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S.1 A simple deterministic population model of differentia-
tion.

Figure 1c,d in the main paper displays data collected in an experiment with the strain carrying
the integrated version of our differentiation system. The data in panel c of that figure can also be
displayed in the form of time-varying distributions of the four fluorescent reporter proteins (Figure
S.1).

As stated in the main text, a simple deterministic model can be used to describe emerging
population dynamics for the integrated version of the system fairly well. This model is given by the
following ordinary differential equations

d

dt
nu = λnu − uintu(t)nu

d

dt
nd = λnd + uintu(t)nu, (1)

where nu is the (expected) number of undifferentiated cells, nd is the number of differentiated cells,

λ is the (single-cell) growth rate and measurable as λ = ln(2)
103 min−1 for all our strains, u(t) is equal

to one when light is applied and zero otherwise, and uint is the single free parameter of the model
and represents the differentiation rate for the fixed light intensity that was used in the experiments.
For the results in Figure 1d (solid line) in the main text, we fixed uint = 0.168h−1. We note that the
integral of the differentiation rate in this model increases linearly with the time of light application.
When very short light inputs are used, however, we observe that the differentiated fraction increases
less than expected from the value of uint given above. This is presumably because some cells do
not produce sufficient recombinase when light is applied only very briefly. Better agreement of the
model with data for short light signals could be obtained by including a recombinase species in the
model that starts to accumulate in response to light and triggers a positive rate of differentiation
only when it has sufficiently accumulated. For the sake of simplicity, and in order to not introduce
additional parameters into the model, we have decided to nevertheless neglect recombinase and
to limit ourselves to sufficiently long light signals. We note that the same arguments apply to
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subsequent stochastic models of the integrated differentiation system since recombinase has been
omitted also for these models, which structurally limits the models to sub-linear dependencies of the
integrated differentiation rate on the duration for which light is applied.

Figure S.1: Distribution dynamics of the four fluorescent reporter proteins for the light sequence
in Figure 1 in the main paper. Color coding indicates the time of the experiment. Rows correspond to the
different fluorescent reporters, columns to different sub-populations (left: all cells, middle: undifferentiated cells,
right: differentiated cells) after classification based on mNeonGreen abundance. We note that due to changing sizes
of sub-populations, fluorescence distributions need to be extracted from varying (sometimes low) cell numbers.
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Figure S.2: Distribution dynamics of the four fluorescent reporter proteins in response to continuous
light. Color coding indicates the time of the experiment. Rows correspond to the different fluorescent reporters,
columns to different sub-populations (left: all cells, middle: undifferentiated cells, right: differentiated cells) after
classification based on mNeonGreen abundance. We note that due to changing sizes of sub-populations, fluorescence
distributions need to be extracted from varying (sometimes low) cell numbers.

To determine the importance of cell-to-cell variability, we exposed cells to continuous light and
measured if EL222:mVenus distributions of undifferentiated cells change due to selection effects in
response to light. We note that small selection effects can, in principle, also be detected by compar-
ing undifferentiated and differentiated cells shortly after light induction. However, differentiation
replaces mCerulean by mNeonGreen in cells and small differences between sub-population might also
be caused by variations in the accuracy of deconvolution in the presence of different fluorophores.
Comparisons of EL222:mVenus distributions before and after light within the same sub-population
therefore provide a more reliable approach to detect small selection effects. The full time-varying dis-
tribution data of all fluorescent reporters is displayed in Figure S.2. The panel for mVenus levels (3rd
row) in undifferentiated cells (2nd column) shows that differences in EL222:mVenus distributions
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before and after light are noticeably present but overall quite small.
To test if the model in Eq.(1) can be used to predict differentiation dynamics for the plasmid-

based version of the system, we used mVenus fluorescence to quantify mean constitutive gene ex-
pression from plasmids and found that it is 5.84 times larger compared to expression levels measured
in the integrated strain. Correspondingly, the plasmid-based version of the differentiation system
leads to larger differentiated fractions for the same light stimulation (Figure S.3). Multiplying
uint = 0.168h−1 by this factor gives the dynamics in Figure 2c, dashed line, in the main paper.
Finally, the dashed-dotted dynamics in Figure 2c of the main paper has been obtain by hand-tuning
uint such that final stationary differentiated fractions are well-matched. Concretely, we used the
value uint = 5.4h−1.
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Figure S.3: Differentiation dynamics in response to the same light stimulation for plasmid-based and integrated
differentiation system show large differences.

S.2 Stochastic modeling of the integrated differentiation sys-
tem.

S.2.1 Construction of the model.

To characterize the functionality of the differentiation system at the single-cell level, we deployed
a one-dimensional model of bursty production of EL222:mVenus transcription factor coupled to a
differentiation function that determines the probability per unit time for a cell to differentiate in the
presence of light given its internal amount of transcription factor:

∅ a−−−−→ Z · EL222 EL222
λ−−−−→ ∅

undifferentiated
us·u(t)·f(EL222)−−−−−−−−−−−−−−→ differentiated, (2)

where us is the maximal single-cell differentiation rate for given fixed light intensity, u(t) is equal
to one in the presence of light and equal to zero otherwise, λ is the cells’ growth rate, and a is
the rate at which protein bursts occur. Protein production bursts are of size Z and assumed to
be geometrically distributed with average burst size b, Z ∼ Geo( 1

b ), as dictated by classical results
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for modeling stochastic gene expression [1]. We neglected delays and noise caused by stochastic
production of recombinase from the optogenetic promoter for the sake of simplicity but also because
previous modeling results for this optogenetic system suggested that cell-to-cell variability in the
activity of the promoter is mostly a consequence of variability in transcription factor levels [2]. In the
absence of light, u(t) = 0, all cells will remain undifferentiated and the EL222:mVenus distribution
of the population converges approximately to a Gamma distribution (since the model is discrete it
converges to a negative binomial distribution to be precise [3] but a Gamma distribution is more
frequently used in the literature [1]). To be able to match this model to experimental fluorescence
data, we assumed that molecule numbers and measured fluorescence are related via deterministic
scaling with small zero-mean Gaussian measurement error

Y = s · EL222 + ε, where ε ∼ N (0, σ2). (3)

The distribution of the data Y is therefore obtained as the convolution of the scaled EL222:mVenus
distribution with the distribution of ε. For all our results, the variance of the measurement error
has been fixed to σ2 = 1.5. Since this value is very small compared to typical fluorescence val-
ues, convolution of the EL222:mVenus distribution with the distribution of ε has little practical
consequences, except that it explains small tails into negative numbers of measured fluorescence
distributions. The scaling parameter s is not identifiable from fluorescence measurements without
any additional information on typical numbers of the transcription factor in cells. Furthermore,
calculations with large transcription factor levels would be computationally infeasible without the
use of sophisticated approximation techniques to reduce the number of states in the system’s master
equation [4] (in particular, for the composed model of the plasmid-based differentiation system).
Therefore, we decided to fix s = 5.06a.u., which corresponds to very low transcription factor levels
inside cells. We note that EL222:mVenus levels in cells matter primarily relative to the threshold
of the differentiation Hill function f(EL222). Precise molecule numbers are of minor importance as
long as the Hill function threshold is chosen in line with typical molecule numbers in the model.
Furthermore, we note that the coefficient of variation of EL222:mVenus distributions generated by
the model is fixed from the data. There is thus no increase in variability in the model due to small
transcription factor numbers since any such increase is inherently corrected when the parameters
of protein bursts are fixed. With s (and λ) fixed, the model is reduced to burst frequency a and
average burst size b as the two free parameters. Since these parameters are directly related to the
mean and the coefficient of variation of the stationary negative binomial distribution of the model,
they can be obtained from measured fluorescence distributions of cells growing in the dark. Con-
cretely, we extracted mean and coefficient of variation of the EL222:mVenus distribution at the last
measurement time point before light induction of the experiment in Figure 3a in the main paper.
We find that the mean is equal to 50.6a.u. and the coefficient of variation is equal to 0.35. This
allowed us to determine burst frequency and average size as a = 0.0542min−1 and b = 1.2426 for
the given value of s.

When light is applied to the population, u(t) = 1, the function f(EL222) determines which part
of the cell population has a significant probability to differentiate. Since differentiation is caused
by recombinase and recombinase has been omitted in the model, f(EL222) does not have a direct
mechanistic interpretation. However, previous modeling results of the optogenetic system showed
that cell-to-cell variability created by the system depends on whether its activity is modulated via
light frequency or intensity [2]. This is explainable by a thresholding mechanism for the transcription
factor in which, for low to intermediate light intensities, a fraction of the population does not have
enough active EL222:mVenus to trigger significant activity of the optogenetic promoter. We therefore
decided to model differentiation for our system with a Hill function f(EL222) = EL222nH

K
nH
H +EL222nH

in line

with the model of EL222-mediated gene expression in the work of Benzinger and colleagues [2]. We
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find that choosing a large Hill-exponent nH = 4 and a Hill-threshold that is significantly larger than
average EL222:mVenus-levels, KH = 132/s (i.e. 132 in the fluorescence units displayed on x-axes of
all distribution plots), coupled to a maximal single-cell differentiation rate us = 0.1min−1 leads to
good agreement with observed population dynamics in Figure 3a in the main paper. The steepness
of the Hill-function, coupled to a threshold that is far in the tail of the population’s EL222:mVenus
distribution, implies that the differentiation rate of the population is dependent on the rate at which
fluctuations in EL222:mVenus replenish the tail of the EL222:mVenus distribution. We note that
the time scale of fluctuations in constitutive expression of stable proteins (here of EL222:mVenus) is
determined by the cells’ growth rate λ. Threshold-crossing “rates” for such proteins, however, have
more complex dependencies on the protein production process and, in particular, depend on the size
of fluctuations relative to the size of the threshold. Therefore, this model is capable of explaining
slow population differentiation rates (e.g. that it takes approximately 20h for 90% of the population
to differentiate in continuous presence of light, Figure 3b, right, in the main paper) without having
to artificially impose a small value of us, which, in contrast, was necessary for the differentiation
rate parameter (uint = 0.168h−1) of the simple deterministic model in Figure 1d in the main paper.

S.2.2 Mathematics of distribution dynamics in sub-populations.

In the absence of light, u(t) = 0, the stochastic model in Eq.(2) is a standard model of bursty gene
expression and well-studied [1]. Its master equation is given by

d

dt
p(x, t) = −(a+ λx)p(x, t) + λ(x+ 1)p(x+ 1, t) + a

x∑
y=1

1

b
(1− 1

b
)y−1p(x− y, t), (4)

where p(x, t) := P (X(t) = x | X(0) = x0) and X(t) is the number of proteins in a cell at time t ≥ 0,
x ∈ N0. To (approximately) calculate with this model, one can make use of a finite state projection
[5] in which all protein production bursts that would lead the process to exit the truncated state
space are instead redirected at a maximally allowed state xm. xm needs to be chosen significantly
larger than typical protein numbers for the finite state approximation to be accurate. Collecting all
probabilities in a vector p(t) := [p(0, t) · · · p(xm, t)]T , the master equation can be written in vector
form as

d

dt
p(t) = Ap(t), (5)

where the entries of the generator matrix A are given as

Ax+1,y+1 =



−(a+ λx) if y = x < xm,

−λx if y = x = xm,

λ(x+ 1) if y = x+ 1,
a
b (1− 1

b )x−y−1 if y < x < xm,∑∞
z=x−y

a
b (1− 1

b )z−1 if y < x = xm.

(6)

In the presence of light, u(t) = 1, this well-known model of gene expression is subject to state-
dependent differentiation, which leaves the distribution of EL222:mVenus in the total population
unaffected but creates complex dynamics in sub-populations. Possibly the most straightforward
approach for obtaining distribution dynamics in sub-populations is to treat the differentiation state
of the cell as an additional (pseudo-)species and to solve a new master equation with doubled state
space size that basically consists of two coupled versions of Eq.(5). However, doubling the size of the
state space, and the size of A, implies that numerically solving the corresponding master equation
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may be significantly more difficult. Eq.(5) may, for instance, be solved via calculation of the matrix
exponential of A but this becomes difficult if A is too large. On a more applied note, one can
also realize that amounts of EL222:mVenus in differentiated cells are of no relevance for emerging
population dynamics since these cells are already differentiated and will not differentiate again.
In light of these considerations, it would be desirable to calculate with a small master equation
that tracks only undifferentiated cells but, as opposed to Eq.(5), does so correctly in the presence
of selective differentiation. Such an equation can be obtained by augmenting the bursty protein
production model with an absorbing state, transitions to which represent a differentiation event in
a cell. Denoting this new absorbing state by D, its probability by p(D, t), and defining a new vector

of all probabilities ps(t) := [p(D, t) p(0, t) · · · p(xm, t)]T , we obtain the augmented master equation

d

dt
ps(t) =

[
0 c1
0 C

]
ps(t), (7)

where c1 = us ·u(t) · [f(0) f(1) · · · f(xm)] and C is the same as A in Eq.(6) except that the outflow
terms due to differentiation in c1 are subtracted from the diagonal of A.

To obtain the dynamics of EL222:mVenus distributions in undifferentiated cells, we can define the
conditional probabilities pc(x, t) := P (X(t) = x | X(t) 6= D,X(0) = x0) for a cell to have x proteins
at time t given that it has not differentiated yet. Collecting conditional probabilities in a vector
pc(t) := [pc(0, t) · · · pc(xm, t)]T , it is straightforward to show that the EL222:mVenus distribution
in undifferentiated cells follows the non-linear equation

d

dt
pc(t) = Cpc(t) + pc(t) · (c1pc(t)) . (8)

When light is continuously maintained, u(t) = 1, pc(t) converges to a quasi-stationary distribu-
tion, pQSD, which can be obtained as the normalized eigenvector of C corresponding to the largest
eigenvalue [6]. Correspondingly, the (per cell) population differentiation rate converges to the neg-
ative of this eigenvalue (the largest eigenvalue is always negative). In the absence of light, u(t) = 0,
it holds that c1 = 0 and C = A, which implies that the EL222:mVenus distribution follows the
standard master equation of the bursty protein production model and reverts back to its well-known
stationary negative binomial distribution.

S.2.3 Selection effects for the integrated differentiation system.

To test our mathematical results experimentally, we exposed cells to continuous light and measured
the resulting dynamics of the EL222:mVenus distribution of the undifferentiated cell population.
Since the continuous presence of light eventually leads to differentiation of the entire population,
we can only reliably quantify EL222:mVenus distributions in undifferentiated cells at early enough
time points with sufficiently many undifferentiated cells. Figure S.4 shows that both model and data
distributions start to shift after the application of light. The bottom panels (11 − 15h after light
induction) indicate that distributions do not significantly shift further after some time. According
to the model, these distributions represent the quasi-stationary condition that balances selective
differentiation of cells with high EL222:mVenus levels and replenishment of the original distribution
due to the stochastic protein production process.
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Figure S.4: EL222:mVenus distribution dynamics in continuous light. The initial condition of the model
(magenta in all panels) is the negative binomial distribution of the bursty protein production model. When light
is applied, cells with high EL222:mVenus levels differentiate and EL222:mVenus distributions of cells that remain
undifferentiated shift to lower levels according to both model (red) and data (blue). According to the model, a
quasi-stationary condition is reached some hours after the start of light induction.

In addition to the experiment shown in Figure S.4, we performed another experiment where
light is applied for some time but then removed again. However, given the only very small shift in
distributions, we could not clearly establish that the EL222:mVenus distribution of undifferentiated
cells reverts back to the initial condition in the dark for the integrated system. We refer the reader
to the plasmid-based version of the system for a demonstration of this result (e.g. Figure 5 in the
main text).

S.3 Plasmid dynamics and population net growth rate.

S.3.1 Construction of the model.

The population dynamics of cells that have or have not lost the plasmid can be described by the
following ordinary differential equations

d

dt
n = λn− ln

d

dt
n0 = (λ− µ)n0 + ln, (9)

where n is the (expected) number of cells that have not lost the plasmid, n0 is the number of cells
that have lost the plasmid, λ = 0.0067 min−1 is the single-cell growth rate (corresponding to a
division time of 103min), l is the plasmid loss rate, and µ represents a removal rate of cells that have
lost the plasmid. Taking a single-cell perspective, plasmid loss is a cellular event and it is a priori
unclear if it can be appropriately described by a single rate parameter l since such a description
implicitly carries the assumption that the waiting time for the event to occur follows an exponential
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distribution. However, one can show that the simple population dynamics model Eq.(9) can be
derived from a mechanistic representation of single-cell plasmid copy number fluctuations where the
plasmid loss rate emerges as the difference between dilution and replication rate, l = λ− ap (see the
following Section S.3.2).

In non-selective media, it holds that µ = 0, the total population grows at a rate λ, and the ratio
n

n0+n
will converge exponentially to zero at a rate that is determined by the plasmid loss rate l.

Similarly, average plasmid copy numbers of cells in the population decrease exponentially at rate
l when cells are switched from selective to non-selective media (see the following Section S.3.2).
Assuming that the total rate of protein production of a cell is linear in the number of plasmids then
implies that expression levels of constitutive proteins approximately decay exponentially at rate l
since, from a mechanistic perspective, the plasmid loss rate must be smaller than the growth rate λ
and therefore the slowest time scale that determines changes in protein levels. Since gene expression
levels can readily be measured, we can experimentally quantify l = 10−3 min−1 by switching cells
from selective to non-selective media and observing the decay rate of the mean of a constitutively
expressed protein (Figure 4a in the main paper). From this result, the plasmid replication rate can
be derived as ap = 0.0057 min−1 = 0.85λ, i.e. that each plasmid is only replicated successfully with
a probability of 0.85.

In selective media, µ will take a strictly positive value and must be sufficiently large compared
to l to ensure that cells with plasmids can be maintained in the population. If this is the case,
straightforward manipulation of Eq.(9) shows that the fraction of cells with plasmids converges to
n

n0+n
= µ−l

µ and the net population growth rate to λselect = λ− l = ap. The seemingly counterintu-
itive result that the growth rate in selective media does not depend on µ, and is instead equal to the
plasmid replication rate, is due to the fact that reduced growth rates for cells without plasmids imply
that the fraction of these cells will be correspondingly smaller in stationary growth conditions. This
implies that growth rate measurements in selective media cannot be used to determine µ but instead
provide an independent measurement of ap. We find that selective media reduces the population
growth rate by about 15% (Figure 4b in the main paper), which is in agreement with the previous
finding that the plasmid replication rate must be 15% smaller than λ.

With the value of l (double-) confirmed, we set out to determine the value of µ by measuring
the fraction of cells without plasmids in selective media, n0

n0+n
. To this end, we performed a colony

counting experiment (see also Section S.9.1). Briefly, we cultured cells harboring the integrated
system and cells harboring the plasmid-based system to exponential phase in selective media in
triplicates. We then did serial dilutions of the cultures and plated them on selective and non-
selective media. After 48h of incubation at 30◦C in the dark, we counted the number of colonies
on each plate manually (Figure 4a in the main text). We found that, while there was no significant
difference in the number of colony forming units (CFUs) at different dilutions between selective and
non-selective media for the strain with the integrated system, the number of CFUs for the strain with
the plasmid-based system was always lower compared to the strain with the integrated system. On
average, upon normalization with the CFUs observed in non-selective media at the given dilution, we
observed a significant decrease in the number of CFUs on selective media plates for the strain with
the plasmid-based system (Figure 4a in the main text). Comparing the values, we estimated that
around a third (32.83%±10.16% (mean ± s.d.)) of cells do not contain plasmids during exponential
growth.

According to the modeling and experimental results presented in this section, our cells carry
on average around 4 plasmids during stationary growth in selective media. Average plasmid copy
numbers of cells carrying plasmids similar to the ones used in the study have been reported in
the past via bulk measurement methods like DNA extraction of the whole population followed by
qPCR [7, 8, 9]. There is significant variability in the numbers reported in different studies which is
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understandable given that each study used different plasmid backbones (the backbones in Gnügge
et al. [9] are closest to ours). In Gnügge et al. [9], an approach with two constitutively expressed
fluorescence reporters, one integrated in the genome while the other destabilized and expressed from
a plasmid, was employed to indirectly estimate the distribution of 2-micron plasmid copy numbers in
the population via flow cytometry. The authors observed that a significant fraction of the population
lacked plasmids (45%). The fluorescence distribution of the destabilized constitutively expressed gene
resemble the mVenus fluorescence distribution of our system, except that peaks in the distribution,
corresponding to different plasmid copy numbers according to Gnügge et al., are smeared out in our
data since we did not use a destabilized reporter.

S.3.2 Mathematics of the single-cell plasmid model in growing popula-
tions.

We represent the dynamics of plasmid copy numbers in growing cell populations by a one-dimensional
replication-dilution process coupled to a removal process for cells that have lost the plasmid

P
ap−−−−→ P + P P

λ−−−−→ ∅

cell
µ·1{P=0}−−−−−−−−−→ removed, (10)

where ap is the plasmid replication rate, λ is the growth rate of cells and thus the rate at which
plasmids are diluted, and µ is the rate at which cells that have lost the plasmid are removed from
the population. In non-selective media, µ = 0, this process is governed by the following master
equation:

d

dt
p(x, t) = −(ap + λ)xp(x, t) + ap(x− 1)p(x− 1, t) + λ(x+ 1)p(x+ 1, t), (11)

where p(x, t) := P (X(t) = x | X(0) = x0) and X(t) is the number of plasmids in a cell at time

t ≥ 0, x ∈ N0. Collecting the probabilities of all states in a vector, p(t) := [p(0, t) · · · p(xm, t)]T ,
and projecting on a finite state space, it is well known that the master equation can be written in
vector form as

d

dt
p(t) = Ap(t) (12)

A =



0 λ 0 · · · · · · · · · · · · 0
0 −(λ+ ap) 2λ 0 · · · · · · · · · 0
0 ap −2(λ+ ap) 3λ 0 · · · · · · 0
0 0 2ap −3(λ+ ap) 4λ 0 · · · 0
...

...
. . .

...
0 0 · · · 0 (xm − 3)ap −(xm − 2)(λ+ ap) (xm − 1)λ 0
0 0 · · · · · · 0 (xm − 2)ap −(xm − 1)(λ+ ap) xmλ
0 0 · · · · · · · · · 0 (xm − 1)ap −xmλ


.

For this finite state version to be an accurate approximation of the infinite state Markov chain, xm
needs to be chosen large enough for it to be unlikely that the process ever reaches such large plasmid
copy numbers such that the omission of outflow and inflow terms beyond the truncation (in the last
row) does not lead to noticeable changes in the solution.

10



Due to the absorbing state at zero, the stationary distribution of this Markov chain has prob-
ability one in the state zero, corresponding to all cells in a population having lost the plasmid, or
alternatively to any single cell having lost the plasmid with probability one. When cells are grown in
selective media, however, cells that lose the plasmid are gradually removed from the population, for
instance because they die. To obtain an equation that describes plasmid copy number distributions
for populations growing in selective media, we can add a new absorbing state D for dead cells that
is reachable from x = 0 with a rate µ that represents the death of cells without plasmids. Defining
p(D, t) := P (X(t) = D | X(0) = x0) and ps(t) := [p(D, t) p(0, t) · · · p(xm, t)]T , we can write a new
master equation for cells in selective media as

d

dt
ps(t) =

[
0 c1
0 C

]
ps(t), (13)

where c1 = [µ 0 . . . 0] and C is the same matrix as A in Eq.(12) except that the zero in the
(1, 1)-entry of A is replaced by −µ.

Eq.(13) is a useful tool as it allows us to define the conditional probabilities
pc(x, t) := P (X(t) = x | X(t) 6= D,X(0) = x0) for a cell to have x plasmids at time t given that it
has not died yet. Collecting conditional probabilities in a vector pc(t) := [pc(0, t) · · · pc(xm, t)]T , it
is straightforward to show that the plasmid copy number distribution for all cells that are part of the
population at time t follows the same type of non-linear equation as obtained previously (Eq.(8))
for EL222 distributions in undifferentiated cells:

d

dt
pc(t) = Cpc(t) + pc(t) · (c1pc(t)) . (14)

When growth conditions do not change, pc(t) converges to a quasi-stationary distribution, pQSD,
which can be obtained as the normalized eigenvector of C corresponding to the largest eigenvalue.
While the above derivation may seem complex, we note that it is highly useful: plasmid copy
numbers are typically measured in populations growing in selective media and Eq.(14) is necessary
to correctly interpret resulting data. For instance, average plasmid copy numbers can be measured
by qPCR and this average can be compared to the mean of pQSD. Furthermore, Eq.(14) allows
us to consolidate the mechanistic single cell perspective of plasmid loss events with the population
perspective of a measurable plasmid loss rate (as in Eq.(9)). When populations are grown in selective
media, their plasmid copy number distribution equilibrates to the quasi-stationary pQSD. Switching
to non-selective media then frees up only one-dimensional dynamics and the plasmid copy number
distribution will gradually shift towards x = 0 while leaving the ratios of probabilities of all other
states unchanged. This implies that there exists a single time scale, and a single rate, that emerges
as a plasmid loss rate at the population scale. This rate can be obtained as the negative of the
largest eigenvalue of C. For the simple replication-dilution model that we used here, we find that
the negative of the largest eigenvalue of C is equal to λ − ap, which is in line with the intuitive
expectation that a plasmid loss rate that emerges at the population scale should be determined by
the difference of replication and growth rate.

S.4 Composed model of plasmid copy numbers and differen-
tiation dynamics.

S.4.1 Calculating with the composed model

Master equation and generator matrix of the composed model can be obtained akin to the component
models. To be able to compare distributions of both undifferentiated and differentiated cells to data
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(Figure 5 in the main paper), as opposed to Section S.2.2, we have decided to explicitly track also
differentiated cells even though their statistics are not needed to determine differentiation dynamics
at the population scale. This comes at the cost of a doubled state space size, as already stated in
Section S.2.2, and leads to a normal linear master master equation. Eventually, we still require a
non-linear master equation of the type

d

dt
pc(t) = Cpc(t) + pc(t) · (c1pc(t)) (15)

for the composed model since the plasmid part of the model requires conditioning on cells not being
removed due to plasmid loss, as described in detail in Section S.3.2. The generator matrix of the
composed model is too unwieldy to reproduce here since the model is 3-dimensional (EL222:mVenus,
plasmids, differentiation status). In our code, it is constructed algorithmically with for-loops running
through all dimensions and all possible state changes coupled to an alignment of the 3-dimensional
(finitely truncated) state space in a single dimension to obtain a vector form of the master equation.
We tested accuracy of finite state projections of varying sizes and eventually settled for a truncation
251 · 31 · 2 that leads to a generator matrix of size 15562× 15562. For all calculations where this is
possible, we dropped the differentiated population from the model and calculated with a generator
matrix of only half the size. For instance, the initial condition of undifferentiated cells in the model
(EL222:mVenus and plasmid distributions in the dark, Figure 5 in the main paper and Figure S.6)
are determined as eigenvectors of a matrix C that is only 7781× 7781.

For the plasmid-based system, there is a small fraction of cells that are already differentiated
before light is applied. For the modeling, we assumed that these cells differentiated long before
the start of the experiment such that their EL222:mVenus and plasmid distributions have already
equilibrated back to the same distribution as that of undifferentiated cells. We note, however, that
it is also possible that these cells recombined due to ambient light contamination when the cells are
handled for loading into the bioreactor platform. This constitutes a possible source of mismatch
between the composed model and experimental data.

To obtain transient distribution dynamics in response to light, we dropped the non-linear terms
in Eq.(15) from the model and removed the absorbing state corresponding to cells that are removed
due to plasmid loss while keeping the outflow terms due to cell removal on the diagonal of C. This
leads to a linear version of the equation that can be solved, for instance, via matrix exponentiation
[10] but that does not preserve the total probability mass. We have shown previously, however, that
renormalizing the resulting solution to a probability distribution allows one to obtain the solution
of Eq.(15) without the need to solve a non-linear equation [4].
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S.4.2 Additional results for the plasmid-based differentiation system

Figure S.5: Distribution dynamics of the four fluorescent reporter proteins for the experiment in
Figure 2 and Figure 5 in the main paper. Color coding indicates the time of the experiment. Rows correspond
to the different fluorescent reporters, columns to different sub-populations (left: all cells, middle: undifferentiated
cells, right: differentiated cells) after classification based on mNeonGreen abundance. We note that due to changing
sizes of sub-populations, fluorescence distributions need to be extracted from varying (sometimes low) cell numbers.

In the main text, we have shown that the composed model leads to accurate predictions of dif-
ferentiation dynamics at the population scale as well as good agreement of predicted dynamics
of EL222:mVenus distributions with experimental data. Full time-varying distribution data of all
fluorescent reporters for this experiment is displayed in Figure S.5.

Dynamics of plasmid copy number distributions in sub-populations cannot be measured directly
in experiments. They are nonetheless interesting and can readily be obtained from the model. Figure
S.6 shows model-predicted plasmid copy number distributions for the experiment and time points
displayed in Figure 5 in the main paper. According to the model, cells contain on average around 4
plasmids. After exposure to light, the average plasmid copy number in differentiated cells increases
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to more than 6 while cells that remain undifferentiated have on average only slightly more than
two plasmid. When cells are maintained in the dark, plasmid copy number distributions of both
sub-populations converge back to their initial condition.
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Figure S.6: Additional results for the experiment in Figure 5 in the main paper. (a) Emerging population
dynamics, same as Figure 5 in the main paper. (b) Dynamics of average plasmid copy numbers in sub-populations.
(c) Dynamics of sub-population plasmid copy number distributions. Color coding and time points are the same as in
Figure 5 in the main paper.

Differing plasmid copy number distributions lead to different removal rates of cells from sub-
populations due to plasmid loss. Consequently, effective sub-population growth rates in selective
media will be transiently different. Model-predicted sub-population growth rates are shown in
Figure S.7a. Differing sub-population growth rates imply that the differentiated population fraction
continues to increase in the dark even though there is no more active differentiation (Figure 5 in
the main paper and Figure S.6a). Sub-population growth rates are not experimentally measurable
since all cells grow together and the total population growth rate remains constant at all times
according to both model and data. The continuing increase in the differentiated fraction in the dark
is, however, experimentally observable and agrees well with predictions of the model.

Figure S.7 also shows that multiple light pulses lead to a slightly reduced population differen-
tiation rate for subsequent light pulses compared to the first. This is a consequence of selective
differentiation of cells with high EL222:mVenus levels in the first stimulus and plasmid mixing
dynamics that are too slow to replenish the sub-population plasmid copy number distribution in
between pulses. Selective differentiation therefore creates a transient memory of the light stimulus
that is retained for a time that depends on how plasmid copy numbers fluctuate in cells.
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Figure S.7: Additional results for the experiment in Figure 5 in the main paper. (a) Sub-population
growth rates according to the model of undifferentiated (red) and differentiated (orange) cells. (b) Population
differentiation rate according to the model.

S.4.3 Differention dynamics for varying light sequences

To test the plasmid-based differentiation system and to determine how well other experiments can
be predicted by the composed model, we exposed cells to light input sequences different from the
one shown in Figure 5 in the main paper. To start, we chose a light sequence with light pulses
that are of the same duration (5min) as in Figure 5 in the main paper but that are applied further
apart from each other (4h between subsequent pulses instead of 1h). Overall, we applied 5 such
light pulses as opposed to the three pulses in the experiment of Figure 5 in the main paper. Full
time-varying distribution data of all fluorescent reporters for this experiment is displayed in Figure
S.8. We find that the experimentally measured differentiated fraction grows more slowly compared
to Figure 5 in the main paper (Figure S.9a). As for previous results, EL222:mVenus distributions in
undifferentiated cells shift to lower levels in response to light (Figure S.9b,d). Both differentiation
dynamics and dynamics of sub-population EL222:mVenus distributions are well predicted by the
composed model. A notable difference to the experiment in Figure 5 in the main paper is that 10h
after the last light signal there is almost no further increase in the differentiated fraction. According
to the model, this is a consequence of the increased spacing between subsequent pulses that allows
plasmid copy numbers and sub-population growth rates more time to relax back to their initial
conditions (Figure S.9c).

15



Figure S.8: Distribution dynamics of the four fluorescent reporter proteins for the experiment with
five 5min light pulses (see also Figure S.9). Color coding indicates the time of the experiment. Rows correspond to
the different fluorescent reporters, columns to different sub-populations (left: all cells, middle: undifferentiated cells,
right: differentiated cells) after classification based on mNeonGreen abundance. We note that due to changing sizes
of sub-populations, fluorescence distributions need to be extracted from varying (sometimes low) cell numbers.
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Figure S.9: Response of the plasmid-based system for another light sequence. (a) Emerging population
dynamics according the single cell model (red) for the light input shown at bottom are compared to experimental data
(blue). (b) Dynamics of the median of EL222:mVenus distributions according to the model (red) and data (blue). (c)
Sub-population growth rates of undifferentiated (red) and differentiated (orange) cells according to the model. (d)
Initial EL222:mVenus distribution in the dark (left) and distributions shifts after light induction (middle and right).

Subsequently, we applied continuous light to cells and found that the entire population recombines
fairly quickly despite the presence of ∼ 33% cells that have EL222:mVenus levels close to zero and
seem to have lost the plasmid (Figure S.10). This is not a contradiction since populations grow
in selective media and, with the help of the model, we established that such cells are continuously
removed from the population while at the same time new cells without plasmids emerge due to
plasmid loss events. New plasmid loss events may equally well happen in cells that are already
differentiated.
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Figure S.10: Plasmid-based system in continuous light (a) Differentiation dynamics obtained from two
replicates (shades of blue) are compared to predictions of the composed model (red). Replicates agree perfectly but
there are differences to the model in early transients since the model neglects delays due to recombinase production and
experimental detection of differentiated cells (needs enough mNeonGreen production and maturation). (b) Dynamics
of EL222:mVenus medians for the two replicates. Under continuous light, the median drops to almost zero since at
all time points more than half of the undifferentiated cells have no plasmids (according to the model). At later time
points (> 20h after the start of light induction) most cells are recombined and the median of undifferentiated cells
cannot be reliably computed.

S.5 Experimental replicates

Since we have made extensive use of particular experimental results for constructing and testing
the composed model, it is important to verify that these results are repeatable. First things first,
a certain degree of variability in experiments on our bioreactor platform cannot be avoided. In
particular, the different reactors of the platform are each equipped with their individual LEDs.
In principle, all LEDs are identical but a certain degree of variability in light intensity between
LEDs for the same setting cannot be avoided, in particular when the intensity is set to be low. To
reduce the consequences of such variability, we have only used a fixed fairly large intensity setting
for all experiments in the paper. Nevertheless, the same intensity setting may lead to slightly
more or less differentiation in different experiments. We note, however, that we only ever observed
minor differences. Furthermore, LED variability creates only variations in the system’s input that
does not alter core dynamical processes in any way. Figures S.11a shows three replicates of the
experiment with the integrated differentiation system in Figure 3a in the main paper that was used
for constructing the model. We find that these experiments are in good agreement and show very
similar dynamics of the differentiated fraction in response to light except that a slightly smaller
differentiated fraction emerged for one of the experiments (presumably due to LED variability).
Two replicates of the continuous-light experiment in Figure 3b in the main paper show also very
good agreement (Figures S.11b).
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Figure S.11: Replicates for the integrated differentiation system. (a) Dynamics of the differentiated fraction
in three replicates of the experiment in Figure 3a in the main paper. Absolute experiment time on the x-axis of some
of the replicates has been shifted to align the timing of the light pulses in the different experiments. (b) Dynamics of
the differentiated fraction in two replicates of the experiment in Figure 3b in the main paper.
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Figure S.12: Replicates for the plasmid-based differentiation system. (a) Dynamics of the differentiated
fraction in three replicates of the experiment in Figure 5 in the main paper. (b) Median EL222:mVenus dynamics for
the same experiments as in panel a. In both panels, absolute experiment time on the x-axis of some of the replicates
has been shifted to align the timing of the light pulses in the different experiments.

For the plasmid-based system, an additional difficulty is that the system is more light sensitive
than the integrated system (less light is required to differentiate cells with many plasmids). As a
consequence, it is hard to avoid that some cells differentiate due to ambient light contamination when
cells are loaded into the bioreactor platform. This may lead to non-zero differentiated fractions at
the start of the experiment and slightly reduced levels of EL222:mVenus in undifferentiated cells at
early time points prior to blue light exposure. Figure S.12 shows three replicates of the experiment in
Figure 5 in the main paper. Overall, replicates agree very well in the dynamics of the differentiated
fraction (Figures S.12a) and the shift in EL222:mVenus levels in undifferentiated cells (Figures S.12b)
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with some small differences being present due to the aforementioned LED variability and ambient
light contamination.

S.6 Repeated light pulses

In the main paper, we used repeated light pulses to regulate constitutive gene expression levels in
the undifferentiated sub-population to constant lowered levels. Figure S.13 supplements the results
in Figure 6 in the main paper and displays the full time-varying distribution data of all fluorescent
reporters for the experiment in which cells have been exposed to 2min of light every 4h. Particular
attention should be given to the third row in Figure S.13 that provides EL222:mVenus distribution
dynamics. The middle panel shows EL222:mVenus distributions in undifferentiated cells. The
shift from red to orange and yellow colors corresponds to the shift from the magenta to the blue
distribution in Figure 6,c in the main paper. The distribution then remains approximately invariant
for tens of hours (yellow and orange). Towards the end of the experiment (green and blue colors),
there seems to be a reduced number of cells that contain no plasmids (reduced peak at zero) and
an increased number of cells with approximately one plasmid (despite the fact that the median
of the distribution stays more or less constant (Figure 6,b in the main paper)). This change in
EL222:mVenus distributions manifests itself also in the distribution of the entire population (third
row, left panel). We must therefore conclude that plasmid regulation is modified towards the end
of the experiment in some unknown way despite the fact that the media of the experiment has not
been changed.
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Figure S.13: Distribution dynamics of the four fluorescent reporter proteins for the experiment with
2min of light every 4h. Color coding indicates the time of the experiment. Rows correspond to the different fluores-
cent reporters, columns to different sub-populations (left: all cells, middle: undifferentiated cells, right: differentiated
cells) after classification based on mNeonGreen abundance. We note that due to changing sizes of sub-populations,
fluorescence distributions need to be extracted from varying (sometimes low) cell numbers.

S.7 Emerging dynamics for centromeric plasmids

S.7.1 Characterization of system dynamics for centromeric plasmids

To further back up the results obtained for the plasmid-based version of the differentiation system in
the main paper, we constructed a third version of the system where system components are expressed
from centromeric instead of 2-micron plasmids. Centromeric plasmids are tightly regulated and
typically present in only 1-2 copies per cell [9]. Correspondingly, we expect less cell-to-cell variability
in EL222:mVenus compared to the 2-micron version of the system but increased variability compared
to the integrated version since there should be some cells with more than a single copy of the system
as well as some cells that have lost the plasmid despite the regulation. Growing the centromeric
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strain in the dark and determining EL222:mVenus levels via mVenus fluorescence, we find that
this is indeed the case: a large part of the population has mVenus levels that are similar to the
integrated strain but there are also some cells with presumably more than one copy of the system
as indicated by the tail of the distribution that is heavier for the centromeric strain but reaches less
into high numbers compared to the 2-micron strain (Figure S.14a). At the same time, there are
also cells with mVenus fluorescence similiar to autofluorescence levels, presumably corresponding to
cells without plasmids. A notable difference to the 2-micron strain is that the distribution for the
centromeric strain has two modes due to a clearer separation in mVenus levels of the zero and one
plasmid populations. This is an indication of the time scales of the system being modified, more
concretely that the time scale of EL222:mVenus fluctuations is now clearly faster than the time scale
of plasmid copy number fluctuations (see also Gnuegge et al. [9] who obtained clear separation of
populations with different plasmid copy numbers by using a destabilized reporter). Since we left
the differentiation system unmodified and only changed the type of plasmid, we can conclude that
the regulation of centromeric plasmids effectively creates slower dynamics for plasmid copy number
fluctuations, or at least reduced plasmid loss rates. Repeating the experiment from Figure 4a,
bottom left, in the main paper for the centromeric strain where cells are switched to non-selective
media, we find that the exponential decay of fluorescence in non-selective media indeed takes place
at a reduced rate (Figure S.14b). Furthermore, the net population growth rate of the centromeric
strain in selective media is significantly larger compared to the 2-micron strain due to fewer cells
losing the plasmid during growth (Figure S.14c).

Figure S.14: Consequence of expressing system components from centromeric plasmids. (a)
EL222:mVenus population distributions for the centromeric stain in the dark indicate less cell-to-cell variability com-
pared to the 2-micron strain but still more variability compared to the integrated strain. For the centromeric strain,
the distribution has two modes presumably corresponding to populations with zero and one plasmid, respectively.
(b) As in Figure 4a, bottom left, in the main paper, switching cells from selective to non-selective media leads to
exponential decay of average levels of a protein that is constitutively expressed from plasmids. The rate of decay
is slower for the centromeric strain than for the 2-micron strain, which indicates reduced plasmid loss rates. Mean
fluorescence (normalized by its maximum) of two replicates is shown. (c) Due to reduced plasmid loss rates, the
centromeric strain effectively grows faster in selective media than the 2-micron strain. The experiment is the same as
the one in Figure 4b, left, in the main paper.

Given that the centromeric strain shows more variability in EL222:mVenus than the integrated
strain but less variability compared to the 2-micron strain, we expect the consequences of selective
differentiation to be noticeable but quantitatively less prominent compared to the 2-micron strain.
Furthermore, we expect that slower fluctuations in plasmid copy numbers lead to longer lasting
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differences between differentiated and undifferentiated sub-populations after selective differentiation
has occurred. To test these hypotheses, we first exposed the centromeric strain to a sequence of
three 5min light pulses followed by five 15min pulses and found that a clear separation in mVenus
levels of differentiated and undifferentiated cells can be observed in response to the light stimulation
(Figures S.15).

Figure S.15: (Sub-)population fluorescence dynamics for the centromeric strain. Results for the cen-
tromeric strain displayed using the same plots as in Figure 1c and Figure 2d in the main paper.

Exposing the centromeric strain to only three short light pulses (5min) still leads to noticeable
differentiation (as opposed to the integrated strain) but significantly reduced differentiated fractions
compared to the 2-micron strain (Figure S.16). This observation is in line with the possible presence
of multiple plasmids (copies of the system) in cells for the centromeric strain but typically reduced
plasmid copy numbers compared to the 2-micron strain.
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a b

Figure S.16: Differentiation dynamics for the centromeric strain. (a) Upon exposure to continuous light,
all strains reach close to 100% differentiated fractions. (b) Three repeated short light pulses (5min) lead to large
differences in the resulting differentiated fraction for the different strains.

To compare the consequences of selective differentiation for centromeric and 2-micron strain, we
exposed the centromeric strain to the 8-pulse light sequence but using a stronger LED intensity
setting so as to obtain similar differentiated fractions as with the three short 5min pulses for the
2-micron strain. We find that despite similar differentiated fractions, the dynamics of EL222:mVenus
levels in cells that remain undifferentiated are significantly different between the two strains. The
centromeric strain shows only a very moderate, but dynamically sustained, drop in EL222:mVenus
medians of undifferentiated cells in response to light (Figure S.17b). Conversely, the EL222:mVenus
median of the undifferentiated cell population for the 2-micron strain shows a large drop but fairly
quick return to initial levels in the dark. Emerging differentiation dynamics show features that are
reminiscent of the different time scales of fluctuations for the two strains: as already established
in the main paper, the 2-micron strain leads to population dynamics in which the differentiated
fraction continues to increase in the dark (Figure 5b in the main paper). We established that the
reason for this is that cells without plasmids are enriched in the undifferentiated cell population,
which creates differing effective sub-population growths rates in selective media. For the centromeric
strain, sub-population differences in plasmid copy numbers and corresponding effective growth rates
persist for longer and the differentiated fraction continues to increase for the entire duration of the
experiment (Figure S.17a,top).
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Figure S.17: Comparison of selective differentiation for 2-micron and centromeric strain. (a) Dynamics
of the differentiated fraction for the two plasmid strains for different light inputs that lead to similar total differen-
tiation. To obtain comparable differentiated fractions for the two strains, we used a higher light intensity for the
experiment with the centromeric strain compared to the intensity that was used in all other presented experiments
(LEDs at intensity setting 100 (out of 255) instead of 40, see also Section S.9.1). (b) Corresponding dynamics of
EL222:mVenus medians in undifferentiated cells show significantly larger drops for the 2-micron strain. Reversion of
the EL222:mVenus median in undifferentiated cells back to initial levels is fast for the 2-micron strain despite the
large drop at light application.

S.7.2 Validation of results via media-switching experiments

The results in the previous sub-section and Figure 5b in the main paper raise the question if the
observed increase of the differentiated fraction in the dark will disappear when cells are grown in non-
selective media. Growth in non-selective media, however, implies simultaneously that the fraction
of cells that bear no copy of the system increases in time. Since these cells cannot differentiate, the
results of experiments in non-selective media would depend on the duration for which cells are left to
grow in the dark to adapt to growth conditions in the bio-reactors before light application is started.
An alternative to obtain results that are more directly comparable is to first grow cells in selective
media and to start changing the media of bio-reactors at the same time as the light stimulation so as
to jointly observe plasmid loss and differentiation dynamics. Since the bio-reactors are controlled to
maintain a constant cell density, the rate at which media can be exchanged is limited by growth rates
of strains. For the strains used in this manuscript, it takes around 6−8h to dilute the original media
in a bio-reactor to below 10%. That said, even a fairly small added volume of non-selective media
already adds some of the missing nutrient (see also Section S.9.1) and should lead to significantly
reduced selection against cells that have lost the plasmid. Correspondingly, we performed several
experiments where bio-reactor media exchange is started during the experiment. Since plasmid loss

25



dynamics are more readily observable for the centromeric strain due to the clearer separation of zero
and one plasmid populations, we decided to perform these experiments for the centromeric strain.
Concretely, we first performed one experiment in which three 5min light pulses are applied at the
same time as the media is switched. We find that the initial differentiation response is largely the
same as the response to the same light sequence in selective media (Figure S.18a). However, as
expected, the sustained increase of the differentiated fraction in the dark disappears in non-selective
media, which shows that differentiated and undifferentiated sub-populations effectively grow at the
same rate in the absence of selection against cells that have no plasmids. In line with this, we observe
that the full EL222:mVenus population distribution gradually shifts from a bimodal distribution with
distinct zero and one plasmid populations towards a unimodal distribution that corresponds to more
or less all cells having lost the plasmid (Figure S.18b).

Figure S.18: Removing the consequences of selective media. (a) To further disentangle the coupling of
single-cell and population dynamics, we repeated the experiment with three short 5min light pulses applied to the
centromeric strain but switched the media of the bio-reactor from selective to non-selective at the time of first light
application. Resulting dynamics of the differentiated fraction (cyan, two replicates) are comparable to the experiment
in non-selective media (orange) but lack the sustained slow increase in the dark that stems from differing (sub-
)population growth rates in selective media. (b) In the absence of selection against cells that have lost the plasmid,
EL222:mVenus distributions shift towards a single peak at autofluorescence levels corresponding to most of the cells
having lost the plasmid.

To further validate these results, we performed additional experiments where populations are
exposed to continuous light stimulation that is started at, or up to 24h after, the time at which
the media is switched to non-selective. In this case, since the light stimulation remains active,
plasmid loss and differentiation dynamics continue to take place simultaneously until the end of the
experiment. Due to lack of selection against cells without plasmids, the final fraction of differentiated
cells should be smaller than the observed ∼ 100% in selective media and be determined by the time
scales of plasmid loss and differentiation dynamics as well as the timing between media switch and
light application.
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We find that applying light at the same time as switching the media leads to differentiation of
70 − 80% of the population whereas the remaining 20 − 30% either contained already no plasmid
at the time of light application or lost the plasmid before differentiation could be triggered (Figure
S.19). Starting the light 6h after switching the media leads to some additional plasmid loss before
differentiation and slightly reduced final differentiated fractions. Finally, we let the plasmid loss
process operate in isolation for an extended time period and only started light stimulation 24h after
media switch. In this case, a part of the population contains no more plasmids when light stimulation
is started and the population reaches final differentiated fractions of only around 50%.

Figure S.19: Joint dynamics of differentiation and plasmid loss. When cells are exposed to continuously-
applied light in selective media, the differentiated fraction reaches close to 100% since cells that contain no plasmids
and cannot differentiate are gradually removed over time (green). When the media is switched to non-selective at
or before light application, cells without plasmids remain in the population and the differentiated fraction reaches
significantly smaller final levels that depend on the timing between media switch and light application (cyan, orange,
and purple).

The joint dynamics of plasmid loss and differentiation can be further illustrated by investigating
the dynamics of the 2-dimensional sub-population distributions of mVenus and mScarlet-I fluores-
cence that jointly report on EL222:mVenus levels and activity of the EL222-controlled promoter that
codes for the recombinase. Figure S.20 visualizes these joint dynamics for the experiment where light
is applied 6h after media switch. After media switch, population EL222:mVenus fluorescence grad-
ually shifts towards lower levels. When light is applied, cells that still have enough EL222:mVenus
start to express recombinase (increasing mScarlet-I levels) and differentiate. EL222:mVenus levels of
the undifferentiated sub-population (orange) therefore accumulate at lower levels upon start of the
light while the full population EL222:mVenus (and mScarlet-I) distribution continues to gradually
shift further to lower levels due to plasmid loss and lack of selection against cells without plasmids.
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Figure S.20: Joint dynamics of differentiation and plasmid loss. Sub-population joint dynamics of
EL222:mVenus and mScarlet-I for the experiment in Figure S.19 where light is applied 6h after the media is switched.
Cells that express mScarlet-I in response to light (and thus recombinase) and recombine (purple cells are recombined,
orange cells are not recombined) are typically cells with high EL222:mVenus levels. Over time, both mVenus and
mScarlet-I levels decrease (the latter despite the fact that light is kept on) due to more and more cells losing the
plasmid. After light activation, there are clearly noticeable differences in mVenus levels, and presumably plasmid copy
numbers, between differentiated and undifferentiated cells that persist for the rest of the experiment. However, since
cells are growing in non-selective media, these differences do not cause different effective sub-population growth rates.
The slow sustained increase in the differentiated fraction for these experiments is expected as a consequence of the
sustained light stimulation and the continuing presence of (fewer and fewer) cells that neither triggered differentiation
nor lost the plasmid.

Finally, Figures S.21 and S.22 show a comparison of the joint dynamics of EL222:mVenus and
mScarlet-I levels for the experiments where cells are kept in selective media and where light is
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applied at the time of switching to non-selective media. The consequences of plasmid loss are easiest
to observe in the decay of activity of the optogenetic promoter (mScarlet-I levels) that occurs in
non-selective media despite the continuing light stimulation.

Figure S.21: System response to full light in selective media. Results are represented equivalently to Figure
S.20 for the data of the experiment in Figure S.19 where cells are kept in selective media.
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Figure S.22: System response to full light in non-selective media. Results are represented equivalently to
Figure S.20 for the data of the experiment in Figure S.19 where light is applied at the same time as the switch of the
media to non-selective.
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S.8 Toxicity and burden of the recombination system

It is common that synthetic circuits that are introduced to cells incur a burden for cells that affects
growth rates. For plasmid-based circuits, such a burden may depend on plasmid copy numbers
in cells and vary between cells and in time as plasmid copy numbers fluctuate. Since this would
create another source of coupled single-cell and population dynamics, we tested for all our strains
if net population growth rates are affected by the presence of our differentiation system and if a
dependency of growth rates on plasmid copy numbers can be detected. Such analysis is readily
possible for our data since the bioreactor platform automatically records data that can be used to
calculate population growth rates as described in the Experimental Methods section (Section S.9.1).

We first analyzed net population growth rates of strains with 2-micron and centromeric plasmid-
based versions of the system for the media switching experiments in Figure S.14. These experiments
are particularly useful since growth in non-selective media implies that average plasmid copy numbers
in cells of the population decrease continuously in time. This implies that if there is a growth cost
created by the presence of the system, the net growth rate of strains with plasmid-based versions of
the system in non-selective media should at first be smaller than the net growth rate of the strain
with the integrated system but then gradually increase with time as more and more cells lose the
last copy of the plasmid. However, we find that after adjustment to non-selective media, strains
with plasmid-based versions of the system quickly adopt the same growth rate as the strain with the
integrated system and then continue to grow at this rate despite decreasing plasmid copy numbers
(Figure S.23a). We conclude that neither of the two plasmid-based versions of the system incur a
burden for cells when cells are grown in the dark.

EL222 contains a VP16 activator domain, which past studies have reported to be toxic in yeast
[11, 12] especially when DNA-bound. To assess possible toxicity of DNA-bound EL222:mVenus for
our strains, we analyzed net population growth rate dynamics after application of different light
inputs for all our strains. In line with our earlier results in [13], even in the presence of continuous
light, we did not observe any change in growth rates for the integrated version of the system and
barely a change for the centromeric version of the system (Figure S.23b). The latter is expected
given the results for the integrated version of the system since (average) EL222:mVenus levels are
not significantly larger for the centromeric version of the system. The strain carrying the 2-micron
version of the system, however, has cells with several fold higher EL222:mVenus levels. In response
to continuous light, we observe a drop to around 80% of the maximum in the net population growth
rate for this strain (Figure S.23b). Given that the same light intensity has been used for all three
strains, we conclude that the decrease in growth rate is not due to light toxicity and possibly a
consequence of toxicity of EL222:mVenus when it is DNA-bound. Towards the end of the experiment
shown in Figure S.23b, the net population growth rate starts to increase again. At a first glance,
one could expect that this might be due previous selection against cells with high EL222:mVenus
levels. However, detailed analysis of EL222:mVenus fluorescence histograms shows that such cells
are already removed after 6h (Figure S.23d). Fluorescence histograms at late time points suggest
that the increase in growth rates is due to a small increase in the number of cells that carry one
copy of the plasmid and a decrease in the number of cells without plasmids in continuous light over
long time horizons despite unchanged growth media.
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Figure S.23: Testing for toxicity and burden. (a) Net population growth rates (solid lines) and median mVenus
fluorescence (dashed) of the 2-micron (orange) and centromeric (purple) version of the system after switching cells
from selective to non-selective media (at time 0) in the dark. Both fluorescence and growth rates have been normalized
with respect to the maximum measured value of individual experiments to reduce possible effects of reactor-to-reactor
variability. (b) Normalized net population growth rates in response to continuous light (intensity setting of 40 as in
all experiments in the main paper) for the integrated (blue), centromeric (purple) and 2-micron (orange) version of the
system. (c) Normalized net population growth rates in response to different light inputs (intensity setting of 40) for
the 2-micron version of the system. (d) Dynamics of EL222:mVenus distributions in the full population for the orange
experiment in panels b and c, i.e. the strain with the 2-micron version of the system exposed to continuous light.
6h after light induction, cells with high EL222:mVenus levels are less frequent in the population while the fraction of
cells without plasmids is increased despite growth in selective media. At 24h, the number of cells without plasmids
appears to be moderately reduced compared to the t=6h time point. However, these differences most likely stem from
inaccuracies in fluorescence deconvolution for low Venus levels for differentiated cells that dominate the population
at this time point and that contain mNeonGreen. At t=40h, the distribution unexpectedly seems to indicate the
presence of more cells with one plasmid.
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Given that continuous light leads to a growth reduction for the 2-micron strain, it is necessary
to test if also short light pulses as used in experiments in the main paper lead to growth reduction.
Analyzing data for different light input sequences applied to the 2-micron strain, we find that no
reduction in net population growth rates can be detected for any condition other than continuous
presence of light (Figure S.23c). Since short light pulses trigger recombination in all cells that
contain sufficient EL222:mVenus, we conclude that EL222:mVenus toxicity does not play a role
for the relevant operating conditions of our system and does not need to be incorporated in the
modeling. That said, for other synthetic circuits that employ the EL222 optogenetic system, it may
be a source of additional couplings between single-cell and population scale processes.

S.9 Experimental methods and data analysis

S.9.1 Experimental methods

Cloning. Plasmids used in the study were generated via the modular cloning approach, Golden-
Gate cloning. Yeast tool kit [14] was used to assemble backbones used in the study and served as a
library of standard parts (promoters, terminators and connectors). Additional parts were generated
either via DNA synthesis or Phusion PCR in the laboratory. Thermocompetent E. coli cells were
transformed with the Golden Gate reaction mixture using heat shock transformation. All plasmids
were isolated using standard miniprep kits (Macheray & Nagel, and Qiagen). Sequences of plasmids
can be found in Supplementary table 1.

Yeast strains. All strains used in this study are derived from BY4741 [MATa his3∆1 leu2∆0
met15∆0 ura3∆0]. Cells were transformed with linearized integrative plasmids, circular 2-micron
plasmids, or centromeric plasmids using standard Lithium Acetate transformation. Standard aux-
otrophic markers Uracil and Leucine were used for selection. Integrative plasmids carrying LEU2
and URA3 targeted their endogenous loci. Selection was carried out on agar plates made from stan-
dard defined media (Sigma Aldrich Yeast Nitrogen Base) containing 2% glucose and devoid of the
respective auxotrophic nutrient (Sigma Aldrich Uracil, and Leucine drop-out media supplements)
during 2 to 3 days at 30◦C in the dark. Strains used in this study and their genotypes are sum-
marised in Supplementary table 1. Glycerol stocks were made with overnight cultures in selective
media when the plasmid was not chromosomally integrated. Such strains were revived on selective
plates. On the other hand, strains harboring chromosomally integrated plasmids were stocked from
overnight cultures grown in YPD and were revived on YPD agar plates. All stocks were covered in
aluminium foil prior to storage. Light sensitive strains were grown in the dark. All manipulations
were performed in the presence of red light.

Growth and culturing conditions. Strains carrying integrations were grown in non-selective
media (Formedium LoFlo Yeast Nitrogen Base supplemented with complete supplement mixture
and 2% glucose (SC media)) for all experiments except colony counting assays. Strains harboring
2-micron or centromeric plasmids were grown in selective media (Formedium LoFlo Yeast Nitrogen
Base supplemented with Sigma Aldrich Uracil drop-out supplement and 2% glucose (SD URA-))
for all experiments except plasmid loss assays. Overnight (ON) cultures were started by picking a
single colony from a freshly streaked plate in 50 ml Falcon tubes shaking at 200 rpm at 30◦C. ON
cultures were diluted 1:50 to start precultures on the day of the experiment in 50 ml Falcon tubes
shaking at 200 rpm at 30◦C. Cultures were allowed to grow for at least 3 hours before loading in
individual reactors in the turbidostat platform.
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Turbidostat platform. Cultures were maintained in exponential phase and monitored at the
single-cell and population levels using our previously published custom continuous culture platform
equipped with LEDs and capable of controlling the cell density (Figure S.25) [15]. Cultures were
grown in the dark until they reached exponential phase and light induction was started only after
the growth rate stabilized. Induction was carried out by LED strips (Adafruit NeoPixel Digital
RGB LED Strip). An intensity of 40 was used for all experiments (out of a maximum of 255).
Sampling from the turbidostat was automated and programmable. Sampled cultures were diluted
20 times with the help of a pipetting robot and passed through the cytometer. The reactor (culture
vessel including pumps, tubing, and filters) was autoclaved before each experiment. The experiments
followed a grow and dilute program where cultures could grow until an optical density (OD) of 0.6
and were then diluted back to OD 0.4. Information pertaining to dilutions was stored, in addition
to the OD and LED status, as csv files. The slope of a linear curve fit to the log of OD data with
time was used to estimate the growth rate. Subsequent analysis of the data was done in Python and
MATLAB.

Cytometry and data analysis. A Guava EasyCyte BGV 14HT benchtop cytometer was used
to acquire all cytometry data shown here with constant settings and no compensation during ac-
quisition. 5000 events were recorded at each timepoint in every experiment. Gating was done using
kernel density based methods and deconvolution was performed on acquired cytometry data using
a linear algebra approach as described in Bertaux et al. [15]. Nonetheless, a summary is provided
in Section S.9.2, Figure S.25 and Figure S.27. To calculate the differentiated fraction, a threshold
of 300 (a.u.) was applied on deconvolved FSC normalized mNeonGreen fluorescence after gating
and doublet removal (Section S.9.2, Figure S.25 and Figure S.29). Cells above the differentiation
threshold were classified as differentiated. Python and MATLAB were used for data analysis and
visualization.

Colony counting. ON cultures were started by picking 3 colonies for integrated, 2-micron, and
centromeric versions of our system on the day before the experiment in 50ml Falcon tubes shaking
at 200 rpm at 30◦C in SD URA-. ON cultures were diluted to 10ml at OD 0.1 on the morning of
the experiment in 50ml flat bottom Erlenmeyer flasks for 6 hours to ensure growth in exponential
phase. At the end of 6h, serial dilutions were made from each culture by adding selective media
and 200µl of each dilution was plated on SD URA- and SC agar plates for all 3 replicates. 10 glass
beads were added to both SC and SD URA- plates and both the plates were agitated at the same
time retracing an imaginary inverted L up and down a total of 8 times [16]. After 48h of growth at
30◦C, CFUs were counted manually for all plates.

Plasmid loss assay. Cells were grown in selective media overnight in duplicates, ON cultures were
started by picking 3 colonies for both the 2-micron and centromeric version of the system on the day
before the experiment in 50ml Falcon tubes shaking at 200 rpm at 30◦C in SD URA-. ON cultures
were diluted 1:50 on the morning of the experiment in 50ml Falcon tubes shaking at 200 rpm at
30◦C in SD URA-for 6 hours before loading in the bioreactor. The loading in the bioreactor led to a
further 3-fold dilution of the preculture but this time in SC media. Cytometry measurements were
immediately started upon loading using the automated cytometry functionality of the platform.

Growth rate computation. The experiments used a grow and dilute program where cells were
allowed to grow until OD 0.6 and then diluted to OD 0.4. The growth rate was computed by
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calculating the slope of linear curve fit to the log of OD data with time. This could be done for each
growth dilution (Figure S.24).

Figure S.24: Growth rate computation. Cultures were grown in a grow and dilute program where they were
allowed to grow until OD 0.6 before being diluted back to OD 0.4 (red circles). Growth rates were computed by fitting
a linear curve to the logarithm of the OD between dilution times (green dotted line) or by fitting a linear curve to
log(OD) with respect to time for a rolling window of 30 measurements (blue dotted line). Green (discrete) and blue
(continuous) lines shown on top of the OD data are computed from the fit. Except for the initial lag phase, growth
rates were estimated equally by the continuous and the discrete fit. The red arrow indicates the lag phase where the
continuous fit is able to capture the gradual increase in growth rate. However, since the lag phase was not important
for result in the manuscript, we relied on the discrete fit to estimate the growth rate for all experiments.
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S.9.2 Data generation and analysis.

Figure S.25: Experimental platform and data analysis overview. (a) Up to 8 experiments can be conducted
in parallel with regular cytometry measurements and individual OD and LED induction control. Measurements with
the cytometer are automated via a pipetting robot that is controlled with the Flask app. Raw fcs files are parsed for
each experiment at every timepoint and stored as a single csv file. An image of the physical setup of the experimental
platform is shown (bottom left). The software to control and operate the turbidostat platform is developed in Python
and implemented with the help of Jupyter notebooks. (b,c) Size gating and doublet removal (b) and quantification of
differentiation (c) for representative data from a single timepoint (enlarged circle in panel d) for the integrated version
of the system induced with continuous light. The FSCH vs SSCH scatterplot is shown as an indicator of cell size and
presence of doublets can be inferred from a FSCA vs. FSCH scatterplot. FSC normalized mNeonGreen fluorescence
is used to classify cells as differentiated if they exceed the threshold value of 300 (a.u.). Circles represent individual
cells. (d) Differentiation dynamics over time for a continuously induced culture. Circles represent the fraction of
differentiated cells in the population. At the representative time point (large circle), two sub-populations exist in the
culture. Light-induction was started at t = 0.
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We used our previously described turbidostat platform [15] to continuously culture cells and conduct
time course experiments. Briefly, the platform allows us to monitor 16 cultures in parallel with
regular OD measurements and maintain them at a target cell density. The OD measurements and
dilution data were used to estimate the growth rate. Culture vessels are equipped with LEDs and
can be stimulated independently with light. Samples from the vessels are collected in a 96-well
plate and, with the help of a pipetting robot, loaded in the cytometer. The cytometer acquisition
is controlled with the help of click and point software. Figure S.25 gives a general overview of the
experimental platform and data analysis.

All cytometry measurements were performed with a Guava EasyCyte BGV 14HT benchtop flow
cytometer. Settings and gains were kept constant for all the experiments. 5000 events were acquired
for each sample without any compensation. Dilutions were done with a pipetting robot such that
the cell density was kept between 200 (to have 5000 events in the acquisition window) and 600
cells/µl (to ensure > 90% singlets). Size gating and doublet removal were done using kernel density
based methods. Singlets were selected based on deviation from linearity in Forward Scatter Height
(FSC-H) vs. Forward Scatter Area (FSC-A). Cells were scored and a threshold was defined above
which cells were classified as doublets and removed from analysis. For size gating, 2D kernel density
estimates were obtained using the SciPy Gaussian kde package on Forward Scatter (FSC-H) vs. Side
Scatter (SSC-H) and regions of density lower than a threshold were removed (Figure S.25b). The
two thresholds were kept constant for all measurements.

Due to significant overlap of fluorescence spectra, it is difficult to observe all four reporter pro-
teins simultaneously (Figure S.26a). To mitigate this, we implemented a deconvolution approach
previously described in Bertaux et al. [15]. Briefly, 4 single fluorescent protein control strains
(mCerulean, mNeonGreen, mVenus, mScarlet-I) with the same promoter and terminator, and inte-
grated in the same locus, were used to determine the spectral signature of each fluorescent protein
across the 12 channels of the cytometer. These signatures were then used in a linear algebra frame-
work to calculate the individual fluorescence of each fluorophore in a strain harboring all 4 of the
fluorescent proteins. We note that prior to deconvolution, autofluorescence in each channel was
subtracted from the raw cytometry data. Autofluorescence was estimated by culturing a wildtype
(WT) strain (BY4741) complemented with a URA3 cassette that expresses no fluorescent protein.
Fluorescence distributions for single-color control and the 4-color strain were in good agreement
after deconvolution (Figure S.26b).
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Figure S.26: Fluorescence distributions before (a) and after (b) deconvolution of the 4-color strain are compared
to fluorescence distributions of single-color strains. For each fluorescent protein, the signal in the most distinguishing
channel is plotted in (a), as noted on the x-axes of sub-panels. Cells were size gated and doublets were removed.
Histograms are composed of > 100, 000 cells.

There was a slight disagreement between the single-color and 4-color deconvolved fluorescence
for mVenus (5% shift in median value). This is perhaps due to errors in deconvolution but might
also stem from epigenetic differences in the gene expression loci for single color (URA3 locus) and 4
color (HO locus) strains [17].

Figure S.27a and Figure S.28a show raw fluorescence values in the most distinguishing channel
for each of the four fluorescent proteins present in the 4-color strain in the dark (grey), when 99%
of the population is undifferentiated, and in continued presence of light (blue) after 99% of the
population has differentiated. Prior to deconvolution, the raw data possessed several characteristics
suboptimal for analysis. Notably, due to low fluorescence of mCerulean, the undifferentiated pop-
ulation (possessing mCerulean) overlaps significantly with the differentiated population (possessing
no mCerulean) in the GRN-V channel. Seemingly, undifferentiated cells possess 5-6 times higher
fluorescence than the WT strain in the GRN-B channel. Furthermore, the fluorescence in the YEL-
G channel, misleadingly, suggests large differences in mVenus fluorescence between differentiated
and undifferentiated cells. Lastly, observing the ORG-G channel, we find that cells in the dark
possess 3-4 fold higher fluorescence compared to the WT strain prompting the misleading conclu-
sion that EL222 is activated without induction. The situation becomes significantly worse for the
plasmid-based system such that it becomes impossible to observe two well-separated populations
for differentiated and undifferentiated cells (Figure S.28a, top right). Furthermore, it appears from
YEL-G fluorescence that cells stop losing the plasmid upon differentiation (Figure S.28a, bottom
left).
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Figure S.27: Fluorescence distributions before (a) and after (b) deconvolution of the 4-color strain for the integrated
system in light (blue) and dark (grey). Data is represented as in Figure S.26. Cells were size gated and doublets were
removed. Histograms are composed of > 10, 000 cells.

Deploying our deconvolution strategy allows us to deconvolve raw fluorescence in 4-color strains.
After deconvolution, all the above-mentioned incongruities either disappear completely or are signif-
icantly diminished. We note that devonvolution of low levels of mVenus in the presence of mNeon-
Green (differentiated cells) yields noisy estimates (Figure S.27b, bottom left) that lead to a broad
spread around zero for the plasmid strain (Figure S.28b, bottom left).

For the quantification of fluorescence, we normalized single-cell fluorescence values after decon-
volution by the cells’ FSC values to reduce effects of cell size variability. To preserve units, values
were scaled by multiplying with the mean FSC of the population. We found that normalizing by
FSC led to tighter distributions, except for mScarlet-I fluorescence, perhaps due to low fluorescence
values. Moreover, we found a persistent population of cells that possessed neither mNeonGreen nor
mCerulean fluorescence at detectable levels. Since our biological circuit precludes their existence,
these spurious cells were filtered out by applying thresholds on mCerulean (10a.u.) and mNeonGreen
fluorescence (300a.u.) and excluding cells that have neither mCerulean nor mNeonGreen fluores-
cence above the respective threshold. Typically these cells made up less than 0.1% of the total cells.
The existence of these cells could be a consequence of sampling in open plates for cytometry or
contamination in the sampling lines.
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Figure S.28: Fluorescence distributions before (a) and after (b) deconvolution of the 4-color strain for the plasmid-
based system in light (blue) and dark (grey). Data is represented as in Figure S.26. Cells were size gated and doublets
were removed. Histograms are composed of > 10, 000 cells.

Figure S.29: Fluorescence distributions of the four reporter proteins of the 4-color strain for the integrated system
in dark (a) and light (b) for deconvolved (grey), gated singlets (green), FSC normalized deconvolved (blue), and FSC
normalized gated singlets (purple) data. Histograms are composed of > 10, 000 cells.
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