Science Advances

Supplementary Materials for

Deep brain stimulation of the thalamus restores signatures of consciousness in a nonhuman primate model

Jordy Tasserie, Lynn Uhrig, Jacobo D. Sitt, Dragana Manasova, Morgan Dupont, Stanislas Dehaene, Béchir Jarraya*

*Corresponding author. Email: bechir.jarraya@cea.fr

Published 18 March 2022, *Sci. Adv.* **8**, eab15547 (2022) DOI: 10.1126/sciadv.ab15547

This PDF file includes:

Supplementary Text Figs. S1 to S12 Tables S1 to S7

Supplementary Text

-Extended Materials and Methods

Deep brain stimulation (DBS) methodology

Surgery using neuro-navigation

We implanted a four-lead (0, 1, 2, 3) MRI-compatible clinical DBS electrode (Medtronic 3389, USA) in two macaques (monkey N and T) with the ultimate goal of performing simultaneous DBS-fMRI acquisitions. Electrode leads were 1.5 mm long and spaced by 0.5 mm. The external diameter was 1.27 mm. We targeted the right centro-median thalamus (CM) and performed aseptic stereotaxic surgery under general anesthesia using a neuro-navigation system (BrainSight, Rogue, Canada) guided by anatomical 3T MRI (Prisma Fit, Siemens, Germany) (MPRAGE, T1 weighted, repetition time TR = 2200ms; inversion time TI=900ms, 0.80mm isotropic voxel size, sagittal orientation, mono-channel 1Tx-1Rx circular surface coil of 12.5 cm diameter). The head of the monkey was placed in a stereotaxic frame and maintained with ears and ocular bars. All devices were built in plastic and MR compatible materials. Gadolinium fiducials were placed on the frame, as well as on the macaque skull and the temporary headpost that held additional fiducials. These landmarks, recognized by the neuronavigation system, were put all around the skull in a non-coplanar manner. Pre-operative MRI images aimed at defining the target and trajectory. We assessed the target location and trajectory according to the MNI macaque brain coordinates (x, y, z) and Paxinos Atlas reference space (L, B, S). We confirmed the contact spot following three other approaches: i) anterior-posterior commissure (AC-PC) system; ii) distance to different anatomical area landmarks such as the right caudate nucleus and iii) Saleem Atlas. Lead placement trajectory was simulated with the neuro-navigation module prior to surgery.

We drilled craniotomy, positioned a plastic cannula to guide the DBS electrode and fixed an anchoring device system (Stim-lock, Medtronic, USA) covering the craniotomy. This element aimed at stabilizing and blocking the lead extremity to avoid lead migration. Per-operative MRI were acquired to control convergence between the theoretical and the practical implantation spot (effective target reached during surgery versus desired planned location). The extracranial part of the lead was

protected with a plastic MR compatible chamber that was home-made by 3D-printing and was fixed to the skull with screws and dental acrylic.

Verification of the DBS settings and underlying behavioral responses

To ensure efficiency across experiments, impedances between leads and through electrode to an external reference were first measured outside the MRI environment with the DBS programmer device provided by the manufacturer (8840 N'Vision, Activa Clinician DBS Programmer, Medtronic, USA). Ultimately, we used an oscilloscope (Wave Runner 44XI, LeCroy, USA) to check the electrical current delivered to each lead at the beginning and at the end of each experimental session. The stimulation also generated an artifact on the EEG signal, which provided a final benchmark during the fMRI acquisitions.

Behavioral responses (see behavioral assessment section) to electrical thalamic stimulation were assessed in each animal outside the scanner at least 20 days after the DBS implantation. We empirically explored different voltage amplitudes and pulse widths while keeping a monopolar stimulation at a frequency of 130Hz, applied successively to each of the four DBS contacts. The DBS lead targeted the centro-median thalamus. On the target contact (centered in CM), we determined the voltage level for high central thalamic (CT) DBS as the voltage just above the threshold at which a significant behavioral response was observed. Low CT-DBS corresponded to a lower current delivery below the voltage level that led to an arousal pattern. For comparison and reproducibility purposes, we kept the exact same DBS settings for the control stimulation site (ventro-lateral thalamus (VL) DBS).

fMRI statistical analysis

Block-design fMRI analysis

We generated plots by extracting the activations responses to high CT-DBS with the hemodynamic function in frontal (area 6V; 9/46; 8A), parietal (ventral intraparietal VIP, parietal area PFG), cingulate (anterior ACC: posterior PCC) and temporal cortex (temporo-parieto-occipital area TPO). Activity profiles were plotted as percentage of signal changes across time.

Resting-state fMRI analysis

For the static resting state, we calculated for each experimental condition and sessions the average of positive and negative Z-values and performed a Student t-test with the null hypothesis of zero correlation to test for statistical significance of connectivity between the different experimental conditions.

We computed the static functional correlations by estimating for each experimental condition (noted e) for the awake state, anesthesia, low CT-DBS, high CT-DBS, low VL-DBS and high VL-DBS and acquired run (noted r) the covariance matrix $C_{e,r}$. This value was obtained by extracting and averaging across all runs r the time series of all voxels included in each selected anatomical ROI. We referred as static functional correlation or stationary functional connectivity the entry matrix $C_{e,r}$ (i_xj) where each cell represented the mean strength of the functional correlation between the i-j pair. For each covariance matrix, a Fisher transformation was applied to calculate the Z-score. The Z-score matrices were averaged across runs to obtain one matrix per experimental condition. To assess statistical significance, Student t-test at the threshold p value<0.0001 and a false discovery rate correction were applied on the correlations of all pairs of brain regions.

Dynamic resting state fMRI analysis

Covariance values between all ROIs were included ($[82 \times (82-1)]/2=3,321$ features per matrix). $Z_{c,s,w}$ matrices were subsampled along the time dimension (*w*) before clustering. The resulting centroids or median clusters (BS_n with n=1–7; each BS_n is sized 82×82) were then used to initialize a clustering of all data, obtaining a matrix of brain states B_{c,s,w}, which, for a given arousal condition c and session s, is a vector of length 464, valued 1–7, because each matrix in Z_{s,p,w} is assigned a BS_n.

The similarity score was computed from the correlation coefficient between the vectorized structural matrix and each vectorized brain state from the clustering analysis. All brain states were ordered in ascending order of similarity to the structure using the similarity score. To quantify the relation between the probability of occurrence of a BS and the similarity score, for each arousal condition, a regression analysis was done, to quantify the beta value (β), the R² and a P value. The differences in BS composition across arousal states was evaluated through a fixed-effects ANOVA, with mean rank similarity, that is, the result of averaging each BS time series, valued from 1 to 7, as a dependent

variable and the vigilance condition as the in-dependent variable. A fixed-effects ANOVA was run to quantify the effect of sedation on the probability of brain state 7. For this, we followed the same procedure, but the mean rank similarity was calculated considering only BS 7 (window *w* valued at 1; any other state window *w* valued at 0).

To explore specifically the fluctuations of intervoxel correlation within nodes of the "macaque global neuronal worskspace" and sensori-motor areas (anterior cingulate cortex, ACC; dorsolateral prefrontal cortex, PFCdl; frontal eye fields, FEF; dorsolateral premotor cortex, PMCdl; primary somatosensory cortex, S1; primary motor cortex, M1; intraparietal cortex, Pcip; primary auditory cortex, A1; inferior temporal cortex, TCi; visual area 1, V1 and posterior cingulate cortex, PCC), we extracted the values from the whole brain matrices and applied a one-way analysis of variance (ANOVA). FC across the brain states were highlighted by displaying Z-score in inter-region matrices.

Event-related task fMRI analysis

We generated plots by obtaining the β -weight of SPM regressions of individual macaque data with the hemodynamic functions of the appropriate stimulus categories and then plotted the mean and SE of these β -weights. These values estimate, in percentages of the whole-brain fMRI signal, the size of the fMRI activation relative to the implicit rest baseline that divides trials.

The first level analyses consisted in the convolution of the stimulus categories with the MION canonical hemodynamic response function (HRF) and its time derivative. We also added motion regressors and heart rate as variables of non-interest to the event-related regressors. Activation time series of all the fMRI voxels were computed for each fMRI run and signal change expressed in T-score maps for the different stimulus categories relative to rest periods. Global standard trials that immediately followed a global deviant trial were excluded.

-Extended Results

Thalamic DBS effects on resting-state networks in anesthetized macaques

Static Functional Correlations (Figure 4, S6)

To test for statistical significance of connectivity between brain regions in different experimental

conditions, Student t-tests were performed with the null hypothesis of zero correlation. We calculated for each experimental condition *c* and sessions the average of positive and negative Z values of $Z_{c.s.}$ The average positive Z-value was 0.43+/-2.9e-4 in the awake state, 0.22+/-2.6e-4 under anesthesia, 0.27+/-2.5e-4 during low CT-DBS, 0.39+/-2.8e-4 during high CT-DBS, 0.28+/-3.1e-4 during low VL-DBS and 0.19+/-2.4e-4 during high VL-DBS (*Figure 4A*). Positive Z-values were significantly different under anesthesia and high CT-DBS (p < 0.001, FDR corrected (*Figure 4A*). The average negative Z-value was 0.24+/-4.2e-4 in the awake state, 0.09+/-1.7e-4 under anesthesia, 0.12+/-2.7-4 during low CT-DBS, 0.11+/-3.2e-4 during high CT-DBS, 0.08+/-2.7e-4 during low VL-DBS and 0.08+/-2.2e-4 during high VL-DBS (*Figure 4A*). Negative Z-values were significantly different under anesthesia and high CT-DBS (p < 0.001, FDR corrected) (*Figure 4A*). In the awake state, the frontal cortex (areas 9/46, 8A, 6V and M1), parietal cortex (parietal area PFG and ventral intraparietal area), anterior and posterior cingulate cortices, temporal cortex (area A1) and occipital cortex (area V1) were strongly correlated to each other (*left column, Figure 4B*).

Dynamic Functional Correlations (Figure 5, S7-S8, Table S4)

We applied k-means to the whole acquired dataset (including all experimental conditions) to cluster brain states (*Figure S7*). We also applied k-means to two data subsets, subset CT and subset VL, to specifically characterize the effects of CT-DBS and VL-DBS respectively. Subset CT included data from awake, anesthesia and anesthesia + high CT-DBS conditions (*Figure 5A-C*). Subset VL included data from awake, anesthesia and anesthesia + high VL-DBS conditions (*Figure 5D-E*).

-*Clustering subset CT (data from awake, anesthesia and anesthesia + high CT-DBS conditions) (Figure 5A-C)*

In the awake state, all 7 brain states were represented with a similar probability of occurrence (β =0.45; R²=0.22; p=0.28). During anesthesia, state 7 (with the highest function-structure similarity) was dominant and state 1 (with the lowest function-structure similarity) never occurred (β =1.91; R²=0.67; p=0.02). Under high CT-DBS, consistent with partial recovery of consciousness, the probability of occurrence of state 7 decreased in favor of all the other brain states, especially state 2 and 3 (β =0.64; R²=0.28; p=0.22). We computed the slope of the linear relation between structural and functional

correlations for each recording session and compared the slope distributions in the awake, anesthesia and DBS conditions. Awake and high CT-DBS slopes were significantly lower than the anesthesia slopes, indicating that a greater diversity of states were explored in the wake state (awake versus anesthesia: t-test, p=6e-5 and BF10=338, high CT-DBS versus anesthesia: t-test, p=0.001 and BF10=23). Importantly no differences were observed between awake and high CT-DBS slopes (t-test, p=0.42, BF01=3.28) (Figure 5A-B, Table S6). In the awake state, the mean rank of brain states was 4 (4.38 ± 1.28) , for anesthesia, the mean rank was 6 (5.70 ± 1.40) and during high CT-DBS, the mean rank was 5 (4.55 \pm 1.17). This brain state distribution was significantly different (ANOVA; F(2;120)=12.52; p=1.15e-7). Also, the frequency of brain state 7 was moderate in the awake experiments (probability=0.24), high during anesthesia (probability=0.58) and low again during high CT-DBS (probability=0.26; p<0.0001) (Figure 5B). The probability of brain state 7 was higher in anesthesia compared to the awake state (t-test, p=1e-6, BF10=9063) and to high CT-DBS (t-test, p=1e-5, BF10=1017) which did not differ significantly (t-test, p=0.74, BF01=4.18). The mean similarity with the anatomical connectivity was also significantly different with $0.24 (\pm 0.06)$ for the awake state, 0.31(±0.07) for anesthesia and 0.25 (±0.06) for high CT-DBS (ANOVA; F(2,120)=14.75; p=1.87e-6). Anatomically, the functional brain states 1, 2 and 3, that were most characteristic of the awake, presented strong correlations within the "macaque GNW" prefrontal (dorsolateral prefrontal cortex, PFCdl; dorsolateral premotor cortex, PMCdl), parietal (intraparietal cortex, PCip) and cingulate nodes (anterior cingulate cortex, ACC; posterior cingulate cortex, PCCr), whereas state 7 displayed low or null Z-score values across the same entire cortical network (Figure 5C). During high CT-DBS, the average duration of brain state 7 decreased compared to anesthesia (high CT-DBS versus anesthesia, p=2.48e-3; bootstrap analysis) and was similar to the awake state (Figure S8).

- *Clustering subset VL (data from awake, anesthesia and anesthesia + high VL-DBS conditions) (Figure 5D-E)*

In the awake state, all seven brain states were present (β =0.16; R²=0.02; p=0.74). Under anesthesia, brain state 7 was dominant (β =1.21; R²=0.33; p=0.18), as under high VL-DBS (β =1.69; R²=0.43; p=0.11) (*Figure 5F-G*). We also computed the slope corresponding to each recording session and

compared the slope distributions in the awake, anesthesia and high VL-DBS conditions. Awake slopes were significantly lower compared to anesthesia and high VL-DBS slopes (awake versus anesthesia: t-test, p=0.0007 and BF10=39, awake versus high CT-DBS: t-test, p=1e-8 and BF10=636824). The slopes under anesthesia were smaller than the high VL-DBS slopes (t-test, p=0.01, BF10=3.81).

For the awake state, the mean rank of brain states was 4 (4.41 ± 0.93), under anesthesia, the mean rank was 6 (5.81 ± 1.39) and under high VL-DBS, the mean rank was 6 (6.41 ± 0.38). The brain state distribution was significantly different (ANOVA; F(2;102)=32.03; p=1.61e-11). Brain state 7 was balanced in the awake state (awake brain state 7 probability=0.19), dominant under anesthesia (anesthesia brain state 7 probability=0.60) and high VL-DBS (high VL-DBS brain state 7 probability=0.72; p<0.0001) (*Figure 5F*). The probability of state 7 was smaller in the awake state compared to anesthesia (t-test, p=10e-9, BF10=2e7) and compared to high VL-DBS (t-test, p=10e-17, BF10=1e15). However, we found no evidence for a difference nor a similarity between anesthesia and high VL-DBS (t-test, p=0.15, BF10=0.64, BF01=1.54).

Brain state 1 highlighted strong correlations to all the tested cortical areas. Brain state 7 presented weak Z-score values with prefrontal (PFCdl; PMCdl), parietal (PCip) and cingulate cortex (ACC; PCC) (*Figure 5C*).

With high VL-DBS, the average duration of brain state 7 increased compared to the awake state (high VL-DBS v/s awake, p<0.0001, bootstrap analysis) and was similar to the anesthesia state (*Figure S8*).

-Clustering the whole dataset (data from awake, anesthesia, low CT-DBS, high CT-DBS, low VL-DBS and high VL-DBS) (Figure S7)

The occurrence of brain states in the awake condition was equiprobable (β =0.05; R²=0.003; p=0.91). Under anesthesia, this probability was shaped by the brain state 7 (β =1.87; R²=0.59; p=0.04). For the DBS sessions, brain state probability of occurrence was partly dominated by brain state 7 in the low CT-DBS condition (β =1.09; R²=0.49; p=0.08), balanced under high CT-DBS (β =0.28; R²=0.059; p=0.6308), partly dominated by the brain state 7 during the low VL-DBS experiments (β =1.52; R²=0.59; p=0.04) and dominated by brain state 7 in the high VL-DBS condition (β =2.57; R²=0.73; p=0.01) (*Figure S7*).

The mean rank was 4 in the awake state (3.81 ± 1.05) , 5 under anesthesia (5.37 ± 1.34) , 5 in the low CT-DBS condition (4.81 ± 0.93), 4 in the high CT-DBS condition (4.14 ± 1.03), 5 in the low VL-DBS condition (5.35 ± 0.86) and 6 in the high VL-DBS condition (6.01 ± 0.53) . The brain state distribution was significantly different between structural and functional correlations (ANOVA; F(5;193)=19.65; p=8.31e-16) (Figure S7). The probability of occurrence of brain state 7 was low in the awake state (0.20), and high under anesthesia (0.54). Crucially, even though anesthesia continued, low CT-DBS and high CT-DBS reduced this probability down to an aware level (respectively 0.37 and 0.23). The probability of state 7 also decreased with low VL-DBS (0.38) but returned to high (0.63, p<0.001) under high VL-DBS. The mean similarity with the anatomical connectivity was also significantly different with 0.26 (\pm 0.04) for the awake state, 0.32 (\pm 0.06) for anesthesia, 0.29 (\pm 0.04) for low CT-DBS, 0.27 (±0.04) for high CT-DBS, 0.31 (±0.0.04) for low VL-DBS and 0.35 (±0.03) and for high VL-DBS (ANOVA; F(5,193)=17.72; p=1.94e-14). The average duration of brain state 7 significantly decreased with high CT-DBS compared to the anesthesia state (p=1.61e-9, bootstrap analysis) and was similar to the awake state. Low CT-DBS and low VL-DBS decreased the duration the brain state 7 compared to anesthesia (low CT-DBS v/s anesthesia, p=6.72e-8; low VL-DBS v/s anesthesia, p=1.88e-7, bootstrap analysis). Under high VL-DBS, duration of the brain state 7 was similar to the anesthesia state (high VL-DBS v/s anesthesia, not significant) (Figure S7).

Figure S1: Localization of the DBS electrode contacts using the Lead-DBS macaque toolbox(71). (A) Coregistration of the pre and post-operative MRI anatomical images (upper panel) and between MRI post-operative and MNI macaque brain atlas(73) (lower panel) for monkey T. (B) Pre-reconstruction of the electrode lead trajectory using the entry point on the anatomical MRI image and manual correction of electrode localization adjusting the most inferior (contact 0) and most superior (contact 3) DBS contacts according to the electrode artifact in two dimensional planes presented orthogonally. (C) Location of the centro-median (CM) DBS contact and (D) ventral-lateral thalamus (VL) DBS contact in monkey T (left column) and monkey N (right column) on the sagittal, coronal and axial plan. The target is displayed in the CIVM MRI atlas(76) (upper panel), pre-operative structural MRI (middle panel) and post-operative structural MRI (lower panel) warped in the MNI macaque space(73).

EEG - MR Gradient (fMRI)

sequence

fMRI acquisition

DBS

EEG - MR Gradient (fMRI) + DBS

EEG-MRI artifact correction

EEG-fMRI artifact correction

EEG - MR B₀ field after artifact correction

EEG - MR Gradient (fMRI) after artifact correction

sequence

fMRI acquisition

EEG - MR B₀ field +DBS after artifact correction

DBS

EEG - MR Gradient (fMRI) + DBS after artifact correction

Figure S2: Suppression of EEG artifacts related to MR B0 field, MR Gradients during fMRI acquisition and DBS. Examples of EEG recordings in anesthetized macaques inside a 3T MRI scanner without and with DBS of central thalamus (CT) thalamus at 3V.

Figure S3: Effects of thalamic DBS on EEG. Examples of EEG recordings in anesthetized macaques inside a 3T MRI scanner with DBS of central thalamus (CT) or ventral-lateral thalamus (VL) at low or high voltages. The DBS-induced changes in cortical activity depends on the anatomical site of the active DBS lead contact and the intensity of the electrical stimulation.

Figure S4: Cortical activity dynamic during and immediately after DBS

Examples of EEG recordings in anesthetized macaques inside a 3T MRI scanner before, during and after DBS of central thalamus (CT) at high voltage.

Figure S5: Modulation of normalized spectral power and median power frequency in the DBS conditions compared to anesthesia.

Distributions of the average values of normalized spectral power of (A) delta (1-4 Hz), (B) theta (4-8 Hz) and (C) alpha (8-13 Hz) oscillatory bands and (D) median power frequency (MSF) calculated on the epochs of the four stimulation conditions and under anesthesia. MSF is the frequency that divides the power spectrum in two equal areas. The figures consist of a distribution - smoothened version of a histogram, a box plot and a representation of the data points. Each dot in the figure represents the average value of a given marker across epochs during one recording session. a.u., arbitrary units. The significance lines represent FDR corrected Mann-Whitney U two-sided tests (see Methods). p-value annotation legend: ns: 5.00e-02 < p <= 1.00e+00, *: 1.00e-02 < p <= 5.00e-02, **: 1.00e-03 < p <= 1.00e-02, ***: 1.00e-04 < p <= 1.00e-03, ****: p <= 1.00e-04. P-values are FDR corrected.

<u>Figure S6</u>: p values matrices for the ANOVA comparison of the awake state versus different experimental conditions of the static functional correlations within the macaque Global Neuronal Workspace (GNW) nodes and sensori-motor areas.

Statistical p values obtained by ANOVA to compare static functional correlations within the macaque GNW nodes and sensorimotor areas in the different experimental conditions. X-axis displays the experimental conditions (awake, anesthesia, low central thalamic (CT) DBS, high CT-DBS, low ventral-lateral thalamic (VL) DBS and high VL-DBS states), y-axis represents the macaque GNW areas correlated to the seed (p < 0.001, FDR corrected). For each region, the matrix stands for the p value for the comparison of the awake state versus anesthesia, low CT-DBS, high CT-DBS, low VL-DBS and high VL-DBS between the seed and the rest of the macaque GNW nodes and sensori-motor areas.

Anterior cingulate cortex (ACC) ; Prefrontal cortex (area 9/46, 8A, 6 Ventral) ; Primary motor cortex (M1) ; Parietal cortex (area PFG) ; Ventral Intraparietal sulcus (VIP) ; Primary auditory cortex (A1) ; Primary visual area (V1) ; Posterior cingulate cortex (PCC).

Figure S7: DBS effect on cortical dynamical correlations

(A) Seven functional brain states obtained by unsupervised clustering of the Z score matrix (all conditions pooled together, awake state, anesthesia, low central thalamic (CT) DBS, high CT-DBS, low ventral-lateral thalamic (VL) DBS and high VL-DBS). (B) Structural connectivity matrix derived from the CoCoMac atlas of anatomical macaque cortical connectivity. Colors represent the four grades of connection intensity (black=0; white=1; blue=2 and red=3). (C) Brain renders displaying the 400 strongest links for each functional brain state. Red line represent positive connections between regions of interests; blue represent negative connectivity, for the awake state (green), anesthesia (red), low CT-DBS (light blue), high CT-DBS (dark blue), low VL-DBS (light purple) and high VL-DBS (dark purple). (E) Probability distributions of functional brain states for the for the awake state (green), anesthesia (red), low CT-DBS (light blue), high CT-DBS (light purple) and high VL-DBS (dark purple). Error bars stand for 1 SEM.

Normalized distance for state 7

<u>Figure S8</u>: Average life time of brain states in the awake state, under anesthesia and during high cental thalamic (CT) DBS (left) or high ventral-lateral thalamic (VL) DBS (right); normalized probability distribution and twodimensional normalized histograms

Average life time of brain states for the awake, anesthesia and high central thalamic (CT) DBS condition (A) or high ventrallateral thalamic (VL) DBS (B) for 7 brain states obtained by k-means clustering. Error bars stand for 1 SEM. Normalized probability distribution of all Z values for the functional brain state 1 (the least similar to the structural brain connectivity) and functional brain state 7 (the most similar to the structural brain connectivity) for awake, anesthesia and high CT-DBS resting state pooled together. Similar results were obtained regardless the inputs conditions for the clustering (C). Two-dimensional normalized histograms for functional brain state 1 and functional brain state 7 for the clustering of awake, anesthesia and high CT-DBS condition. (D) Z values as a function of distance between pairs of regions of interest for brain state 1 (upper right) and brain state 7 (lower right) for the clustering of awake, anesthesia and high CT-DBS condition.

Local effect = Local deviants – Local standards **Global effect** = Global deviants – Global standards

Figure S9: Local-global auditory paradigm

Description of the event-related auditory paradigm called local-global used in the auditory event-related fMRI experiments. Local deviants occur at the trial level (1st order) whereas Global deviants occur at the series level (2nd order).

fMRI activations during the auditory "Local-global" experiment

Local effect: High CT- DBS > Anesthesia

Individual results: Monkey N

fMRI activations during the auditory "Local-global" experiment

Global effect: High CT-DBS > Anesthesia

Individual results: Monkey N

hab freq rare hab freq rare

hab freq rare

hab freq rare

ventro-postero-lateral thalamus.

fMRI activations during the auditory "Local-global" experiment

Global effect: High CT-DBS > Anesthesia

Individual results: Monkey T

hab freq rare hab freg rare hab freq rare

hab freq rare

Simulation of the thalamic nuclei activated during the DBS experiments

			ст	-DBS			VL	DBS	
Thalamic nuclei	Abbreviation	lo	w	hi	igh	la	w	hi	gh
		monkey N	monkey T						
								-	-
Ventral-Postero-Medial	VPM	х	х	х	х		х	х	х
Centro-Median, Medial part	CMM	х	х	х	х				х
Centro-Median, Lateral part	CML	х	х	х	х				х
Medio-Dorsal, Central part	MDC	х	х	х	х		х	х	х
Ventral-Postero-Lateral	VPL			х	х	х	х	х	х
Medio-Dorsal, Lateral part	MDL			х	х	х	х	х	х
Ventral-Lateral, Medial part	VLM			х	х	х	х	х	х
Medio-Dorsal-Medial part	MDM			х	х				х
Inter-Medio-Dorsal	IMD			х	х				
Centro-Lateral	CL					х	х	х	х
Medio-Dorsal, Dorsal part	MDD					х		х	
Lateral-Dorsal, SuperFicial part	LDSF							х	
Ventral-Anterior, Lateral part	VAL							х	x
Ventral-Lateral, Lateral part	VLL							х	

Table S1: Simulation of the stimulated thalamic nuclei around the DBS lead using the LEAD DBS macaque toolbox

Estimation of the thalamic nuclei that were included in the volume of activated tissue around the DBS lead active contact(71) for monkey N and monkey T across the four experimental conditions (low central thalamic (CT) DBS, high CT-DBS, low ventral thalamic (VL) DBS and high VL-DBS).

		Heart Pate	Owigon Saturation		Blood pressure		Pospiration Pate	End tidal CO	Tomporaturo
Condition	Animal	Healt Nate	Oxygen Saturation	Systolic	Diastolic	Mean	Respiration Rate		remperature
		(HR in bpm)	(SpO₂ in %)	(SBP in mmHg)	(DBP in mmHg)	(MBP in mmHg)	(RR in breath/min)	(EtCO 2 in mmHg)	(T in °C)
	monkov N	111	98	116	59	87	20	41	37.0
Anesthesia	monkeyn	±9	±2	± 10	± 7	±9	±1	±2	± 0.7
, anoounoond	monkov	116	97	95	46	68	18	37	38.3
	monkeyi	± 17	±3	±8	± 7	±9	±2	± 2	± 0.7
		134	99	128	70	101	21	43	37.1
	monkey N	± 13	±1	± 13	± 12	± 13	±2	±2	± 0.3
Low CT-DBS		123	99	98	47	71	18	39	38.6
	monkey I	± 18	±1	+/- 12	+/- 6	+/- 8	+/- 2	+/- 2	+/- 0.5
		164	98	129	71	99	21	45	37.3
	monkey N	± 16	±2	± 15	± 15	± 14	±1	±3	± 0.4
High CT-DBS		181	98	133	74	104	19	43	39.6
	топкеу і	+/- 19	+/- 2	+/- 12	+/- 12	+/- 13	+/- 2	+/- 2	+/- 0.4
	mankauT	145	98	113	54	81	19	38	39.0
LOW VL-DBS	monkey i	±3	±2	± 14	± 12	± 12	±2	±1	±0.5
	mankauT	163	98	127	71	99	18	42	39.1
High VL-DBS	попкеу Г	± 14	±1	± 15	± 19	± 19	±2	±2	±0.6

Table S2: Physiological data during the fMRI resting-state experiments.

Oxygen saturation (SpO₂); systolic, diastolic and mean blood pressure (respectively SBP, DBP, MBP); respiration rate (RR); end-tidal CO₂ (EtCO₂) and temperature (T) for each animal (monkey N and T) under general anesthesia, general anesthesia plus low central thalamic (CT) DBS, general anesthesia plus high CT-DBS, general anesthesia plus low ventral-lateral thalamic (VL) DBS and general anesthesia plus high VL-DBS.

page 1/4

fMRI activations during the DBS block-design experiment

			CT-DBS							VL-DE low			high
Area	Abbreviation	Hemisphere	T score	p value		T score	p value		T score	p value		T score	p value
Orbitofrontal cortex													
Area 13 of cortex	13	Right		n.s		19.15	р _{FWF} < 1x10-12			n.s			n.s
Area 13a of cortex	13a	Left	5.11	p _{FW} = 7.4x10-3		5.11	$p_{FWF} = 7.4 \times 10^{-3}$			n.s			n.s
Area 14o	140	Right		n.s		5.91	$p_{FWF} = 1.21 \times 10-4$			n.s			n.s
Area 25 of cortex	25	Left	5.48	p _{FWE} = 9.66x10-4		5.48	p _{FWE} = 9.66x10-4			n.s			n.s
Orbitofrontal cortex	OPro	Right		n.s		19.15	p _{FWE} < 1x10-12			n.s			n.s
Country and the													
Frontal cortex		Left		ns		18.47	n < 1×10-12			ns			ns
Are 4 of cortex (primary motor)	4#1	Right		n.s		18.47	$p_{FWE} < 1 \times 10^{-12}$			n.s	-	0.01	n < 1x10-12
Area 6 of cortax Madial part		Left		n.s		10.47	$p_{FWE} < 1 \times 10^{-12}$			n.s	-	5.54	p FWE < 1x10-12
(supplementary motor)	6M	Right		n.s		19.15	p FWE < 1x10-12			n.s	-	5 77	n = 2 67x10-4
Area 6 of cortex, DorsoCaudal	6DC	Right		n.s		18.47	p _{FWE} < 1x10-12			n.s		12.81	p _{FWE} = 2.07×10-4
Area 6 of cortex, DorsoRostral	6DR	Right		n.s		19.15	р _{FWE} < 1x10-12			n.s		12.81	р _{FWE} < 1.0x10-12
Area 6 of cortax Ventral part		Left		ns		6.54	n - 2 37×10-6			ns			ns
Caudal subdivision (Matellis F4)	6VC	Right		n.s		18.47	$p_{FWE} = 2.37 \times 10^{-0}$			n.s			n.s
Area 6 of cortex. Ventral part		Left		n.s		6.16	$p_{FWE} < 1x10^{-12}$			n.s	-		n.s
Rostral subdivision (Matellis F5)	6VR	Right		n.s		19.15	$p_{FWE} = 2.54 \times 10^{-5}$			n.s	-	5.61	n = 6.87x10-4
		Left		n.s		19.15	$p_{FWE} < 1x10 12$			n.s		5.01	n s
Area 6/32 of cortex	6 32	Right	4.96	$p_{rwr} = 1.56 \times 10^{-2}$		19.15	$p_{FWE} < 1 \times 10^{-12}$			n.s	-	5.77	$p_{\rm cwc} = 2.67 \times 10.4$
		Left		n.s		5.79	$p_{FWE} = 2.41 \times 10.4$			n.s	-	5.77	n.s
Area 8A of cortex	8A	Right		n.s		18.47	p FWE < 1x10-12			n.s		12.81	p < 1.0x10-12
Area 8of cortex, AnteroDorsal		Left		n.s		7.10	$p_{EWE} = 5.04 \times 10^{-8}$			n.s			n.s
part	8AD	Right	5.92	p _{FWF} = 7.47x10-5		18.47	p _{FWF} < 1x10-12			n.s		12.81	р _{FWF} < 1.0x10-12
Area 8 of cortex, AnteroVentral part	8AV	Right		n.s		19.15	p _{FWE} < 1x10-12			n.s		12.81	p _{FWE} < 1.0x10-12
		Left		n.s		7.10	p _{FWE} = 5.04x10-8			n.s			n.s
Area 8B of cortex	88	Right		n.s		18.47	p _{FWE} < 1x10-12			n.s			n.s
Area 8/32 of cortex	8 32	Right		n.s		19.15	р _{FWE} < 1x10-12			n.s			n.s
Area O of control Mardial and	014	Left		n.s		18.47	р _{FWE} < 1x10-12			n.s			n.s
Area 901 cortex, Mediai part	9101	Right		n.s		14.54	р _{FWE} < 1x10-12			n.s			n.s
Area 9/32 of cortex	9 32	Right	7.72	p _{FDR} = 2.84x10-10			$p_{FDR} = 2.84 \times 10^{-10}$			n.s			n.s
Area 9/46 of cortex	9 46	Right	6.98	р _{FWE} = 7.08х10-8		19.15	р _{FWE} < 1x10-12			n.s		9.94	р _{FWE} < 1x10-12
Area 44 of cortex	44	Left		n.s		6.66	р _{FWE} = 1.03x10-6			n.s			n.s
		Right		n.s		19.15	р _{FWE} < 1x10-12			n.s		9.94	р _{FWE} < 1x10-12
Area 45A of crotex	45A	Right	7.30	$p_{FWE} = 7.23 x 10-9$		19.15	р _{FWE} < 1x10-12			n.s		9.94	p _{FWE} < 1.0x10-12
Area 45B of cortex	45B	Left		n.s		6.66	р _{FWE} = 1.03х10-6			n.s			n.s
		Right	7.30	$p_{FWE} = 7.23 x 10-9$		19.15	р _{FWE} < 1x10-12			n.s		9.94	р _{FWE} < 1.0x10-12
Area 46D of cortex	46D	Right	6.98	р _{FWE} = 7.08х10-8			p _{FWE} = 7.08x10-8			n.s	_		n.s
Area 46V of cortex	46V	Left		n.s		5.27	p _{FWE} = 4.68x10-3			n.s			n.s
		Right	6.98	p _{FWE} = 7.08x10-8			p _{FWE} = 7.08x10-8			n.s	_		n.s
Area 47 (old 12) of cortex, Lateral part	47L	Left	6.27	p _{FWE} = 8.28x10-6			p _{FWE} = 8.28x10-6			n.s			n.s
Area 47 (old 12) of cortex, Orbital part	470	Left		n.s		6.66	p _{FWE} = 1.03x10-6			n.s			n.s
Area ProM (promotor)	ProM#1	Left		n.s		11.36	р _{FWE} < 1x10-12			n.s			n.s

fMRI activations during the DBS block-design experiment

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	p value n.s p _{FWE}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n.s p _{FWE} ₹£x10-12 ℜ.\$ p _{FWE} ₹£x10-12 ℜ.\$ p _{FWE} ₹£x10-12 p _{FWE} ₹£x10-12 p _{FWE}
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} n.s \\ p_{FWE} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
AFEB 136 FOOREX somatosensory)13Right $n.ŝ$ $n.ŝ$ 18.47 $p_{FW} \in 13.430.92$ $n.ŝ$ 9.94 Area 13a ot cortex13aLeft 5.11 $p_{FW} = 7.34210.3$ 18.47 $p_{FW} \in 13.430.92$ $n.ŝ$ 9.94 Area 240 cortex (somatosensory) 343 Right 5.11 $p_{FW} = 7.34210.3$ 18.47 $p_{FW} \in 23.430.92$ $n.ŝ$ 9.94 Area 250 cortex (somatosensory) 343 Right $n.ŝ$ $n.ŝ$ 18.47 $p_{FW} \in 23.430.92$ $n.ŝ$ 12.81 Area 320 cortex (somatosensory) 240 Right $n.ŝ$ $n.ŝ$ 18.47 $p_{FW} \in 23.430.92$ $n.ŝ$ 12.81 Area 320 cortex (somatosensory) 240 Left 5.48 $p_{FW} = 7.850x10.4$ 18.47 $p_{FW} = 2.430.92$ $n.ŝ$ 12.81 Area 320 cortex (sortex cortex cortex (sortex cortex cort	$\begin{array}{c} p_{FWE} & 2 \frac{5}{2} \frac{1}{2} \frac{1}{10} \frac{12}{12} \\ \hline p_{FWE} & 2 \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{12}{12} \\ \hline p_{FWE} & 2 \frac{1}{2} \frac{1}{10} \frac{12}{12} \\ \hline p_{FWE} & < 1 \frac{1}{2} \frac{1}{10} \frac{12}{12} \\ \hline p_{FWE} & < \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{12}{12} \end{array}$
Area 13a ot cortex13aLEft5.11 $p_{FW} = 7.3 \times 10^{-3}$ 18.17 $p_{FW} = 7.4 \times 10^{-3}$ 18.17 $p_{FW} = 7.4 \times 10^{-3}$ Area 13a ot cortex13aLeft5.11 $p_{FW} = 7.3 \times 10^{-3}$ 18.17 $p_{FW} = 7.4 \times 10^{-3}$ 18.17 $p_{FW} = 7.4 \times 10^{-3}$ Area 13a ot cortex13aLeft $n.15$ $n.15$ $n.15$ $n.15$ $n.15$ Area 25 of cortex25 of cortexLeft 5.48 $p_{FW} = 7.8 \times 10^{-3}$ $n.15$ $n.15$ Area 33 of cortexOProNept $n.15$ $n.15$ $n.15$ $n.15$	$\begin{array}{c} p_{FWE} \\ p_{FWE} \notin f_{x}10{-}12 \\ p_{FWE} \notin f_{x}10{-}12 \\ p_{FWE} \leqslant 1x10{-}12 \\ p_{FWE} \leqslant 1x10{-}12 \\ p_{FWE} \leqslant 1x10{-}12 \\ p_{FWE} \leqslant 1x10{-}12 \end{array}$
AFE8 2.4f cortex (somatosensory) $\frac{241}{Rlght}$ $Rlght$ $R.s$ R	p_FWE Q*f_x10-12 R:\$ R:\$ P_FWE 1x10-12 p_FWE 1x10-12 p_FWE<
Af88 250° cortexZVeLeft5.48 $p_{FWE} = \frac{n}{2} \frac{5}{5} 65x10-4$ $p_{FWE} = \frac{n}{2} \frac{5}{5} \frac{18}{12} \frac{3}{7}$ $p_{FWE} = \frac{2}{5} \frac{5}{5} \frac{18}{12} \frac{12}{7}$ $R.$$ Urbit of rotation of texOProRight $R.$$ $R.$$ $R.$$ $R.$$	p FWE R:S R:S P:S p FWE 1x10-12 p FWE 1.0x10-12 p FWE 1.0x10-12 p FWE 1.0x10-12
Instruction	$ \begin{array}{c} n.s \\ n.s \\ p_{FWE} < 1x10-12 \\ p_{FWE} < 1x0-12 \\ p_{FWE} < 1x10-12 \\ p_{FWE}$
Area 3a of cortex Left n.s 18.47 p cuiz < 1x10-12 n.s	$p_{FWE} < 1x10-12$ $p_{FWE} < 1.0x10-12$ $p_{FWE} < 1.0x10-12$
(compterence) 3a a line in the second s	$p_{FWE} < 1 \times 10^{-12}$ $p_{FWE} < 1 \times 10^{-12}$ $p_{FWE} < 1 \times 10^{-12}$
Right n.s 18.4/ p _{FWE} < 1x10-12 n.s 9.94	р _{FWE} < 1. 0x10-12 р _{FWE} < <u>1x10-12</u>
Area so of cortex 30 of cortex 31 Rigft n.s 18.47 p _{FWE} < 1x10-12 n.s 16.05	p FWE < 1X10-12
$\frac{1}{100}$ $\frac{1}$	
Deptinitial ancelarized Drift n.3 10-hr <i>p</i> (we child be the child be	n.s
Domps I grandetal presetor) DVL DPT Left 1 7.22 Prove = 1 1 7.25 (barspl grandetal presetor) DPT Biggs 5.77 7.52 0 18.19 Drive 5.4/49.42 0 7.25	$p_{FWE} = 2.09x10-8$ $p_{FWE} = 2.67x10-4$
Area 6 of cortex; DorsoCaudal CDC Right 5.73 P FWE = 2.52/10-4 18.47 P FWE 1710-12 n.5	n.s
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	p _{FWE} < p , g x10-12
Area 6 of cortex, DorsoRostral Right n.s 18.47 ρ _{FWE} < 1x10-12 n.s Area 6 of cortex, DorsoRostral 6DB Right n.s 19.15 n.s 12.81	n.s
ParteViatedis PE) PE Right 6.51 $p_{FWE} = 1.72 \times 10^{-6}$ 18.47 $\beta_{FWE}^{FWE} < 1.210 - 12$ n.5 7.26	p FWE = 1.72x10-8
Aseria fash ficoatte, Vaurdai (parti, PEC Right n.s 6.99 Rp-rws==238x00-5 n.s 7.85	р _{FWE} = Д.:0 8x10-10
Fähldarsyndiyögion (Matellis F4) pEa Right 6.30 p _{FWE} =17.97×10-6 18.47 p _{FWE} < 1x10-12 n.s 7.85	р _{FWE} = Д.:9 8x10-10
Parie Eddb CoastER, Microsoft Part, PECX Right n.s 6.16 p FWE = #3.54x10-5 n.s 9.94	р _{FWE} Ф.13х10-12
Rostral subdivision (Matellis F5) Right n.\$ 19.25 p4-pwc=√19304028 n.\$ 5.61	p _{FWE} =6,87x10-4
Parieal area PF, Opercular part PFOp Rieftr n.s 19.45 prove \$1x10-12 n.s	n.s
Area 6/32 of cortex 6.32 Bight 4.96 prove = 4.66x10-2 19.65 prove = 4.1012 0.5 77	p rue = 2.67x10-4
	ne
Asee SAge Same Same Same Same Same Same Same Sam	n < 0 0x10∩12
$\frac{1}{113} \frac{1}{3} $	P FWE \$ 9,94X90#5
Prene contracted and a provide and a provide and a provide a provide and a provide and a provide	<i>II</i> .9
Perfectal area POa, Internal part POal Right 5.92 $p_{FWE} = r/s^{4/210-5}$ 18.47 $p_{FWE} < 1x10-12$ n.s 12.81	p _{FWE} < A, GX10-12
Péne ktol copies assects weight	p _{rwc} < ⁿ :5x10-12
Mythe intraparietal sulcus Right n.s 18.47 p _{FWE} (1x10-12 n.s 9.94	p _{FWE} < 1x10-12
AccessBooParitetal area BBt Right n.3 19.47 Proce-0.1010-12 n.3	n.s
Region $r_{1.3}$ $r_{2.4}$ $P_{rwe} = 1.83 \times 10^{-8}$ $r_{1.3}$	n.s n.s
AF68-89/32 of exercise	n.s n.s
Area 9 of cortex, Medial part 9M Left n.s 18.47 prove 5 18.10-12 n.s n.s	n.s n.s
Secondary somatosensory cortex S2 Right $n.s$ 18.54 $p_{rwe} < 1x10-12$ $n.s$ 5.66	$p_{EWF} = 5.12 \times 10-4$
Area 9/32 of correx 9.32 Right 7.72 p FDR = 2.84x10-10 p FDR = 2.84x10-10 n.s	n.s
exten 9/4/6 sh cortex 926 Right 6.98 p = 7.08×10-8 19.15 p = 12.15	β _{₽₩₽} ≤ 1 ×10=12
Secondary somatosensory cortex, Area 44 of cortexLeftn.s6.66 $p_{FWE} = 1.03 \times 10^{-6}$ n.sArea 44 of cortexN2Rightn.s18.47 $p_{FWE} < 1x10^{-12}$ n.s	n.s n.s
Internal part Right n.s. 19.15 p _{rwc} (1x10-12 n.s. 9.94	<i>p_FWE</i> < 1x10-12
X19494945479711491 part X492 RIBIN 7.30 p _{rwc} = 9.93×10-9 149.45 Brive ≥ 454/k145 Ri≷ 9.94	p _{FWE} < ¹ 1:0x10-12
Visual area 4, Iransitional part V41 Hight R:\$ 1864 P.EVESTV347166 R:\$	A:§
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	BEWE ₹ 1:0x10-12
Area 46D of cortex 46D BiBAT 6.98 p. = 75 78x 10-8 18.47 dP.EWE= 74 342 12-8 P.S	A:\$
Cingulate cortex	
Area 23 of cortex 23 Right 6.88 $p_{FWE} = 7.08 \times 10^{-8}$ $p_{FWE} = 7.08 \times 10^{-8}$ $n.s$	n.s n.s
Area 47 (oid 12) of cortex, Laterai 17 a mid/fine 6.27 n	
$\frac{h_{LG}}{223 \text{ of } U(1)} = \frac{1}{22 \text{ b}} $	n.s
AftBit 470(8)(490)(490)(490)(490)(490)(490)(490)(490	
part 23c Let $n.5$ 16.47 $p_{FW} < M0.12$ $n.5$	11.5
Area 28οδ/(gordenotor) ProM#1 Hight n.s 13.36 ρ _{FWE} < 1x10-12 n.s	n.s
Area 24/23b of cortex 24 23b Right n.s 18.47 p _{FWE} < 1x10-12 n.s	n.s
Area 24/23 co f cortex 24 23 c Left n.s 18.47 p _{FWE} < 1x10-12 n.s	n.s
Right n.s n.s n.s 5.77	$p_{FWE} = 2.67 \times 10-4$
Area 24b of contav. 24b Left n.s 18.47 p _{FWE} < 1x10-12 n.s	n.s
Alea 240 of contex 240 Right n.s 18.47 p _{FWE} < 1x10-12 n.s	n.s
Left n.s 18.47 p _{EWE} < 1x10-12 n.s	n.s
Area 24c of cortex 24c Right 6.98 p rue = 7.08x10-8 18.47 p rue < 1x10-12 n.s	n.s
Area 24d of cortex 24d Left ns 18 47 n < 1v10.12 ns	
Area 31 of cortex 31 Pight 10.47 P FWE < 1x10-12 N.S	11.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<i>n.s</i>
Area PGW/ 51 OF COTTEX PGW/ 51 midline 5.41 $p_{FWE} = 1.4 \times 10^{-3}$ n.s Delite Level 25 Contex Delite Delite Delite Delite	n.s
ranetai area PE, Cingulate part PECg Right n.S 18.4/ p _{FWE} < 1x10-12 n.S	n.s

fMRI activations during the DBS block-design experiment

CT-DBS VL-DBS VL-DBS										
				low		high		low		high
Area	Abbreviation	Hemisphere	T score	p value	T score	p value	T score	p value	T score	p value
Temporal cortex										
Area 13 of conternal culcus	PGa	Bight		n.ş	18 .4Z	B EWE \$ 1×18-13		n.ş		n.ş
Area 13a of cortex	13a	Left	5.11	n ====================================	3.27	m_rang=17.58x109-8		n.s		n.s
Auditory Koniocortex, Lateral part Area 140	AKL 140	Right		n.s	158.947	μρ _{FRWEE} =<1181001024		n.s		n.s
Area 25 of cortex	25	Left	5.48	р _{FWE} =1 9.\$ 6х10-4	3.48	р _{FWE} = 9.58х10-8		n.s		n.s
BublittorfnyoKotarlioαctuete x, Medial part	OPro	Right		n.s	18.43	р _{FWE} < 1x10-12		n.s		n.s
Fundus of Superior Temporal	FST	Left		n.s	6.48	р _{FWE} = 3.37x10-6		n.s		n.s
surcus	-	Right		n.s	18.47	$p_{FWE} < 1x10-12$ $p_{FWE} < 1x10-12$		n.s		n.s
Are 4 of cortex (primary motor) Medial Superior Temporal area	4#1 MST	Left Right		n.s n.s	7.27	$p_{FWE} = 1.53 \times 10-8$ $p_{FWE} < 1 \times 10-12$	_	n.s n.s	9.94	n.s p _{FWE} < 1x10-12
Area,6 of cortex, Medial part,	<u></u>	Right		n.s n.s	18.47	$p_{FWE} < 1x10-12$ $p_{FWE} < 1x10-12$		n.s n.s		n.s
(supplementary motor) 5)	MT	Right		n.s n.s	12/	$p_{FWE} = 1.55 \times 10^{-8}$ $p_{FWE} \le 1 \times 10^{-12}$		n.s n.s	2.48	BFWE = 2.96×10-4
Area 6 of cortex, DorsoCaudal	6DC	Right		n.s	18,47	DP-GWF=<115301028		n.s	12.81	$p_{FWE} < 4.9 \times 10^{-12}$
Para AMateoriya and a, Caudal part	PaAC	Right		n.s	20.85	p _{EWE} < 1x10-12		n.s		n.s
para Aladiatoris (Bar)ea, lateral part	6DR PaAL	Right		n.s n.s	19:15 18:47	$p_{FWE} < \frac{1 \times 10^{-12}}{1 \times 10^{-12}}$		n.s n.s	12.81	p _{FWE} < 1.0x10-12 n.s
AaeaAGudi toontexe X,eRotsal al arart	Paar	Right		กเร	192.5692	Pp=₩&E=≈137201@26		n.ş		n.s
Freiden Subdivision (Matellis F4)	ProK	Right		n.s	18.47	р _{FWE} < 1x10-12		n.s		n.s
Acteoforsiutortane,aVentral part,	Ref	Right		n.s	18.167	Pp=WWVE==2154201025		n.s		n.s
Rostral subdivision (Matellis F5) RetroInsular area, Temporal part	ReIT	Right		ก.ร	19.215	p9=6₩E=<1 183Ю10 28		n.s	5.61	р _{FWE} = 6,8 7х10-4
Area 6/32 of cortex	6 32	Right	1.05	n.s	19.45	p _{FWE} < 1x10-12		ก.ร		n.s
Superior Temporal sulcus area 1	ST1	Right	4.96	$p_{FWE} = A, 96X10-2$	18,89	$p_{FWE} < 1x10=12$	_	n.s	5.77	$p_{FWE} = \mu_{2} \cdot 5 / 10 - 4$
Superior Temporal area, gyral part Area 8A of cortex Superior Temporal area, sulcal	SJZg	Left		n.s	191./56	$P_{P_{WWE}} = \ll 1 \times 10^{-12}$		n.s	12.81	<i>n</i> <10×10-12
Barta 8of cortex AnteroDorsal	ST2s	Left		n.s n.s	11:36 7.10	$p_{FWE}^{FWE} \ge 1 \times 10^{-12}$ $p_{FWE} = 5.04 \times 10^{-8}$		n.s	12.01	<i>P</i> _{FWE} 1.0x10-12 <i>n.s</i> <i>n.s</i>
ቻፄඤporal area TAa	8 89	Right	5.92	n = 7:547x10-5	18:47	B FWF ≤ 1×10-13		B:5	12.81	n <1:5x10-12
Appaporal care a TEA Medial and tal	TEM	Right		n.s	18.47	p _{FWE} < 1x10-12		n.s	12.01	n.s
Jamporal area TE, OccipitoMedial	TEOM	Right		n.s n.s	19.15	$p_{FWE} < 1x10-12$ $p_{FWE} < 1x10-12$		n.s n.s	12.81	p _{FWE} < 1.0x10-12 n.s
Area 8B of cortex	-AB	Left Right		n.s	7.10	$p_{rwc} = 5.04 \times 10-8$		n.s		<u>n.s</u>
Temporal ParietoOccipital	120	Right	7.00	n:s	18:47	<u>B ⊨W</u> < 1810-19		n:s		n:s
associated area in sts	6132	Right	7.38	$p_{FWE} = 13.90 \times 10^{-9}$	18.45	p _{FWE} < 1x10-12		n.s		n.s
Aceapooldoatest, d'Oecipait part	19M TPOC	Left		n.s n.s	7.27	$p_{FWE}^{FWE} = 1.53 \times 10^{-8}$		n.s n.s		n.s n.s
associated area in sts, Caudal part Area 9/32 of cortex	9 32	Right	7.72	n.s D FOR = 2.84X10-10	18:47	$p_{FWE}^{FWE} < 1x10-12$ $p_{FDE} = 2.84x10-10$		n.s n.s	_	n.s
Appaporte alexortex	J145	Left Right Right	5.02 6.98 7.38	$p_{FWE} = 1.15 \times 10^{-2}$ $p_{FWE} = 7.08 \times 10^{-8}$ $p_{FWE} = 3.90 \times 10^{-9}$	18:15	n.s p _{FWE} < 1x10-12 p _{FWE} < 1x10-12		n.s n.s n.s	9.94	n.s p _{FWE} < 1x10-12 n.s
Occinital cortex			I							
Winstal SAcof Contenary visual	45A	Rieftt	7 30	n rur =17.93x10-9	19 15	n cure \$1.1x 10-12		n.s	9,92	10-110100100102
cortex	Ϋ́Ί	Right	7.22	$p_{FWF} = 1.26 \times 10^{-9}$	168.6467	pp=www==<110301026		n.s	7.44	$p_{FWF} = 4.52 \times 10.9$
Area 45B of cortex	45B	Rigftt	7.30	p _{FWE} =n 7. 23x10-9	159.705	PP=₩47E==<4108X0±024		n.s	9.94	р _{FWE} < 11.0 х10-12
Visual area 2 Area 46D of cortex	46D	Right	6.98	pp=wwe==<710/8001-00-28	18.47	pp=nnre=<7108001028	7.97	р _{FWE} = д9 4x10-11	9.27	p _{FWE} ≰11x10-12
Visual area 3, Dorsal part	V3D	Rigftt		n.s	198.207	pp= _{PM/E} =<4168x01023		n.s		n.s
Visual area 3A	V3A	Rigftt	6.98	р _{FWE} = п. £8x10-8	7.27	р _{FWE} = Т. 08х10-8		n.s		n.s
Area 47 (old 12) of cortex, Lateral	471	Right	6 27	n = 8 78x10-6		n = & S8x10-6		n.s	5.63	$p_{FWE} = 6.10 \times 10{-4}$
Insular cortex	470	Leit	1	11.3	0.00	P FWE = 1.03×10-0	_	11.5		11.3
Dysgranular Insular cortex	ProM#1	Left deft		n.s	6.18	$p_{FWE} = 2.29 \times 10^{-5}$ $p_{FWE} < 1 \times 10^{-12}$		n.s		n.s
		ngnt Left		n:s	7 52	$p_{FWE} < 1X10-12$ $p_{FWE} = 2.54 \times 10^{-0}$		n:s		n:s
Granular Insular cortex	GI	Right		n.s	18.47	p _{FWE} < 1x10-12		n.s	5.32	p _{FWE} = 1.54x10-2
Insular Proisocortex	IPro	Right		n.s	12.32	р _{FWE} < 1x10-12		n.s		n.s
Striatum										
Caudata puclous	C4	Left		n.s	18.47	р _{FWE} < 1x10-12		n.s		n.s
	Cu	Right	6.34	$p_{FWE} = 5.50 \times 10-6$	18.47	p _{FWE} < 1x10-12		n.s		n.s
Putamen	Pu	Left	5.30	p _{FWE} = 2.6x10-3	18.47	р _{FWE} < 1x10-12		n.s		n.s
		Right	13.68	p _{FWE} < 1x10-12	18.47	р _{FWE} < 1x10-12		n.s	5.30	p _{FWE} = 3.7x10-3

fMRI activations during the DBS block-design experiment

4/4				J		5 1				
				CT-	DBS			VL	-DBS	
				low		high		low		high
Area	Abbreviation	Hemisphere	T score	p value	T score	p value	T score	p value	T score	p value
Thalamus										
Learbear al Booxfrocionatileante Nucleus	LGEN	Right		n.s	19.43	р _{FWE} < 1х10-12		n.s		n.s
AaneeralBpudfviooantex	ЦзаI	Left	5.11	р _{FW} =n7.\$4x10-3	5.20	IPF#WEE = 17.444x100-32		n.s		n.s
Media46eniculate nucleus, ४९०४७ने स्विक्तितरहरू	140 MGV 25	Right Left	5 48	n.s n.s n = 9.66x10-4	5.91 5.87 5.48	$p_{FWE} = 1.21 \times 10-4$ $p_{FWE} = 1.55 \times 10-4$ $p_{FWE} = 9.66 \times 10-4$		n.s n.s n s		n.s n.s n s
Medialpulyinartex	Meril	Right	5.59	p FWE = 5.17x10-4	11.92	R EWE ≤ 1×18:13		Д·ғ		R·€
MedioDorsal thalamic nucleus, Frontral partex	MDC	Left	5.65	p _{FWE} = 3.56x10-4	11.07	p _{FWE} < 1x10-12		n.s		n.s
MedioDorsal thalamic nucleus, சின் கிற்கா tex (primary motor)	MDD 4#1	Left		n.s	18.07	p _{FWE} ≪ 1x10-12		n.s		n.s
MediDorsal thalamic nucleus,	MDM	left		n.s	18.47	$\mu_{FWE} < 1 \times 10^{-12}$ $n_{FWE} < 1 \times 10^{-12}$		n.s	9.94	p _{FWE} < 1x10-12 n s
Medialofaertex, Medial part (supplementary motor)	6M	Right		n:s n.s	19:15	P FWE < 1×10-12 B FWE ≤ 1×10=12		n:s n.s	5.77	$p_{EWE} = 2.67 \times 10-4$
Aseavenfrequternborrencendelus	PV	Right		n.s	11.07	$p_{FWE} < 1 \times 10^{-12}$		n.s	12.01	
part (Matellis F2)	BDC	Left		n.s	11.07	$p_{EWE} < 1x10-12$ $p_{EWE} < 1x10-12$		n:s	12.81	n.s
Area 6 of cortex, DorsoRostral Parayentricular, Thalamus	PVT 6DR	Right		n:s	19.05	p _{FWE} ≪ 1×10=12		n:§	12.81	р _{FWE} < д .9x10-12
Reticular thalamic purlausart.	R#4	Right		fl:§	5:94	₿ EWE ≣ <u>\$:37×1</u> 0=8		fl:§		₽:§
Hvpothalamus										
Area 6 of cortex, Ventral part, Hypothalamus	6tWR	Left		n.s n.s	6 16 14.54	$p_{FWE} = 2.54 \times 10^{-5}$ $p_{FWE} < 1 \times 10^{-12}$		n.s n.s		n.s n.s
Different of the test of (Adversaria)										
Pallidum Area 0/32 01 cortex	0.32	<u> </u>	-				-		-	1
External Globus Pallidus	EGP	Right	4.96	р _{FWE} = 1.5 6х10-2	1925	p _{FWE} ₹4,810-0-3		n.s	5.77	р _{FWE} = @.6 7х10-4
Paraseptal subpallium										
A course hone nucleur, Coro	AchC	Left		n.s n.s	18.47	$p_{FWE} < 1x10-12$ $p_{FWE} < 1x10-12$		n.s	12.01	p _{FWE} < 1.0x10-12 n.s
Aregisoncontex, Amteroporsal	8AD	Right	F 02	n.s 7.47:40 F	18.47	$p_{FWE} = 3.04 \times 10^{-8}$ $p_{FWE} < 1 \times 10^{-12}$		n.s	12.01	n.s
Areanabé contexteArctenteArter	AchSh	Left	5.52	p _{FWE} = 7.47X10-5 n.s	18.47	$p_{FWE} < 1x10-12$ $p_{FWE} < 1x10-12$		n.s	12.01	p _{FWE} < 1.0x10-12 n.s
part	'BAY''	Right		Ph:§	18:45	Ø _{FWE} ≤ <u>1×10</u> =12		A:§	12.81	р _{FWE} < д .9x10-12
Basal nucleus, Meynert	BM	Left		ħ.§	174.504	pP _{F6WF} ==5 104 91628		n.s		n.s
Substancia Inniôminata	Šĭ	rkigfit		A:§	15:49	<i>₿₩</i> ₣ ≈ 1 <u>×</u> 10-12		A:§		A:§
Subpallial amygdala										
Anter9oorf&ontygslaMediarlepart	904	Left		n.s n.s	18.47 14.54	$p_{FWE} < 1x10-12$ $p_{FWE} < 1x10-12$		n.s n.s		n.s n.s
Bed nucleus of the Stria	RSTLA	Right		n.s	14.54 15.09	$p_{FWE} < 1x10-12$ $p_{FWE} < 1x10-12$		n.s		n.s
herm Hallis in the Amygdaloid	-9/32	Right	7.72	$p_{FDR} = 2.84 \times 10^{-10}$	10.45	p ^P _{FDR} ^W = 2.84×10=10		n:s	0.01	n:s
Lateral division	CeL	Left	6.98	$p_{FWE} = 7.08 \times 10^{-8}$	14.54	$p_{FWE} < 1x10-12$ $p_{FWE} < 1x10-12$ $p_{FWE} = 1.02x10.6$		n.s n.s	9.94	$p_{FWE} < 1x10-12$ n.s
Area 44 of cortex Central amygdaloid nucleus,	44	Right		n.s	19 45	$D_{EWE} = 1.05 \times 10^{-6}$		n.s	9.94	n <1×10-12
Medial division	Celvi	-Bolt-	7.00	77:5	10.45	<i>P</i> FWE < 1910-12		11:5	5.54	P FWE 113(10 12
Ventral pallium										
BasoMedial amygdaloid nucleus	BM	Right	7.30	p _{FWE} = n7. 23x10-9	19.55	р _{FWE} < 1x10-12		n.s	9.94	р _{FWE} < 1.9 x10-12
Anedia6ano∳gotatei d nucleus	400	Rigftt	6.98	р _{FWE} = л.9 8х10-8	14.54	pp=www.==<710x8x01028		n.s		n.s
Midhrain										n.s
Aron 47 (old 12) of contax list		Left	5.83	$p_{FWE} = 1.25 \times 10^{-4}$	8.32	p _{FWE} < 1x10-12		n.s		n.s
part	492	Rigfit	6.27	$p_{FWE} = 8.28 \times 10-6$	11.07	PFWE = 828x1026		П:§		<i>ħ</i> : §
Cerebellum			-							
Area, ProM (promotor)	ProM#1	Left	8.38	p _{FWE} ≤ 13×10-12	13:36	₿ _{Е₩Е} ≈ <u>1×10</u> =12		ħ:§	7.53	p _{FWE} = ₁ 2.29x10-9
Cerebellum'	Cb	Right	8.41	р _{FWE} < 1x10-12	14.03	p _{FWF} < 1x10-12		n.s	5.31	p _{EWE} = 1.8x10-3

<u>Table S3</u>: fMRI activations during low central thalamic (CT), high CT-DBS, low ventral-lateral thalamic (VL) and high VL-DBS

Thalamic DBS-induced fMRI activity during the electrical stimulation block-design experiment, p < 0.05, FWE corrected, ns: non significant.

Value	BF10	BF01
>100	Obvious evidence for H1	Obvious evidence for H0
30 to 100	Very strong evidence for H1	Very strong evidence for H0
10 to 30	Strong evidence for H1	Strong evidence for H0
3 to 10	Substantial evidence for H1	Substantial evidence for H0
1 to 3	Anecdotal evidence for H1	Anecdotal evidence for H0
1	No evidence	for H1 or H0
1 to 0.33	Anecdotal evidence for H0	Anecdotal evidence for H1
0.33 to 0.10	Substantial evidence for H0	Substantial evidence for H1
0.10 to 0.03	Strong evidence for H0	Strong evidence for H1
0.03 to 0.01	Very strong evidence for H0	Very strong evidence for H1
<0.01	Obvious evidence for H0	Obvious evidence for H1

<u>Table S4</u>: Interpretation of the Bayes Factors.

Value of the Bayes Factor BF10 and BF01 to interpret statistical evidence in favor of the H1 or H0 hypothesis. A BF greater than 3 significatively support the evidence of the tested hypothesis.

fMRI activations during the auditory "Local-Global" experiment

Local effect

Group

			Anesthe	sia	High CT	DBS	High C > Anest	T-BS thesia
Area	Abbreviation	Hemisphere	T score	p value	T score	p value	T score	p value
Orbitofrontal cortex								
Orbital Proisocortex	OPro	Left	4.44	p _{FDR} = 0.047		n.s		n.s
Parietal cortex								
Area 3b of cortex (somatosensory)	3b	Left	4.59	$p_{FDR} = 0.039$		n.s		n.s
Parietal area PG#1	PG#1	Right		n.s		n.s	4.24	$p_{FDR} = 0.044$
Visual area 4, Ventral part	V4V	Left		n.s	4.80	p _{FDR} = 0.049		n.s
Cingulate cortex							_	
Parietal area PE, Cingulate part	PECg	Left	4.80	$p_{FDR} = 0.037$		n.s		n.s
Temporal cortex								
Fundus of Superior Temporal sulcus	FST	Left	4.27	<i>p</i> _{<i>FDR</i>} = 0.048		n.s		n.s
ProKoniocortex, Medial part	ProKM	Left		n.s		n.s	4.59	$p_{FDR} = 0.040$
Temporal ParietoOccipital associated area in STS	ТРО	Right		n.s		n.s	4.42	p _{FDR} = 0.040
Temporoparietal cortex	Tpt	Right		n.s		n.s	4.38	$p_{FDR} = 0.040$
Occipital cortex					_		_	
Visual area 1 (primary visual cortex)	V1	Left	4.41	<i>p</i> _{<i>FDR</i>} = 0.047		n.s		n.s
Striatum								
Caudate nucleus	Cd	Right	4.28	$p_{FDR} = 0.048$] [n.s		n.s
Midbrain								
Midbrain	MB	Right		n.s		n.s	4.13	p _{FDR} = 0.044

Table S5: Cerebral activations for the local effect

fMRI activations for the local effect under anesthesia, high central thalamic (CT) DBS and comparison between high CT-DBS > anesthesia. Group results, p < 0.05, FDR corrected, ns: non significant.

page 1/2

fMRI activations during the auditory "Local-Global" experiment

Global effect

Group

	a Abbreviation Hemisphere		Awał	(e	Anesth	esia	High (CT-DBS	High (>Ane	High CT-DBS > Anesthesia		
Area	Abbreviation	Hemisphere	Tscore	p value	Tscore	p value	T score	p value	T score	p value		
Frontal cortex												
Area 6 of the cortex, DorsoRostral part	EDR	Pight					2.66	n =0.023				
(Matellis F7)	buk	Kigit		11.5		11.5	5.00	$p_{FDR} = 0.023$	-	11.5		
Area 6 of the cortex, Ventral part, Bostral subdivision (Matellis E5)	6VR	Left	3.88	$p_{FDR} = 0.024$		n.s		n.s		n.s		
Area 8B of cortex	8B	Right	4.61	p ene =0.014	_	n.s	- 3	n.s		n.s		
Area 8B of cortex	9/46V	Right	3.82	p FDR = 0.026		n.s		n.s		n.s		
	100		3.58	p FDR = 0.033		n.s	4.75	$p_{FDR} = 0.002$	4.57	p _{FDR} =0.018		
Area 44 ofcortex	44	Right		n.s		n.s	3.48	p _{FDR} = 0.031		n.s		
Area 45B of cortex	450	Left	3.92	p _{FDR} =0.024		n.s	3.94	p _{FDR} = 0.014		n.s		
Area 450 Of Contex	450	Right		n.s		n.s		n.s	4.57	p _{FDR} =0.018		
Area 47 (old 12) of cortex. Orbital part	470	Left	3.91	$p_{FDR} = 0.024$		n.s	3.83	$p_{FDR} = 0.017$		n.s		
· · · · · · · · · · · · · · · · · · ·		Right	4.09	p _{FDR} =0.018	_	n.s		n.s		n.s		
Area ProM (promotor)	ProM#1	Left		n.s	_	n.s	3.80	p _{FDR} = 0.018		n.s		
Parietal cortex												
				n.s		n.s	5.06	p _{FDR} = 0.002		n.s		
Area 3a of cortex (somatosensory)	3a	Right		n.s		n.s	3.50	$p_{FDR} = 0.030$		n.s		
				n.s		n.s	3.47	p _{FDR} =0.031		n.s		
Area 3b of cortex (somatosensory)	Зb	Left			4.73	$p_{FDR} = 0.042$		n.s		n.s		
Parietal area PFG	PFG#1	Right	4.20	$p_{FDR} = 0.017$		n.s		n.s	4.29	p _{FDR} = 0.018		
Depth IntraParietal area	DIP	Left	8	n.s		n.s		n.s	4.06	p _{FDR} = 0.028		
		Right		n.s		n.s	4.11	<i>p</i> _{FDR} = 0.010		n.s		
Parietal area PG	PG#1	Right	3.76	$p_{FDR} = 0.028$		n.s	3.98	p FDR = 0.013	-	n.s		
Dorsal parietal area	Dpt	Right	2.20	n.s		n.s	4.86	$p_{FDR} = 0.002$	-	n.s		
Parietal area Poa, external part	POat	Left	3.39	$p_{FDR} = 0.042$		n.s	4.51	p FDR = 0.005		n.s		
Secondary somatosensory cortex	52	Right	3.50	p FDR = 0.034	-	n.s	3.25	n.s	-	n.s		
Secondary somatosensory cortex.		night	2	11.3		11.5	5.25	p FDR = 0.045		11.3		
External part	S2E	Right		n.s		n.s	3.70	$p_{FDR} = 0.021$		n.s		
Visual area 4, Ventral part	V4V	Left		n.s		n.s	3.39	<i>p</i> _{FDR} = 0.035	4.32	p _{FDR} =0.018		
Visual area 4, Trnasitional part	V4T	left	4.37	$p_{FDR} = 0.017$		n.s				n.s		
Visual area 4, Dorsal part	V4D	Left		n.s		n.s	3.58	<i>p</i> _{FDR} = 0.026		n.s		
		Right		n.s		n.s	3.76	p _{FDR} = 0.019		n.s		
Cingulate cortex							<u></u>		100			
Area 23c of cortex	23c	Left		n.s		n.s	3.60	<i>p</i> _{FDR} = 0.024		n.s		
Area 24b of cortex	23b	Left	3.45	$p_{FDR} = 0.039$		n.s		n.s		n.s		
Temporal cortex												
Pergenetation in team in	24 10.1119/1	Left		n.s		n.s	3.24	p _{EDR} = 0.044		n.s		
Medial Superior Temporal area	MST	Right	4.05	p _{FDR} = 0.019	4.46	p _{FDR} = 0.042		n.s		n.s		
Fundus of Superior Temporal sulcus	FST	Left		n.s		n.s	3.33	$p_{FDR} = 0.039$		n.s		
Superior Temporal sulcus area, gyral part	ST2g	Left		n.s		n.s	3.76	<i>p</i> _{FDR} = 0.019		n.s		
retroinsular area, Temporal part	ReIT	Right	3.76	p _{FDR} =0.028		n.s		n.s		n.s		
Temporal area TEa	TEa#1	Left	4.12	p _{FDR} = 0.018		n.s	4.87	$p_{FDR} = 0.002$	4.78	p _{FDR} =0.018		
Temporal area TE, Occipital part	TEO	Left		n.s		n.s	3.27	<i>p</i> _{FDR} = 0.042	4.32	p _{FDR} =0.018		
Temporal ParietoOccipital associated	TPO	Left		n.s		n.s	5.37	$p_{FDR} = 0.002$	4.62	p _{FDR} =0.018		
area in STS				n.s		n.s		n.s	4.27	p _{FDR} = 0.018		
Occipital cortex												
		Left			4.19	$p_{FDR} = 0.042$		n.s		n.s		
Visual area 1 (primary visual cortex)	V1	Right	o		4.33	$p_{FDR} = 0.042$	4.39	<i>p</i> _{FDR} = 0.006		n.s		
					4.30	$p_{FDR} = 0.042$	3.90	<i>p</i> _{FDR} =0.015		n.s		
		Left				n.s	3.57	<i>p</i> _{FDR} = 0.026		n.s		
Visual area 2	V2	Right	3.91	P _{FDR} = 0.024	4.53	$p_{FDR} = 0.042$	4.62	$P_{FDR} = 0.004$	-	n.s		
		1993 C	3.58	P FDR = 0.033	4.46	$p_{FDR} = 0.042$	4.27	n.s		n.s		
Visual area 3, Ventral part	V3V	Right	0	n.s		n.s	4.27	$p_{FDR} = 0.007$		n.s		
Visual area 3. Dorsal part	Van	Right		n.s		n.s	3.70	$p_{FDR} = 0.019$		n.s		
Visual area 3A	V3A	Right	8	n.s		n-s	3.70	p son = 0.021		n.s		
and an use and		gint	8 	.1.3			5.70	P FOR - OTOLI				

fMRI activations during the auditory "Local-Global" experiment

Global effect

Group

			Awał	(e	Anesth	iesia	High C	T-DBS	High C ⁻ > Anes	T-DBS thesia
Area	Abbreviation	Hemisphere	Tscore	p value	Tscore	p value	Tscore	p value	Tscore	p value
Striatum		- Q								
Caudate nucleus	Cd	Right	4.61	p 508 = 0.014		n.s	4.83	$p_{FDR} = 0.002$		n.s
			4.66	p FDR = 0.007		n.s	4.27	p 508 = 0.007		n.s
Putamen	Pu	Right		n.s		n.s	3.77	p FDR = 0.019		n.s
Thalamus										
Ventral PosteroLateral thalamic nucleus	VPL#1	Right			4.72	p _{FDR} =0.042		n.s		n.s
Ventral Anterior thalamic nucleus, Medial part	VAM	Left		n.s		n.s	3.66	<i>p</i> _{FDR} = 0.023		n.s
MedioDorsalthalamic nucleus, Lateral part	MDL	Left		n.s		n.s		n.s	3.81	$p_{FDR} = 0.039$
Reticular thalamic nucleus	R#4	Left		n.s		n.s		n.s	3.83	$p_{FDR} = 0.037$
		Left		n.s		n.s	4.08	p _{FDR} =0.011		n.s
Lateral Geniculate Nucleus	LGN	Diabt	0	n.s		n.s	3.49	$p_{FDR} = 0.030$		n.s
		Kigit		n.s		n.s	3.45	p _{FDR} =0.033		n.s
Paraseptal subpallium										
Accumbens nucleus	Acb	Left		n.s		n.s		n.s	4.38	p FDR = 0.018
Midbrain										
Midbrain	MB	Right		n.s		n.s	4.43	p FDR = 0.006		n.s
Cerebellum										
		Left	4.83	p _{FDR} = 0.014		n.s	3.32	p _{FDR} = 0.039		n.s
Cerebellum	Ch	midline		n.s		n.s			4.21	p _{FDR} = 0.020
Cerebendill	co	Right	3.57	$p_{FDR} = 0.033$		n.s	3.65	p _{FDR} =0.023		n.s
		in Birt		n.s		n.s	3.64	$p_{FDR} = 0.023$		n.s

Table S6: Cerebral activations for the global effect

fMRI activations for the global effect in the awake, anesthesia and high central thalamic (CT) DBS condition and comparison between high CT-DBS versus anesthesia. For the global effect, no regions are significantly different for the awake > high CT-DBS comparison. Group results, p < 0.05, FDR corrected, ns: non significant.

page 1/2

Cerebral areas labelling using the CIVM macaque brain atlas Revised version

Level	Labels CIVM	Abbreviations CIVM	Value		Labels CIVM_R	Abbrevations CIVM R	Value CIVM R left	Value CIVM R
ventricles	ventricles	LV	1]			0	0
pons	pons	Md Pn	2		MEDULLA PONS	Md Pn	1 3	2 4
cerebellum midbrain	cerebellum midbrain	Cb MB	4		CEREBELLUM MIDBRAIN	Cb MB	5	6 8
thalamus	anterior pulvinar	Apul AM#1	6		PULVINAR	Pul	9	10
thalamus	anteroventral thalamic nucleus	AV CM#2	8		ANTERO THALAMIC NUCLEUS	A#1	11	12
thalamus	centrolateral thalamic nucleus	CI#2	10		CENTROLATERAL THAKAMIC NUCLEUS	Cl#2	15	16
thalamus	centromedian thalamic nucleus, lateral part	CMnM	12	_	CENTROMEDIAN THALAMIC NUCLEUS	CMN	17	18
thalamus	interanteromedial thalamic nucleus	IAM	13		INTERANTEROMEDIAL THALAMIC NUCLEUS	IAM	9 19	20
thalamus thalamus	intermediodorsal thalamic nucleus lateral dorsal thalamic nucleus, superficial part	IMD LDSF	15		INTERMEDIODORSAL THALAMIC NUCLEUS LATERAL DORSAL THALAMIC NUCLEUS	IMD LDSF	21 23	22 24
thalamus thalamus	lateral geniculate nucleus lateral pulvinar	LGN Lpul	17		LATERAL GENICULATE NUCLEUS PULVINAR	LGN Pul	25 9	26 10
thalamus thalamus	medial geniculate nucleus, dorsal part medial geniculate nucleus, medial part	MGD MGM	19 20		MEDIAL GENICULATE NUCLEUS	MG	27	28
thalamus thalamus	medial geniculate nucleus, ventral part medial pulvinar	MGV MPul	21		PULVINAR	Pul	9	10
thalamus	mediodorsal thalamic nucleus, central part	MDC	23					
thalamus	mediodorsal thalamic nucleus, lateral part	MDL	25		MEDIODORSAL THALAMIC NUCLEUS	MD	29	30
thalamus	parafascicular thalamic nucleus	Pf#2	27		PARAFASCICULAR THALAMIC NUCLEUS	Pf#2	31	32
thalamus	paraventricular thalamic nucleus	PV PVT	28		PARAVENTRICULAR THALAMIC NUCLEUS	PV	33	34
thalamus thalamus	pulvinar nuclei reticular thalamic nucleus	Pul#1 R#4	30		PULVINAR RETICULAR THALAMIC NUCLEUS	Pul R#4	9 35	10 36
thalamus thalamus	reuniens thalamic nucleus suprageniculate thalamic nucleus	Re SG	32		SUPRAGENICULATE THALAMIC NUCLEUS	SG	0 37	0 38
thalamus thalamus	rentral anterior thalamic nucleus, lateral part, pallidal territory of thalamu ventral anterior thalamic nucleus, lateral part, ventralis oralis nucleus	VAL(pal) VAL(VO)	34 35		VENTRAL ANTERIOR THALAMIC NUCLEUS	VAL	20	40
thalamus thalamus	ventral anterior thalamic nucleus, magnocellular part ventral anterior thalamic nucleus, medial part	VAMC VAM	36 37		VENTRAL ANTERIOR THALAPIC NOCLEUS	VAL	39	40
thalamus	ventral lateral thalamic nucleus, lateral part	VLL VI M#1	38		VENTRAL LATERAL THALAMIC NUCLEUS	VL	41	42
thalamus	ventral posterolateral thalamic nucleus	VPL#1	40		VENTRAL POSTEROLATERAL THALAMIC NUCLEUS	VPL	43	44
hypothalamus	hypothalamus	Hy	41		HYPOTHALAMUS	Hy	45	46
pallidum	external globus pallidus	EGP	43		EXTERNAL GLOBUS PALLIDUS	EGP	47	48
pallidum pallidum	internal globus pallidus ventral pallidum	IGP VP#3	45	-	VENTRAL GLOBUS PALLIDUS VENTRAL PADDIDUM	IGP VP#3	49 51	50 52
paraseptal subpallium paraseptal subpallium	accumbens nucleus, core accumbens nucleus, shell	AcbC AcbSh	47		ACCUMBENS NUCLEUS	Acb Acb	53 53	54 54
paraseptal subpallium paraseptal subpallium	accumbens nucleus basal nucleus (Meynert)	Acb BM#4	49 50		MEYNERT BASAL NUCLEUS	Acb BM#4	53 55	54 56
paraseptal subpallium	nucleus of the horizontal limb of the diagonal band substantia innominata	HDB SI	51 52		IUCLEUS OF HORIZONTAL LIMB OF DIAGONAL BAN	HDB	57	58 0
striatum	caudate nucleus	Cd	53		CAUDATE NUCLEUS	Cd	59	60
striatum	putamen	Pu	55	_	PUTAMEN	Pu	63	64
subpalial amygdala subpalial amygdala	anterior amygdaloid area	AA	57					
subpallial amygdala subpallial amygdala	bed nucleus of the stria terminalis intraamygdaloid division central amygdaloid nucleus, lateral division	CeL	58 59		AMYGDALA	AMY	65	66
subpallial amygdala subpallial septum	central amygdaloid nucleus, medial division septum	CEm#1 Se	60 61				0	0
lateral pallium ventral pallium	dorsal endopiriform nucleus amygdalohippocampal area, magnocellular part	DEn AHIMC	62 63				0	0
ventral pallium	amygdalohippocampal area, parvicellular part amygdalopiriform transition area	AHIPC	64					
ventral pallium	anterior olfactory nucleus	A0 BI #2	66					
ventral pallium	basolateral amygdaloid nucleus, dorsal part	BLD	68					
ventral pallium	basolateral amygdaloid nucleus, intermediate part basolateral amygdaloid nucleus, ventral part	BLV	70		AMYGDALA	AMY	65	66
ventral pallium ventral pallium	basolateral amygdaloid nucleus, ventrolateral part basolateral amygdaloid nucleus, ventromedial part	BLVL BLVM	71			12423025		66582
ventral pallium ventral pallium	basomedial amygdaloid nucleus lateral amygdaloid nucleus	BM#3 La#3	73					
ventral pallium ventral pallium	medial amygdaloid nucleus paralaminar amygdaloid nucleus	Me PaL	75 76					
ventral pallium	piriform cortex ventral cortical amyodaloid nucleus	Pir VCo	77					
hippocampus medial pallium	hippocampus	Hip	79	1	HIPPOCAMPUS	Hip	67	68
medial pallium	presubiculum	PrS	81		SUBICULAR COMPLEX	PS	69	70
medial pallium	subiculum	S#1	83			1		
insular cortex	dysgranular insular cortex	DI#2	84		INSULAR CORTEX	IC	71	72
insular cortex insular cortex	granular insular cortex insular proisocortex	GI IPro	86 87					
cingulate cortex cingulate cortex	area 23 of cortex area 23a of cortex	23 23a	88 89			23	73	74
cingulate cortex cingulate cortex	area 23b of cortex area 23c of cortex	23b 23c	90 91		AREA 25 OF CORTEA	25	13	/4
cingulate cortex	area 24/23a of cortex area 24/23b of cortex	24/23a 24/23b	92		AREA 24/23a OF CORTEX	24/23a	75	76
cingulate cortex	area 24/23c of cortex	24/23c	94			-		
cingulate cortex	area 24b of cortex	24b	96		AREA 24a OF CORTEX	24	77	78
cingulate cortex	area 24d of cortex	240 24d	97					
cingulate cortex cingulate cortex	area 29a of cortex area 29a-c of cortex	29a 29a-c	99 100		AREA 29a OF CORTEX	29	79	80
cingulate cortex cingulate cortex	area 29d of cortex area 30 of cortex	29d 30	101		AREA 30 OF CORTEX	30	81	82
cingulate cortex cingulate cortex	area 31 of cortex area 32 of cortex	31 32	103 104		AREA 31 OF CORTEX AREA 32 OF CORTEX	31 32	83 85	84 86
cingulate cortex	area PGM/31 of cortex parietal area PE, cingulate part	PGM/31 PECa	105		AREA PGM/31 OF CORTEX PARIETAL AREA PE, cingulate part	PGM/31 PECa	87 89	88 90
cingulate cortex	unnamed region sections 102-114, called 23 more anteriorly	23x	107			1.00	0	0
occipital cortex	juxtastriate area prostriate area	ProST	108		PROSTRIATE AREA	ProST	91 93	92 94
occipital cortex occipital cortex	visual area 1 (primary visual cortex) visual area 2	V1 V2	110 111		VISUAL AREA 1 VISUAL AREA 2	V1 V2	95 97	96 98
occipital cortex occipital cortex	visual area 3, dorsal part visual area 3, ventral part	V3D V3V	112 113		VISUAL AREA 3	V3	99	100
occipital cortex parietal cortex	visual area 3A area 1 of cortex (somatosensorv)	V3A 1#1	114 115	-	AREA 1 OF CORTEX	1#1	101	102
parietal cortex	areas 2/1 of cortex (somatosensory) area 2 of cortex (somatosensory)	39844	116		AREA 2/1 OF CORTEX	2#1	103	104
parietal cortex	area 2 of cortex, vestibular part	2Ve	118		AREA 2 OF CORTEX	2	105	106
parietal cortex	area 3a of cortex (somatosensory) area 3b of cortex (somatosensory)	3b	120		AREA 3a OF CORTEX	3	107	108
parietal cortex parietal cortex	dorsal parletal area	DIP	121		DORSAL PARIETAL AREA	DIP	109	110
parietal cortex parietal cortex	occipitoparietal area parietal area PE	OPt PE#1	123 124		OCCIPITOPARIETAL AREA	OPt	113	114
parietal cortex parietal cortex	parietal area PE, caudal part parietal area PEa	PEC PEa	125 126		PARIETAL AREA PE	PE	115	116
parietal cortex parietal cortex	parietal area PF (cortex) parietal area PF, opercular part	PFCx PFOp	127 128		PARIETAL AREA PF	PFCx	117	118
parietal cortex	parietal area PFG parietal area PG	PFG#1 PG#1	129		PARIETAL AREA PFG	PFG#1	119	120
parietal cortex	parletal area PG, opercular part	PGOp	131		PARIETAL AREA PG	PG#1	121	122
parietal cortex	parietal area POa, external part	POal	132		PARIETAL AREA Poa	POa	123	124
parietal cortex parietal cortex	parieto-occipital area parietooccipital associated area in the intraparietal sulcus	PO#1 POa	134		PARIETO-OCCIPITAL AREA	PO#1	125	126
parietal cortex parietal cortex	posterior parietal area retroinsular area, parietal part	PPt#1 ReIP	136 137		POSTERIOR PARIETAL AREA RETROINSULAR AREA, parietal part	PPt#1 ReIP	127 129	128 130
parietal cortex parietal cortex	secondary somatosensory cortex secondary somatosensory cortex, external part	S2 S2E	138 139		SECONDARY SOMATOSENSORY CORTEX	S2	131	132
parietal cortex parietal cortex	secondary somatosensory cortex, internal part visual area 4, dorsal part	S2I V4D	140 141			-		
parietal cortex parietal cortex	visual area 4, transitional part visual area 4, ventral part	V4T V4V	142 143		VISUAL AREA 4	V4	133	134

Cerebral areas labelling using the CIVM macaque brain atlas Revised version

Level	Labels CIVM	Abbreviations CIVM	CIVM		Labels CIVM_R	Abbrevations CIVM R	Value CIVM R left	Value CIVM R
temperal contex	area 25 of cortex	25	145	l I	AREA 25 OF CORTEX	25	125	126
temporal cortex	area PG associated region of the superior temporal sulcus	PGa	145		AREA 35 OF CORTEX REA PG associated region of superior temporal suice	PGa	135	136
temporal cortex	area TF, medial part	TFM	140		AREA TF, medial part	TEM	139	140
temporal cortex	area TL, rostral part (area 36R)	TLR(R36)	148		AREA TL, rostral part (area 36R)	TLR(R36)	141	142
temporal cortex	auditory koniocortex, lateral part	AKL	149		AUDITORY KONIOCORTEX	AK	143	144
temporal cortex	auditory koniocortex, medial part	AKM	150				140	
temporal cortex	entorhinal cortex, caudal limited part	ECL EC#2	151			1 1		
temporal cortex	entorhinal cortex, lateral part, caudal division	EC#2	152					
temporal cortex	entorhinal cortex, lateral part, rostral division	ELR	154		ENTORHINAL CORTEX	ECL	145	146
temporal cortex	entorhinal cortex, rostral part	ER#1	155					
temporal cortex	entorhinal Cx, intermediate part	EI	156			1 1		
temporal cortex	entorhinal Cx, olfactory part	EOI	157					
temporal cortex	fundus of superior temporal sulcus	FST	158		FUNDUS OF SUPERIOR TEMPORAL SULCUS	FST	147	148
temporal cortex	medial superior temporal area	MST	160		MEDIAL SUPERIOR TEMPORAL AREA	MST	149	150
temporal cortex	middle temporal area (visual area 5)	MT(V5)	161		MIDDLE TEMPORAL AREA (visual area 5)	MT(V5)	153	154
temporal cortex	paraauditory area, caudal part	PaAC	162					
temporal cortex	paraauditory area, lateral part	PaAL	163		PARAAUDITORY CORTEX	PaA	155	156
temporal cortex	paraauditory cortex, rostral part	PaAR	164					
temporal cortex	parainsular cortex, lateral part	Pail	165		PARAINSULAR CORTEX	PaI	157	158
temporal cortex	paramsular corcex, mediar parc	ProK	167					
temporal cortex	prokoniocortex, lateral part	ProKL	168		PROKONIOCORTEX	ProK	159	160
temporal cortex	prokoniocortex, medial part	ProKM	169					
temporal cortex	retroinsular area	ReI	170		RETROINSULAR AREA	Rel	161	162
temporal cortex	retroinsular area, temporal part	ReIT	171					102
temporal cortex	superior temporal sulcus area 1	ST1	172					
temporal cortex	superior temporal suicus area, ovral part	513 ST20	173	<u> </u>	SUPERIOR TEMPORAL SULCUS	ST1	163	164
temporal cortex	superior temporal sulcus area, sulcal part	ST2s	175					
temporal cortex	temporal area TAa	TAa	176		TEMPORAL AREA TAa	TAa	165	166
temporal cortex	temporal area TE, medial part	TEM	177					
temporal cortex	temporal area TE, occipital part	TEO	178			1 1		
temporal cortex	temporal area TE, occipitomedial part	TEOM	179	L	TENDODAL ADEA TE	77	107	100
temporal cortex	temporal area TE1	TE1#1	180	_	TEMPORAL AREA TE	1E	167	168
temporal cortex	temporal area TE3	TE2#1	182			1 1		
temporal cortex	temporal area TEa	TEa#1	183			1 1		
temporal cortex	temporal area TF	TF	184					-
temporal cortex	temporal area TF, lateral part	TFL	185		TEMPORAL AREA TF	TF	169	170
temporal cortex	temporal area TF, occipital part	TFO	186					
temporal cortex	temporal area TH	TH	187		TEMPORAL AREA TH	TH	171	172
temporal cortex	temporal area TH, occipital part	Tho	188					
temporal cortex	temporal area TL, occipital part (area 360)	TLO(360)	190		TEMPORAL AREA TL	TL	173	174
temporal cortex	temporal parietooccipital associated area in sts	TPO	191			-		
temporal cortex	temporal parietooccipital associated area in sts, caudal part	TPOC	192		TEMPORAL PARIETOOCCIPITAL ASSOCIATED AREA	TPO	175	176
temporal cortex	temporoparietal cortex	Tpt	193		TEMPOROPARIETAL CORTEX	Tpt	177	178
temporal cortex	temporopolar periallocortex	TTPAI	194		TEMPOROPOLAR PERIALLOCORTEX	TTPAI	179	180
temporal cortex	temporopolar proisocortex	TPPro	195		TEMPOROPOLAR PROISOCORTEX	TPPro	181	182
frontal cortex	area 6 of cortex, dorsocaudal part (Matellis E2)	4#1 6DC(F2)	195	_	AREA 4 OF CORTEX (primary motor)	4#1	183	164
frontal cortex	area 6 of cortex, dorsorostral part (Matellis F7)	6DR(F7)	198			1 1		
frontal cortex	area 6 of cortex, medial (supplementary motor) part	6M	199	<u> </u>	AREA 6 OF CORTEX	6	185	186
frontal cortex	area 6 of cortex, ventral part, caudal subdivision (Matellis F4)	6VC(F4)	200					
frontal cortex	area 6 of cortex, ventral part, rostral subdivision (Matellis F5)	6VR(F5)	201	_				
frontal cortex	area 6/32 of cortex	103/9	202		AREA 6/32 OF CORTEX	6/32	187	188
frontal cortex	area 8 of cortex, anteroventral part	84V	203			1 1		
frontal cortex	area 8/32 of cortex	10440	205		AREA 8 OF CORTEX	8	189	190
frontal cortex	area 8A of cortex	8A	206					
frontal cortex	area 8B of cortex	8B	207					
frontal cortex	area 9 of cortex, lateral part	9L	208		AREA 9 OF CORTEX	9	191	192
frontal cortex	area 9 of cortex, medial part	9M	209		AREA 9/32 OF CORTEX	0/32	102	104
frontal cortex	area 9/46 of cortex	15584	211		AREA 9/02 OF CORTEA	31.52	100	
frontal cortex	area 9/46 of cortex, dorsal part	9/46D	212		AREA 9/46 OF CORTEX	9/46	195	196
frontal cortex	area 9/46 of cortex, ventral part	9/46V	213		Mendios Selicificação - Selicificação est		1000	00000
frontal cortex	area 10 of cortex	10	214					
frontal cortex	area 10 of cortex, dorsal part	10D	215	<u> </u>	AREA 10 OF CORTEX	10	197	198
frontal cortex	area 10 of cortex, medial part	10M	210			[]		
frontal cortex	area 44 of cortex	44	218		AREA 44 OF CORTEX	44	199	200
frontal cortex	area 45A of cortex	45A	219		ADEA 45 OF CODTEX	45	204	000
frontal cortex	area 45B of cortex	45B	220		AREA 45 OF CORTEX	45	201	202
frontal cortex	area 46D of cortex	46D	221		AREA 46 OF CORTEX	46	203	204
frontal cortex	area 45V of cortex	46V	222			(
frontal cortex	area 47 (old 12) of cortex lateral part	47(12)	223		AREA 47 OF CORTEX	47	205	206
frontal cortex	area 47 (old 12) of cortex, orbital part	47(12)0	225					
frontal cortex	area ProM (promotor)	proM#1	226		AREA PROM (promotor)	proM#1	207	208
frontal cortex	gustatory cortex	Gu	227		GUSTATORY CORTEX	Gu	209	210
orbitofrontal cortex	area 11 of cortex	11	228		AREA 11 OF CONTEX	1 1	244	210
orbitofrontal cortex	area 11 of cortex, lateral part	11L	229		AREA 11 OF CORTEX	11	217	212
orbitofrontal cortex	area 13 of cortex	13	230			(
orbitofrontal cortex	area 13 of cortex, lateral part	13L	232		ADEA 13 OF CODTEX	1 12		
orbitofrontal cortex	area 13 of cortex, medial part	13M	233		AKEA 13 UF CORTEX	13	213	214
orbitofrontal cortex	area 13a of cortex	13a	234			<u>لــــــا</u>		
orbitofrontal cortex	area 14 of cortex, medial part	14M	235		AREA 14 OF CORTEX	14	215	216
orbitofrontal cortex	area 140	140	236		AREA 25 OF CORTEX	25	217	210
orbitofrontal cortex	orbital periallocortex	OPAL	237		ORBITAL PERIAL OCORTEX	0PAI	219	220
orbitofrontal cortex	orbital proisocortex	OPro	239		ORBITAL PROISOCORTEX	OPro	221	222
white matter	cerebral white matter	cwm	240				0	0
white matter	external medullary lamina	eml	241	l			0	0

<u>Table S7</u>: Whole brain areas labelling of the Center for In Vivo Microscopy atlas (CIVM) atlas Revised (CIVM_R) for functional correlations analysis.

Whole brain regions considered for the functional correlations analysis using the macaque CIVM atlas(76) that was revised into CIVM_R to match fMRI spatial resolution. Regions merged together (for instance dorsal, medial and ventral part of the medial geniculate nucleus in the original CIVM atlas into medial geniculate nucleus) share the same abbreviation and value in the CIVM_R. Brackets represent the biggest regions unified. Empty cells stands for deleted regions.