CONSERVATION OF DYNAMIC CHARACTERISTICS OF TRANSCRIPTIONAL REGULATORY ELEMENTS IN PERIODIC BIOLOGICAL PROCESSES

SUPPLEMENTARY INFORMATION

Francis C. Motta 1*† , Robert C. Moseley 2† , Bree Cummins 3 , Anastasia Deckard 4 , and Steven B. Haase 2

- 1 Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA
- 2 Biology, Duke University, Durham, NC, USA
- 3 Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
- 4 Geometric Data Analytics, Durham, NC, USA

Contents

Methods	2
Dynamic Curve Features	2
De Lichtenberg Measures	2
JTK-CYCLE Measures	2
Precision-Recall Curves & Average Precision	3
Figure S1 – Precision-recall curves for $S.\ cerevisiae$ microarray	4
Figure S2 – Precision-recall curves for $S.\ cerevisiae\ \mathrm{RNAseq}$	5
Figure S3 – Precision-recall curves for $M.\ Musculus$ microarray	6
Figure S4 – Precision-recall curves for $M.$ $Musculus$ RNAseq	7
Figure S5 – Precision-recall curves for $A.\ thaliana$ microarray LDHC	8
Figure S6 – Precision-recall curves for $A.\ thaliana$ microarray LL_LDHC	9
Figure S7 – Number of permutations vs. unique DL Reg p -values	10
Table S1 – Ranks of core genes using the DL \times JTK score	11
Table S2 – Top 25 highest DL-ranked genes	12
Table S3 – Top 25 highest PerReg-ranked genes	13
References	14

 $^{^\}dagger$ These authors contributed equally to this work.

^{*}Correspondence: fmotta@fau.edu

Methods

Dynamic Curve Features

De Lichtenberg Measures

In [1] the authors introduced a periodicity detection algorithm designed to identify genes in yeast that oscillated with the cell division cycle. The de Lichtenberg algorithm (DL) measures how periodic a signal is at a specified period by quantifying and combining statistical measures of gene expression periodicity and strength of regulation (Eq. 1). For each gene expression profile two empirical p-values, p_{reg} and p_{per} , are independently computed. Respectively, these p-values estimate the probabilities that the observed fold-change variability (Eq. 2) and rhythmicity at a specified period (Eq. 3) of the expression profile occurred, in some sense, at random. These statistics are then combined in a manner which accentuates expression profiles that are simultaneously highly-periodic and highly-variable. Explicitly, let $G \in \mathcal{G}$ be the gene expression profile, measured at timepoints $T = (t_1, \ldots, t_n)$, corresponding to gene G in the set of all measured gene expression profiles in a collection, \mathcal{G} . Then

$$DL(G) := p_{reg}(G)p_{per}(G)\left[1 + \left(\frac{p_{reg}(G)}{0.001}\right)^2\right]\left[1 + \left(\frac{p_{per}(G)}{0.001}\right)^2\right]. \tag{1}$$

The p-value $p_{reg}(G)$ is meant to be the probability that a "random" curve appears more highly regulated than G. This variability metric, denoted Reg(G), and defined by

$$Reg(G) = std (log_{10} (G/mean(G)))$$
(2)

captures the deviation of the time series about its mean, with a small value indicating little variation over time about the mean expression level. Thus, Reg(G) may be interpreted as the magnitude of regulation of the gene G. The rationale of this study is rooted in the expectation that Reg(G) will actually be largest among those genes which are primarily responsible for generating an observed program of dynamic transcript abundance.

In practice, to estimate $p_{\text{reg}}(G)$, an empirical null distribution of curve variability metrics is generated by first creating a large number of random expression curves through selection at each experimental time point the expression value of a transcript chosen from \mathcal{G} uniformly at random. The variability metric (Reg) of each random curve is then computed and $p_{\text{reg}}(G)$ is taken as the fraction of random curves whose regulation score is larger than Reg(G).

Likewise, for each gene G, many simulated curves are generated by randomly permuting the expression values of G and comparing the periodicity metric (called a Fourier score in [1]) of the randomized curve to that of G. The p-value $p_{per}(G)$ is the fraction of simulated curves whose periodicity score (Per) is larger than that of G. This periodicity metric is taken to be

$$Per(G) := \sqrt{(G \cdot \cos(\omega T))^2 + (G \cdot \sin(\omega T))^2},$$
(3)

where ω is a specified period, and therefore reflects the magnitude of the Fourier coefficient at that period. A new implementation of the DL algorithm was written for use in this analysis and is available as a Python 3 module under the MIT License [2].

JTK-CYCLE Measures

JTK-CYCLE (JTK) was developed as a periodicity-detection algorithm to identify circadian rhythmically expressed genes in mice [3]. Since then it has been successfully

applied to time series transcriptomics data collected from many other species exhibiting rhythmic phenotypes. JTK correlates a gene's expression profile to that of a reference curve with known periodicity properties, and computes a significance of that correlation. Usually, and in this analysis, sinusoidal template curves are generated with user-specified periods and at various phase shifts determined by the sampling times of the expression profiles. Then the ordering of the time points by expression levels in a transcript abundance time series is compared to the orderings given by the template curves using Kendall's Tau coefficient [4]. Kendall's Tau measures the total number of agreements (concordances) and disagreements (discordances) in the relative orderings of each pair of time points given by the two ranking, and is therefore invariant to monotonic transformations of the data—making it well-suited to capture non-linear correlations. By precomputing the exact null distribution of Kendall's tau correlation using the Harding algorithm [5], an exact Bonferroni-adjusted p-value is rapidly computed for each gene, G, and is denoted here by $p_{itk}(G)$. An implementation of JTK in Python by Alan Hutchinson [6] was modified for use in this analysis and is available as a Python 3 module under the MIT License [7].

Precision-Recall Curves & Average Precision

Given a ranking of N genes by some metric that is meant to discriminate between core and non-core, for some choice of threshold, we examine the true positives (TP) compared to false positives (FP) and/or false negatives (FN). The *precision* of the classifier's ranking at a given threshold is the fraction of true core genes among all genes ranked above that threshold, i.e. TP / (TP + FP). The *recall* is the fraction of true core genes appearing above the chosen threshold: TP / (TP + FN).

The average precision (AP) of the precision-recall (PR) curve is defined to be $\sum_{n=1}^{N} P_n \Delta R_n$, where ΔR_n is the change in the recall level caused by moving the decision threshold from the (n-1)st gene to the nth gene in the list of genes ranked by some metric, and P_n is the precision of the metric when the threshold is set to the metric of the nth gene in the ranked list.

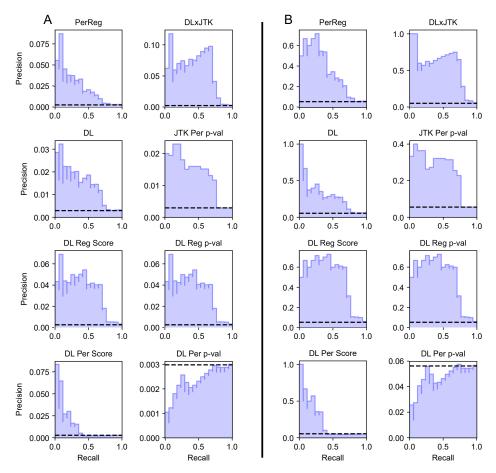


Figure S1. Precision-recall curves of classifiers identifying core from non-core TFs among all genes (A) and among only TFs (B) in S. cerevisiae microarray dataset. Between changes in recall, $R_{n-1} < R_n$, precision is plotted as a constant equal to the precision P_n at the minimum decision-threshold rank giving a recall of R_n , so that the area under the curve is equal to average precision. The horizontal dashed line indicates the baseline average precision of a random classifier.

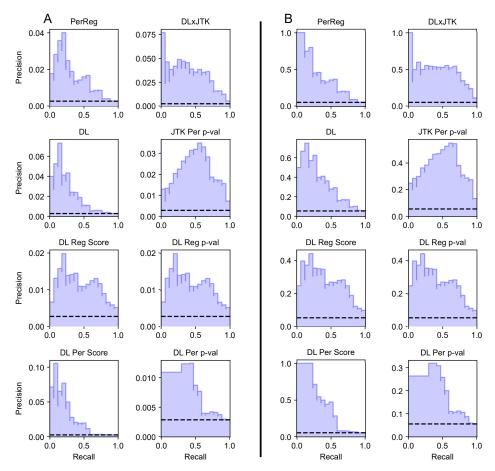


Figure S2. Precision-recall curves of classifiers identifying core from non-core TFs among all genes (A) and among only TFs (B) in S. cerevisiae RNAseq dataset. Between changes in recall, $R_{n-1} < R_n$, precision is plotted as a constant equal to the precision P_n at the minimum decision-threshold rank giving a recall of R_n , so that the area under the curve is equal to average precision. The horizontal dashed line indicates the baseline average precision of a random classifier.

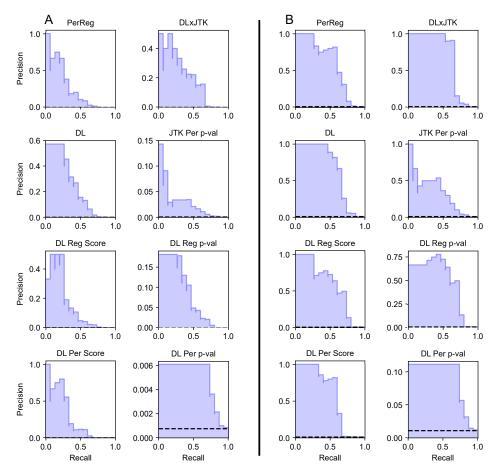


Figure S3. Precision-recall curves of classifiers identifying core from non-core TFs among all genes (A) and among only TFs (B) in M. Musculus microarray dataset. Between changes in recall, $R_{n-1} < R_n$, precision is plotted as a constant equal to the precision P_n at the minimum decision-threshold rank giving a recall of R_n , so that the area under the curve is equal to average precision. The horizontal dashed line indicates the baseline average precision of a random classifier.

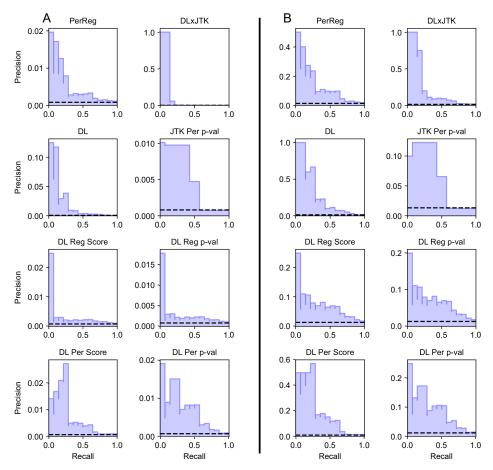


Figure S4. Precision-recall curves of classifiers identifying core from non-core TFs among all genes (A) and among only TFs (B) in M. Musculus RNAseq dataset. Between changes in recall, $R_{n-1} < R_n$, precision is plotted as a constant equal to the precision P_n at the minimum decision-threshold rank giving a recall of R_n , so that the area under the curve is equal to average precision. The horizontal dashed line indicates the baseline average precision of a random classifier.

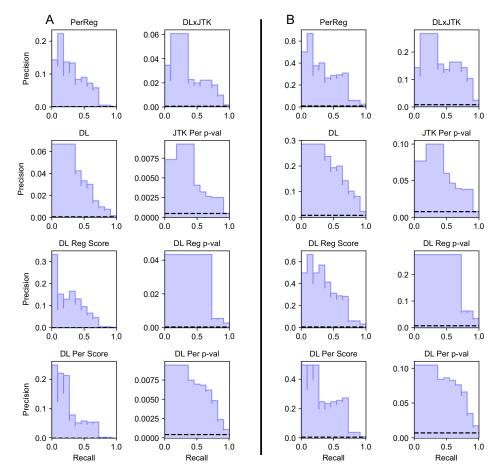


Figure S5. Precision-recall curves of classifiers identifying core from non-core TFs among all genes (A) and among only TFs (B) in A. thaliana microarray LDHC dataset. Between changes in recall, $R_{n-1} < R_n$, precision is plotted as a constant equal to the precision P_n at the minimum decision-threshold rank giving a recall of R_n , so that the area under the curve is equal to average precision. The horizontal dashed line indicates the baseline average precision of a random classifier.

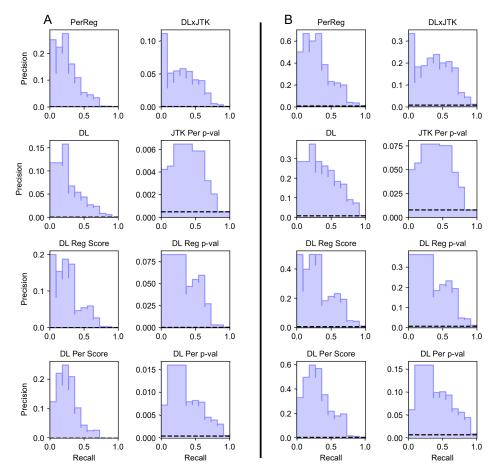


Figure S6. Precision-recall curves of classifiers identifying core from non-core TFs among all genes (A) and among only TFs (B) in A. thaliana microarray LL_LDHC dataset. Between changes in recall, $R_{n-1} < R_n$, precision is plotted as a constant equal to the precision P_n at the minimum decision-threshold rank giving a recall of R_n , so that the area under the curve is equal to average precision. The horizontal dashed line indicates the baseline average precision of a random classifier.

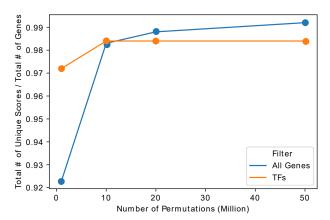


Figure S7. The number of permutations for computing DL Reg *p*-val vs. the number of unique DL Reg *p*-values. The number of unique values of DL Reg *p*-val per total number of genes before filtering for transcription factors (blue line) and after filtering for transcription factors (orange line) for the *A. thaliana* LDHC dataset as a function of the number of permutations chosen for the DL algorithm (1e6, 10e6, 20e6, or 50e6).

Table S1. Ranks among all transcription factors of core genes using the DL×JTK score.

S. cerevisiae			M. Musculus			A. thaliana		
Gene	MA	RNA	Gene	MA	RNA	Gene	LDHC	LL_LDHC
TOS4	16	1	DBP	2	1	CCA1	11	3
SWI5	1	4	NPAS2	3	2	LHY	6	11
YOX1	2	5	ARNTL	1	4	LUX	30	16
ASH1	14	8	NR1D1	4	20	PRR7	12	17
FKH1	10	9	NR1D2	5	45	RVE8	15	21
ACE2	5	11	RORC	10	67	PRR9	49	30
SWI4	12	13	NFIL3	8	71	TOC1	44	34
PLM2	11	15	TEF	11	87	PRR5	48	45
NDD1	13	17	BHLHE41	6	123	CHE	97	138
HCM1	8	18	HLF	69	164	RVE4	63	222
STB1	7	21	CLOCK	7	419	RVE6	453	908
YHP1	15	22	BHLHE40	195	501			
FKH2	49	28	ARNTL2	982	671			
FHL1	20	40	RORA	283	823			
SWI6	176	50	RORB	1210	NA			
MBP1	151	66						
MCM1	266	146						
No. of TFs^{\dagger}	304	307		1373	1118		1415	1415

LL_LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature; MA: Microarray; RNA: RNAseq † Counts are based on post-processed datasets (see Materials and Methods)

Table S2. The top 25 highest DL-ranked genes among all transcription factors.

Rank	S. cer	evisiae	M. Mus	sculus	$A.\ thaliana$		
панк	MA	RNA	MA	RNA	LDHC	LL_LDHC	
1	ASH1*	RME1	ARNTL*	NPAS2*	LHY^*	RVE1	
2	RME1	YOX1*	DBP^*	DBP*	BBX19	PIF4	
3	SWI5*	ASH1*	NPAS2*	CDX4	COL2	BBX18	
4	HST4	TOS4*	NR1D1*	GM14444	RVE8*	COL5	
5	NUT1	KAR4	BHLHE41*	ARNTL*	TOC1*	LHY^*	
6	HST3	RTT107	NR1D2*	NR1D1*	COL1	STH	
7	CIN5	SWI5*	NFIL3*	CREB5	COL9	PRR7*	
8	ACE2*	SWI4*	EGR1	PPARD	STH	RVE8*	
9	MET4	TEC1	TEF*	NPAS3	TGA3	COL1	
10	SWI4*	HST4	PPARD	POU4F1	RVE1	COL2	
11	YOX1*	ASF1	RORC*	FOXO6	HYH	AT2G28200	
12	ISW2	HST3	MAFB	DMRTA2	BBX18	PIL6	
13	RGT2	RLF2	KLF10	EGR1	AT1G26790	MYBL2	
14	MET18	WTM1	RFXANK	GM20422	PRR7*	CCA1*	
15	RGT1	ACE2*	CLOCK*	EGR3	HB-12	BBX8	
16	SIP4	ZNF1	TSC22D3	TBX1	PRE1	HSFA8	
17	TOS4*	STB1*	KLF13	MAFF	STO	CDF3	
18	RTT107	WTM2	NR0B2	GM6710	PIL6	ABF1	
19	ESC2	CSE2	ZFP36l1	EN2	CCA1*	TOC1*	
20	ASF1	GAT1	ATF5	ZBTB7C	EPR1	EPR1	
21	WTM2	OTU1	SREBF1	MESP1	LZF1	AT1G70000	
22	HAP5	HCM1*	STAT5B	NR1D2*	BZS1	STO	
23	HPA2	PHD1	GTF2IRD1	ZFP987	ASG4	BBX16	
24	EDS1	MAL13	ZBTB21	GM14401	CDF3	ATCTH	
25	RTG2	RGT2	SOX9	GM14305	CO	LUX*	
Recall	35.3%	47.1%	66.7%	35.7%	45.5%	54.5%	

LL_LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature; MA: Microarray; RNA: RNAseq * Core transcription factors in Dataset S3.

Table S3. The top 25 highest PerReg-ranked genes among all transcription factors.

Rank S. cerevisiae		evisiae	M. Mus	sculus	A. thaliana		
Kank	MA	RNA	MA	RNA	LDHC	LL_LDHC	
1	RME1	YOX1*	NR1D1*	CDX	RVE1	MYBL2	
2	ASH1*	TOS4*	NPAS2*	NPAS2*	LHY^*	CCA1*	
3	SWI5*	RME1	DBP*	GM14444	CCA1*	LHY^*	
4	HST3	ASH1*	ARNTL*	FOXO6	COL2	COL2	
5	ACE2*	SWI5*	EGR1	NR1D1*	STH	PRR7*	
6	SWI4*	KAR4	NR1D2*	POU4F1	MYBL2	PRR5*	
7	YOX1*	HST3	MYC	GM20422	AT1G26790	PIF4	
8	HST4	ZNF1	NFIL3*	DMRTA2	PRR7*	STH	
9	SIP4	RTT107	BHLHE41*	NPAS3	HYH	COL5	
10	ASF1	MGA1	TEF*	EGR1	PRR5*	RVE1	
11	TOS4*	SWI4*	$RORC^*$	DBP*	BBX16	CDF3	
12	RTT107	SIP4	ZBTB16	CREB5	LZF1	LZF1	
13	STB1*	ACE2*	PPARD	TBX1	BBX18	LUX*	
14	EDS1	PHD1	MAFB	EGR3	CDF2	CDF1	
15	GAT1	MAL33	KLF10	MESP1	EPR1	COL1	
16	HAP4	HST4	NR0B2	GM6710	CDF1	ATCTH	
17	HPA2	TEC1	RFXANK	ARNTL*	COL1	CDF2	
18	GAL3	RLF2	BCl6	EN2	BBX19	BBX18	
19	WTM1	ASF1	ZFP931	ZBTB7C	LUX^*	ABF1	
20	RLF2	FKH1*	NR3C2	GM14401	PIF4	COL9	
21	NDT80	MSS11	CLOCK*	GM14305	PRR9*	EPR1	
22	XBP1	MTH1	ONECUT1	BHLHE22	CDF3	AT1G26790	
23	TEC1	RPI1	KLF9	PPARD	RVE2	BBX16	
24	MSN4	STB1*	ZBTB7C	OVOl2	RVE8*	AT5G44260	
25	HCM1*	HCM1*	FOXQ1	FOXP3	TGA3	HYH	
Recall	47.1%	52.9%	66.7%	28.6%	63.6%	45.5%	

LL_LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature; MA: Microarray; RNA: RNAseq * Core transcription factors in Dataset S3.

References

- de Lichtenberg U, Jensen LJ, Fausbøll A, Jensen TS, Bork P, Brunak S. Comparison of computational methods for the identification of cell cycle-regulated genes. Bioinformatics. 2005;21(7):1164-1171. doi:10.1093/bioinformatics/bti093.
- 2. Motta F, Deckard A, Moseley RC. pyDL; 2019. https://gitlab.com/biochron/pydl.
- 3. Hughes ME, Hogenesch JB, Kornacker K. JTK_CYCLE: An Efficient Nonparametric Algorithm for Detecting Rhythmic Components in Genome-Scale Data Sets. Journal of Biological Rhythms. 2010;25(5):372–380. doi:10.1177/0748730410379711.
- 4. Kendall MG. A NEW MEASURE OF RANK CORRELATION. Biometrika. 1938;30(1-2):81–93. doi:10.1093/biomet/30.1-2.81.
- 5. Harding EF. An Efficient, Minimal-Storage Procedure for Calculating the Mann-Whitney U, Generalized U and Similar Distributions. Journal of the Royal Statistical Society Series C (Applied Statistics). 1984;33(1):1–6.
- 6. Hutchison A. pyJTK: Python implementation of the JTK_CYCLE statistical test; 2013. https://github.com/alanlhutchison/pyJTK.
- 7. Hutchinson A, Motta F, Deckard A. pyJTK; 2019. https://gitlab.com/biochron/pyjtk.