0.916 0.863 0.771
4 7 7 3 0.936 0.908 0.852 0.738
5 3 3 7 0.923 0.900 0.840 0.735
6 7 3 7 0.914 0.890 0.828 0.711
7 3 7 7 0.912 0.887 0.828 0.711
8 7 7 7 0.893 0.856 0.785 0.676
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