Supporting information

Improved SARS-CoV-2 main protease high throughput screening assay using a 5-carboxyfluorescein substrate

Scott Legare^{1,*}, Fabian Heide¹, Ben A Bailey-Elkin¹, Jörg Stetefeld^{1,*}

¹ Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada

*Corresponding authors:

Scott Legare - legares@myumanitoba.ca

Jörg Stetefeld - jorg.stetefeld@umanitoba.ca

Table of Contents

- Figure S1. SDS-PAGE of SARS-CoV-2 M^{pro}.
- Table S1.SARS-CoV-2 M^{pro} circular dichroism spectra analysis.
- Figure S2. Reaction progress curve for the complete substrate hydrolysis.
- Figure S3. Measurement of K_{cat}/K_m at substrate concentrations below substrate K_m .
- Figure S4. Relative fluorescence units produced by fluorophores.

Figure S1. SDS-PAGE of SARS-CoV-2 M^{pro} used for biophysical and enzymatic studies.

Table S1. SARS-CoV-2 M^{pro} circular dichroism spectra analysis.

	Helix (%)	Sheet (%)	Turn (%)	Random coil (%)	Other ^c (%)
CDSSTR ^a	29	26	19	28	
PDB ID: 6Y2E ^b	25	27			48

^a secondary structure content of CD spectra estimated by CDSSTR algorithm. ^b secondary structure of crystal structure estimated using PDBsum. ^c includes turns and random coils.

Figure S2. Reaction progress curve for the complete hydrolysis of substrate. 20 μ M substrate in 20 mM BIS-TRIS pH 7.0 (black lines) and 20 mM BIS-TRIS pH 7.0, 2 mM EDTA, 2mM DTT (blue lines). Each condition was tested at four enzyme concentrations. *A*, For the VKLQ - AMC substrate 0, 2, 4 and 8 μ M enzyme was used. *B-D*, For the nsp4-5-FAM, nsp4-5-EDANS, and nsp4-5-MCA substrates 0, 40, 80 and 160 nM enzyme was used. nsp4-5-MCA substrate was inactive in the presence of EDTA. Each curve represents the mean of 3 independent measurements.

Figure S3. Measurement of K_{cat}/K_m **at substrate concentrations below substrate** K_m **.** Y axis shows the initial rate of product formation per second per enzyme active site in units of s⁻¹. *A*, VKLQ - AMC substrate. *B*, nsp4-5-EDANS substrate. *C*, nsp4-5-MCA substrate. *D*, nsp4-5-FAM substrate. *E*, nsp5-6-FAM substrate. *F*, nsp6-7-FAM substrate. *G*, nsp8-9-FAM substrate. *H*, nsp10-12-FAM substrate. *I*, nsp14-15-FAM substrate. Each data point is the mean ± 1 standard deviation, n = 3.

Figure S4. Relative fluorescence units produced by 100 μ L of 2 μ M fluorophore in 20mM BIS-TRIS pH **7.0.** This shows the FAM fluorophore is much brighter in comparison to other fluorophores used in the fluorescent substrates. Values are reported as the mean of 3 measurements.