Science Advances

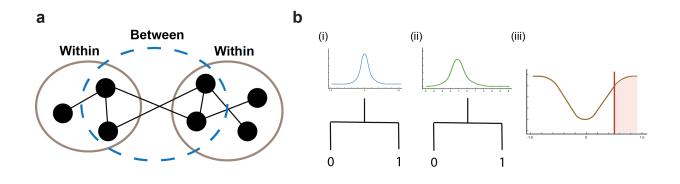
Supplementary Materials for

Reconstructing codependent cellular cross-talk in lung adenocarcinoma using REMI

Alice Yu, Yuanyuan Li, Irene Li, Michael G. Ozawa, Christine Yeh, Aaron E. Chiou, Winston L. Trope, Jonathan Taylor, Joseph Shrager, Sylvia K. Plevritis*

*Corresponding author. Email: sylvia.plevritis@stanford.edu

Published 18 March 2022, *Sci. Adv.* **8**, eabi4757 (2022) DOI: 10.1126/sciadv.abi4757


The PDF file includes:

Figs. S1 to S6 Legends for data files S1 to S6

Other Supplementary Material for this manuscript includes the following:

Data files S1 to S6

Supplementary Figures

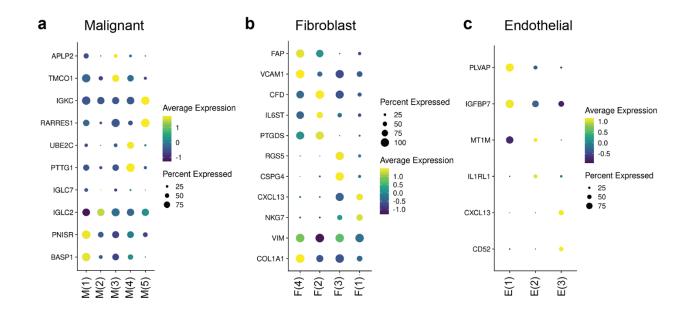
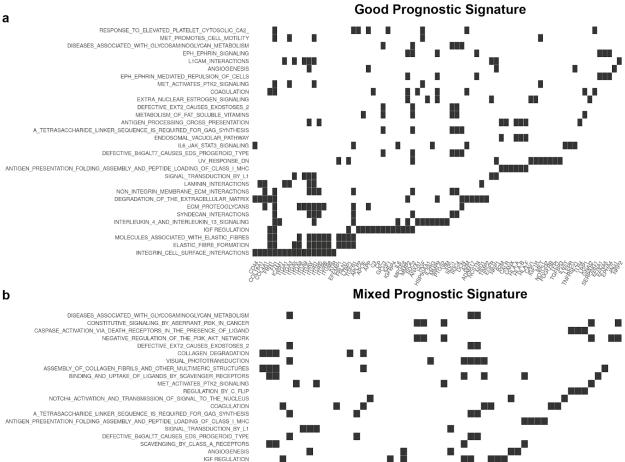


Fig. S1. Diagram of REMI intermediate steps. (a) Schematic of an overlapping community that captures edges between communities. **(b)** Diagram of steps to calculate p-value for a given ligand-receptor edge. (i) Sampling correlation values to replace edge of interest and creating a tree to predict whether edge appears or not in REMI network. (ii) Sampling from null inverse Wilshart distribution and using classification trees to predict whether edge is present or not (iii) Calculating number of randomly sampled edge values with higher predicted correlation than correlation from true data to estimate two-sided p-value.


	Within		Between			REMI	
Cohort Size (n)	Sensitivity	Specificity	Sensitivity	Specificity	Community Size (<i>n</i> = Sample Size)	Sensitivity	Specificity
15	0.75	0.45	0.45	0.76	2 n	0.66	0.52
25	0.78	0.48	0.49	0.78	5 n	0.68	0.47
50	0.84	0.50	0.62	0.75	10 <i>n</i>	0.69	0.47
100	0.89	0.55	0.76	0.73	20 n	0.69	0.47
200	0.93	0.63	0.88	0.74	50 n	0.78	0.33

b

Fig. S2. TCGA simulations to test robustness of community parameters. (a) Performance within and between communities in the TCGA simulations compared to population-level TCGA-LUAD GLasso interactome. Accuracy metrics are averaged across the 50 sampled datasets per cohort size. (b) Performance of REMI when the number of nodes is increased within the community from 2n to 50n. Accuracy metrics are averaged across the 50 sampled datasets per cohort size.

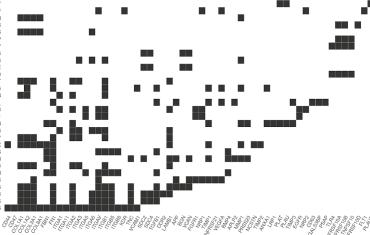


Fig. S3. Defining TME subpopulation characteristics. (a) Averaged scaled expression levels of top expressed differentially expressed (DE) markers for each malignant subpopulation **(b)** Averaged scaled expression levels of top expressed DE markers for each fibroblast subpopulation **(c)** Averaged scaled expression levels of top expressed DE markers for each endothelial subpopulation

b

SCAVENGING_BY_CLASS_A_RECEPTORS ANGIOGENESIS IGF RECULATION SYNDECAN_INTERACTIONS METABOLISM_OF_FAT_SOLUBLE_VITAMINS UY_RESPONSE_DN NON_INTEGRIN_MEMBRANE_ECM_INTERACTIONS NON_INI LEGRIN_MEMBHARE_LECK_INI EFACTIONS MOLECULES_ASSOCIATE_UNTH_ELASTIC_IBRES ECM_PROTEOGLYCANS ELASTIC_FIBRE_FORMATION DEGRADATION_OF_THE_EXTRACELULAR_MATRIX LUMINI, INTERACTIONS INTEGRIN_CELL_SURFACE_INTERACTIONS

Poor Prognostic Signature

DISSOLUTION OF FIBRIN CLOT SIGNALING BY VEGE SIGNALING_BT_UEOP COLLAGEN_DEGRADATION TP53_REGULATES_TRANSCRIPTION_OF_DEATH_RECEPTORS_AND_LIGANDS ASSEMBLY_OF_COLLAGEN_FIBRILS_AND_OTHER_MULTIMERIC_STRUCTURES ASSEMBLY_OF_COLLAGEN_FIBRILS_AND_OTHER_MULTIMERIC_STRUCTURES REGULATION_BY_C_FLIP CASPASE_ACTIVATION_VIA_EXTRINSIC_APOPTOTIC_SIGNALLING_PATHWAY A_TETRASACCHARIDE_LINKER_SEQUENCE_IS_REQUIRED_EOR_GAG_SWITHESIS BASIGIN_INTERACTIONS DEFECTIVE_B4GALT7_CAUSES_EDS_PROGENO_TYPE CASPASE_ACTIVATION_VIA_DEATH_RECEPTORS_IN_THE_PRESENCE_OF_LIGAND_TYPE SIGNALING_BY_MET L VIA DEATH RECEPTORS, IN, THE PRESENCE, OF, LIGAND SIGNALING, BY, MET INTERLEUKIN, 4, AND INTERLEUKIN, 13, SIGNALING PLATELET, ADHESION TO, EXPOSED COLLAGEN RESPONSE_TO_ELEVATED_PLATELET_CYTOSOLIC, CA2, LICAN, INTERACTIONS SIGNAL_TRANSDUCTION, BY, LI CORGULATION MET_PROMOTES_CELL_MOTILITY DEGRADATION_OF_THE_EXTRACELLUAR, MATRIX MOLECULES, ASSOCIATED, WITH, ELASTIC, FIBRES IGF REGULATION MET_ACTIVATES_PTXC_SIGNALING MET_ACTIVATES_PTXC_SIGNALING MET_ACTIVATES_PTXC_SIGNALING LEASTO_FIBRE_PTXC_SIGNALING ELAST_FIBRES_ICAN_FIBRES IGF REGULATION ANGIOGENESIS ECM_PROTEOGLYCANS NON_INTEGRIN_MEMBRANE_ECM_INTERACTIONS SYNDECAN_INTERACTIONS INTEGRIN_CELL_SURFACE_INTERACTIONS

С

Fig. S4. Enrichment of prognostic signatures. (a) Enriched genesets for ligand and receptor genes in good prognostic signature (adj p-value < 0.05, max GS size = 150) **(b)** Enriched genesets for ligand and receptor genes in mixed prognostic signature (adj p-value < 0.05, max GS size = 150) **(c)** Enriched genesets for ligand and receptor genes in poor prognostic signature (adj p-value < 0.05, max GS size = 150) **(c)** Enriched genesets for ligand and receptor genes in poor prognostic signature (adj p-value < 0.05, max GS size = 150)

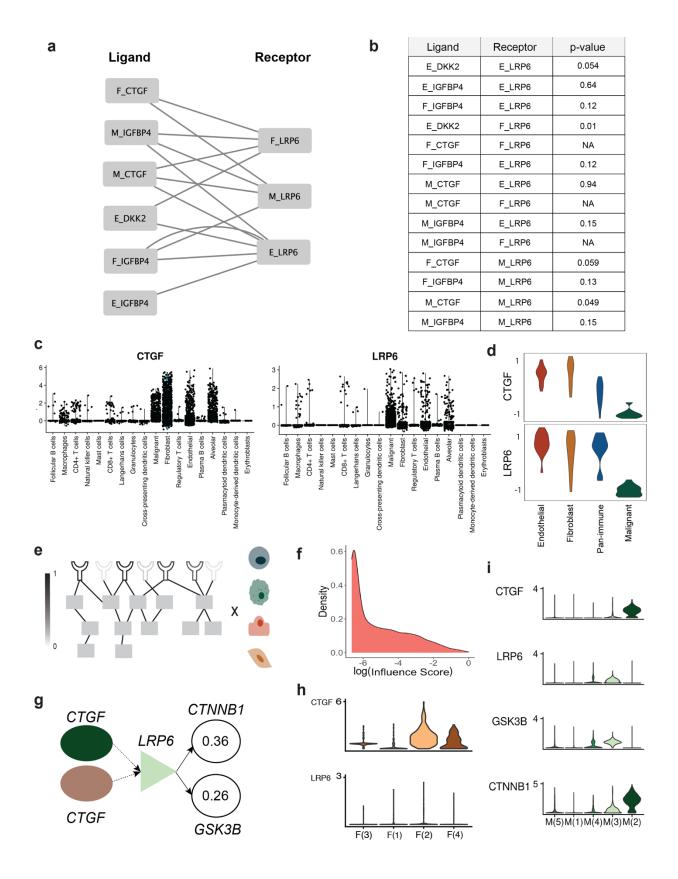


Fig. S5. CTGF scREMI community characteristics. (a) Network visualization of the predicted community network (community #50) containing CTGF expressed on malignant cells. Nodes are labeled as celltype genename. An edge indicates a predicted LR pair. (b) Table of p-values for each edge. NA represents pairs where perturbing that particular edge did not lead to a converged result. (c) Scaled expression of CTGF and LRP6 across cell types in the single-cell RNA-seq data (d) Scaled expression levels of CTGF and LRP6 across bulk flow-sorted RNA-seq levels (e) Visual diagram of how to calculate downstream receptor score. A downstream signaling pathway network is built for each distinct cell type in the dataset. Eigenvector centrality is calculated for each downstream signaling gene to measure how "activated" they are within the cell-type. (f) Distribution of downstream centrality scores on a log scale for all four downstream signaling pathway networks. (g) GSK3B and CTNNB1 are downstream genes from LRP6 found in the downstream signaling networks generated by REMI. The number within the node represents the influence score, which represents how correlated the receptor is to its downstream signaling pathway genes. Color of the nodes reflect the subpopulation label. Shape of the node represents the type of gene (solid circle = ligand, solid triangle = receptor, transparent circle = downstream gene). (h) Scaled expression levels of CTGF and LRP6 across fibroblast subpopulations. (i) Scaled expression levels of CTGF, LRP6, GSK3B, and CTNNB1 across malignant subpopulations.

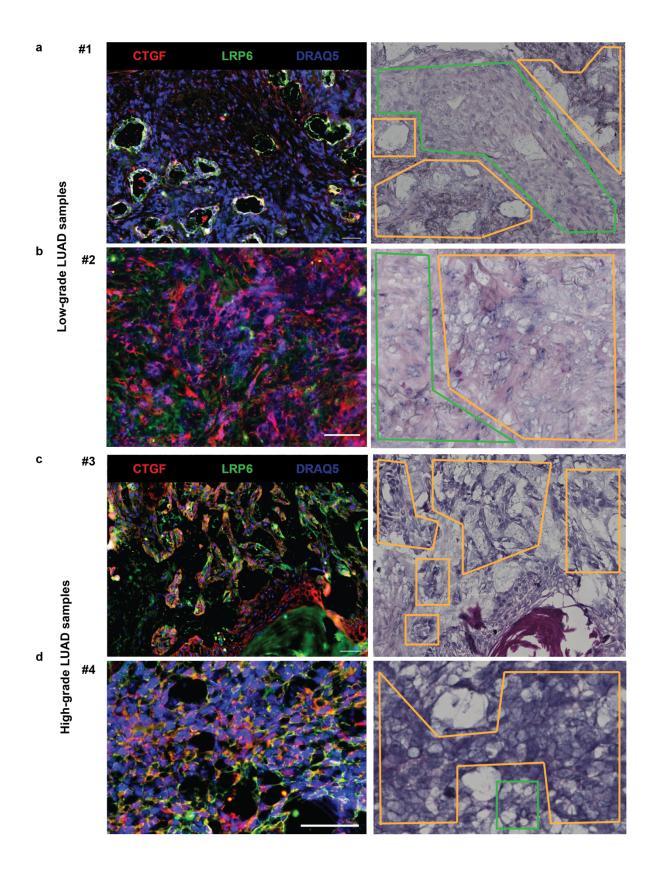


Fig. S6. Paired immunofluorescence (IF) and H&E images of primary LUAD fresh frozen tissue samples. H&E images (right) taken after immunofluorescence (IF) staining (left). On H&E images, regions enriched with malignant versus stromal cells are encapsulated by borders colored orange versus green, respectively. (a) Low-grade sample from LUAD patient #1 showing expression of CTGF and LRP6 expressing cells with low to no co-localization of CTGF and LRP6. (b) Low-grade sample from LUAD patient #2 from our lung biobank showing expression of CTGF and LRP6 expressing cells with low to no co-localization of CTGF and LRP6. (c) High-grade sample from LUAD patient #3 showing malignant cells with co-expression of CTGF and LRP6 and a small group of malignant cells expressing only CTGF. (d) High-grade sample from LUAD patient #4 show co-expression of CTGF and LRP6 in malignant cells. IF images were stained for CTGF (red), LRP6 (green), and DRAQ5 (blue). Scale bar is 50 μ M. IF images in (a) and (c) are the same as main-text Figure 5d, (i) and (ii), respectively.

Supplementary Data

Data File 1. REMI_LUAD_network.csv. Table of REMI-LUAD ligand-receptor interactions.

Data File 2. TCGA-LUAD_allsamples.csv. Table of Glasso-derived ligand-receptor interactions from the Cancer Genome Atlas (TCGA) lung adenocarcinoma (LUAD).

Data File 3. GoodPrognosis_Interactions.csv. Table of scREMI-LUAD ligand-receptor interactions associated with good prognosis.

Data File 4. MixedPrognosis_Interactions.csv. Table of scREMI-LUAD ligand-receptor interactions associated with mixed prognosis.

Data File 5. PoorPrognosis_Interactions.csv. Table of scREMI-LUAD ligand-receptor interactions associated with poor prognosis.

Data File 6. Sample_Information.docx. Clinical annotations and histopathological information of LUAD specimens