Science Advances

Supplementary Materials for

Structure of the Shaker Kv channel and mechanism of slow C-type inactivation

Xiao-Feng Tan, Chanhyung Bae, Robyn Stix, Ana I. Fernández-Mariño, Kate Huffer, Tsg-Hui Chang, Jiansen Jiang, José D. Faraldo-Gómez, Kenton J. Swartz*

*Corresponding author. Email: swartzk@ninds.nih.gov

Published 18 March 2022, *Sci. Adv.* **8**, eabm7814 (2022) DOI: 10.1126/sciadv.abm7814

The PDF file includes:

Figs. S1 to S10 Tables S1 and S2 Legends for movies S1 to S3

Other Supplementary Material for this manuscript includes the following:

Movies S1 to S3

Fig. S1. Biochemistry for wild-type Shaker-IR and W434F mutant.

(A) Gel filtration chromatograms of the Shaker-IR in detergent (left) and in nanodisc (middle), and SDS-PAGE of Shaker-IR in nanodisc. The multiple bands running at a higher molecular weight in the gel correspond to glycosylated species of Shaker. (B) Gel filtration chromatograms of the W434F mutant in detergent (left) and in nanodisc (right). The peak fractions marked with the arrow were collected and used either for nanodisc reconstitution or for cryo- EM imaging.

← Fig. S2. Cryo-EM imaging of Shaker-IR.

(A) Cryo-EM micrograph of Shaker-IR. (B) 2D class averages of the particles in different orientations. (C) Fourier Shell Correlation (FSC) curves. (D) Direction distribution plots of the 3D reconstruction. (E) Local resolution map for the entire TM region. (F) Local resolution map for the S5-S6 pore domain, highlighting the dark blue region within the outer pore that shows the best resolution in the overall structure. (G) Regional cryo-EM density for Shaker-IR.

← Fig. S3. Data processing workflow for the cryo-EM structures of Shaker-IR and the W434 mutant.

(A) Workflow for the cryo-EM data processing. (B) FSC curves of the model versus map.

← Fig. S4. Structural alignment of Shaker Kv channels with the Kv2.1/1.2 paddle chimera.

Superimposition of transmembrane domains (S1-S6) of Shaker-IR (7SIP) and the Kv 1.2/2.1 paddle chimera (2R9R) (A) top and (B) side views, along with (C) focused view of one S1-S4 voltage- sensing domains with basic residues in S4 and charge transfer center residues shown as sticks. Superimposition of pore domains (S5-S6) (D) top and (E) side views. Superimpositions of the transmembrane domains (S1-S6) were created using Fr-TM-Align.

Shalewit-665 104 E0FT KEE E RPLP DNEKORKVWLLEFYEES OAR RVVA I 1222 Skalewit-665 102 AETLREGEEF E RPLP ENFORCEVULEFYEES OAR RVVA I 1222 Skalewit-665 102 AETLREGEEF E RPLP ENFORCEVULEFYEES OAR RVVA I 1222 Skalewit-665 103 DEODOSCEDELEUMTKRLASSDEDOROGUTERVERSE OVALLEFYEES OAR RVA KALAI 144 IAI NU Skalewit-665 233 SVFVILLS IVIFOLEFLEFEK ALPAOSSLRCHLERAFENHTTALVYVII Skalewit-665 233 SVFVILLS IVIFOLEFLEFEKHYKVFN																	1			
Shaker1-655 233 SVFVILLS IV FCLETLE FE KHYKVFNTITINOTKI BEDEVPDITDPFFLIET 284 KYL2/V-499 108 SVIVVLLS IV SCLETLE FERDEVED ANGOG VTFHTYSNSTIGYQQSTSFTDPFFIVET 287 KY2/V-497 108 SINF VLUTTISUS CLETLE FIFDE HED ANGOG VTFHTYSNSTIGYQQSTSFTDPFFIVET 287 KY2/V-497 108 SINF VLUTTISUS CLETLE FIFDE HED ANGOG VTFHTYSSTIGYQQSTSFTDPFFIVET 287 Shaker1-665 286 LQI IVY TFELTVFFLAGENKLIN CRD VMNVID II A I PYF ITLATVVAE EED TLINLPKA 343 KY12/V-491 108 SINF VLUTTISUS FETURE FLAGENKLIN CRD VMNVID II A I PYF ITLATVVAE EED TLINLPKA 343 KY12/V-493 200 LQI IVY TFELTVFFLAGENKLIN CRD VMNVID II A I PYF ITLATVVAE EED TLINLPKA 343 KY12/V-493 220 LQI IVY SFETURE FLAGENKLIN CRD VMNVID II A I PYF ITLATVVAE EED TLINLPKA 343 KY12/V-493 220 LQI IVY SFETURE FLAGENKLIN CRD VMNVID II A I PYF ITLATVVAE EED TLINLPKA 343 KY12/V-493 220 LQI IVY SFETURE FLAGENKA KWKFFKGFLINA ID LLA LUPYVTI FITESNKSV	Shaker/1-655 Kv1.2/1-499 Kv2.1/1-857 Kv1.2/2.1/1-513 Kv3.1/1-585 Kv4.1/1-651	194 130 152 148 137 151	EGFIKE EGYIKE AETLRE EGYIKE DGPGDS EEAEQA	E	E E E E D E L EI	 мткr	LALS	SDSP	RPLI DNT RPLI DGRI ALP	G G F	D N E E N E C A E E N E WR R G S S	KQR FQR KRK FQR WQP LRQ	KVW QVW KLW QVW RIW RLW		EYP EYP EKP EYP EDP ENP	ESS ESS ESS YSS HTS	Q A A G P A V A A G P A R Y A T A A	RVV RII KIL RII RYV LVF	A I I A I V A I I A I V A F A Y Y V	232 168 194 186 195 191
Sheleer/1-655 233 SVFVILLS IV IF OLE TLP IF RODENE DMHOGOVTEHTYSNSTIOVAGUSTSTDPFFIVET 227 Kv2.1/+687 106 SVMVILLS IVSFOLE TLP IF RODENE DMHOGOVTEHTYSNSTIOVAGUSTSTDPFFIVET 227 Kv2.1/+687 106 SLFFILVS ITFOLE TLP IF RODENE DMHOGOVTEHTYSNSTIOVAGUSTSTDPFFIVET 226 Kv3.1/+687 108 SLFFILVS ITFOLE TLP IF RODENE DMHOGOVTEHTYSNSTIOVAGUSTSTDPFFIVET 245 Kv3.1/+681 108 SLFFILVS ITFOLE TLP IF RODENE DMHOGOVTEHTYSNSTIOVAGUSTSTDPFFIVET 245 Kv3.1/+681 108 SLFFILVS ITFOLE TLP IF RODENE DMHOGOVTEHTYSNSTIOVAGUSTSTDPFFIVET 245 Sheleer/1-685 286 L0 INF OF REPVENT Sheleer/1-685 286 L0 INF OF REPVENT Sheleer/1-685 286 L0 INF OF REPVENT Sheleer/1-685 286 L0 INF OF REPVENT SKAG FTNINNI LD IVA IFFY ITLATVVEE EDTLNLPKA 343 Kv1.22.1/-631 240 L0 INF OF REPVENT SKAG FTNINNI LD IVA IFFY ITLE SENSKWAW 286 Kv1.22.1/-631 240 L0 INF OF REPVENT 287 286 Kv1.47.499 200 INF OF REPVENT SKAG FTNINNI LD IVA IFFY ITLES NSWAW 287 Sheleer/1-656 344 PVSPODKS NOAMSLAILERVIERVERVENT					D		00 00 00 00 00 00 00			10 00 00 00 10 10 10	10 NO 20 10 NO 10	00 00 00 00 00 00 0				00 20 00 00 00 0		52		
Shaker/1-665 235 SVF VILLS IV FOLET LEPEKHYKVFNTTTNG TKIE EEDEVPD IT DPFFILET 227 KV2.V1-867 106 SUMVILLS IV FOLET LEPEKHYKVFNTTTNG TKIE EEDEVPD IT DPFFILET 227 KV2.V1-867 106 SUMVILLS IV FOLET LPIF PLOS LDEFGOST																				
Staleer/1-655 265 L0 I I WE TE EL TVR FLACENKLN CRDVMNVID I I AL I PYF I TLATVVAE EED TLNLPKA 343 KV1.2/1-499 226 L0 I WE SE FL VR FLACENKLN CRDVMNVID I I AL I PYF I TLATVVAE EED TLNLPKA 343 KV2.4/1-657 235 V0 LWF TMEYL KET SS PK KWK FK 66 PL NAI D LLAL LLP YVYT I FL TESNKSV. 266 KV1.2/2.4/1-551 246 L0 I WE SF FL VR FLACPSKAGE FT NI MNI I D I VAI I PYY I VI TE TESNKSV. 266 KV1.2/2.4/1-551 246 L0 I WE SF FL VR FLACPSKAGE FT NI MNI I D I VAI I PYY I VI TE TESNKSV. 267 KV3.4/1-651 237 A0 VL I FT OEYLLIK FAAPSR CRFL RS VMSLID VVAI LP FYLEVOLSGLSSK. 301 KV4.4/1-651 237 A0 VL I FT OEYLLIK FAAPSR CRFL RS VMSLID VVAI LP FYLEVOLSGLSSK. 305 Staleer1-655 344 PVSP DD KSSNOAMSLAI LR VI R LV RVF RI FKL SR HSK L0 I LOR TLKASMR ELGLLIF F1 402 KV1.2/2.4/1-657 267 L0F ONVR VV0 I FR I MRI LR I KL SR HSK L0 I LOR TLKASMR ELGLLIF F1 474 KV1.2/2.4/1-657 267 L0F ONVR VV0 I FR I MRI LR I KL SR HSK L0 I LOR TLKASMR ELGLLIF F1 348 KV4.4/1-651 268 CONVR VV0 I FR I MRI LR I KL SR HSK L0 I LOR TLKASMR ELGLLIF F1 348 KV4.4/1-651 268 CONVR VV0 I FR I MRI LR I KL SR HSK L0 I LOR TLKASMR ELGLLIF F1 348 KV4.4/1-651 268 CONVR VV0 I FR I MRI LR I KL SR HSK L0 I LOR TLKASMR ELGLLIF F1 348 KV4.4/1-651 268 CONVR VV0 I FR I MRI LR I KL SR HSK L0 I LOR TLKASMR ELGLLIF F1 348 KV4.4/1-651 302 CAF ONVR VV0 I FR I MRI LR I KL SR HSK L0 I LOR TLKASMR ELGLLIF F1 348 KV4.4/1-651 302 CAF ONVR VV0 I FR I MRI LR I KL SR HSK L0 I LOR TLKASMR ELGLLIF F1 348 KV2.4/1-651 302 CAF ONVR VV0 I FR I MRI LR I KL SR HSK L0 I LOR OT LKASMR ELGLLIF F1 348 KV3.4/1-651 303 LF I O VLL SSAVYFAEA O ED DT KK SI PA FWWAVYS MT TVO YOD LVY VV1 B5 KV4.4/1-651 303 LF I O VLL SSAVYFAEA DED DT KK SI PA FWWAVYS MT TVO YOD LVY VV1 B5 KV1.2/2.4/1467 338 LA MO IMI I SSL VFFAEA DED DT KK SI PA FWWAVYS MT TVO YOD LVY FV1 364 KV2.4/1467 338 LA MO IMI SSL VFFAEA DED DT KK SI PA SFWAT I MT TVO YOD LVY FV1 364 KV2.4/1467 338 LA MO IMI SSL VFFAEA DED DT KK SI PA SFWAT I MT TVO YOD LVY FV1 364 KV1.2/2.4/1467 338 LA MO IMI S	Shaken/1-655 Kv1.2/1-499 Kv2.1/1-857 Kv1.2/2.1/1-513 Kv3.1/1-585 Kv4.1/1-651	233 169 195 187 196 192	S V F V I L S V M V I L S I M F I V S V M V I L S V M V I L S L F F I L T G F F I A	LSIVI ISIVS ISIVS VSITT VSVIA	FCLE FCLE FCLE FCLE	T L P T L P T L P T L P T L P T H E T H E	EFKH IFRD ELQS IFRD RFNF CRGT	ENE ENE ENE FIVN	FN DMHG FGQS DMHG KTEI PS	GGV T GGV E	T T F H T F H N	TTN TYS TYS VRN	9 T K N S T Q S T 9 T Q		DEV QQS QQS YRE SCG	PDI TSF D TSF AET DRF	T D P T D P N P Q T D P E A F P T A	FFL FFI LAH FFI LTY FFC	IET VET VEA VET IEG MDT	284 227 234 245 250 236
Shaleer/1-655 265 LC I I WE FF EL TYR FLACP NKLN CRDVMNVIDIIIA I PYF ITLATVVAE EEDTLNLPKA 343 KV1.2/1-499 228 LC I I WE FF EF LVR FLACP SKAGE FT NI MNTIDIVAI I PYF ITLATVVAE EEDTLNLPKA 343 KV2.1/1-67 235 VCI WH FT EF EL VR FLACP SKAGE FT NI MNTIDIVAI I PYVTIF LTES NKSV												S 3								
Shaker/1-655 285 L C I I WF TF E L TVR F LACE NK LN CR DVMN V TO I I A I PYF I TLATVVAEED TLNLPKA 343 Kv1 2/1-499 228 L C I I WF SF EF L VR F F A C PSKAG F F TN I MN I DI VA I I PYY I TLG TELAEKPE		1		4						J	,				-	00 00 00 00 10 1	0 10 10 00 10 10	107 007 003 000 000 000	00 300 500 50	
S4 S5 McazAV1-160 1 1 MPPMLSGLLA F LVKLLLGRMGSALH WRAAGAATVLLVIV 39 Shaker/1-655 344 PVSPQDKSSNQAMSLAILRVIRLVRVFRIFKLSRHSKOLGILGRTLKASMRELGLLIFF 402 Kv1.2/1-99 280 DAQQGQQAMSLAILRVIRLVRVFRIFKLSRHSKOLGILGRTLKASMRELGLLIFF 402 Kv2.1/1-857 287 LQF QNVRVVQIFFIMRILRILKLKARHSKOLGILGGTLKASMRELGLLIFF 344 Kv1.2/2.1/1-513 208 LQF QNVRVVQIFFIMRILRIKLKARHSKOLGILGGTLKASMRELGLLIFF 344 Kv1.2/2.1/1-513 208 LQF QNVRVVQIFFIMRILRIKLSRHSKOLGILGGTLKASMRELGLIFF 348 Kv1.2/2.1/1-513 208 CGF QNVRVVQIFFIMRILRIKLSRHSKOLGILGGTLKASMRELGLIFF 348 Kv2.1/1-651 302 AAKDVLGFLRVVRFVRIKRISSENSGRUNGVUGHTLRASTNEFLLIFF 358 Kv1.2/2.1/1-565 302 AAKDVLGFLRVVRFVRIKRISSENSGRUNVTKTVGVGNDVVGTMTVGVGDMVPTG 352 Kv2.1/1-499 335 LG GVILFSSAVYFAEA DERDSGFPSIPDAFWAVVTMTVGVGNDVVGTMVFGVGDMVPTG 362 Kv2.1/1-497 338 LMG IMIFSSLVFFAEA DERDSGFPSIPDAFWAVVSMTTVGVGDMVPTG 362 Kv2.1/1-497 338 LMG IMIFSSLVFFAEA DERDSGFPSIPDAFWAVVSMTTVGVGDMVPTG 368 Kv2.1/1-497 339 LMG IMIFSSLVFFAEA DERDSGFPSIPDAFWAVVSMTTVGVGDMVPTG 368 Kv2.1/1-4	Shaker/1-655 Kv1.2/1-499 Kv2.1/1-857 Kv1.2/2.1/1-513 Kv3.1/1-585 Kv4.1/1-651	285 228 235 246 251 237	L C I I WF V C I AWF L C I I WF V C V VWF A C V L I F	T F E L 1 S F E F L T M E Y L S F E F L T F E F L T G E Y L	V R F I V R F I V R F I V R F I . V R F I . M R V I	LACP FACP LSSP FACP VFCP FAAP	NKLN SKAG KKWP SKAG NKVE SRCF	F C R F F T F F K F F T F T K F L R	DVM NIM GPL NIM NSL SVM		A V A V A V A F V A V V A		Y F I Y F I Y Y V Y Y V F Y L Y Y I	T L A T L G T I F T I F E V G G L F	TVV TEL LTE LSG VPK	AEE SNK SNK LSS NDD	EDT PE- SV- SV- K V	L N L	РКА 	343 279 286 297 301 287
KcsA/1-160 1								S4	4									S 5		
KcsA/1-160 1			100 100 100 100 100 100 100 100 100 100	1 M2 M2 M3 M3 M4 M4 M5 M3 M3								a in in 100 m 100 m		00 A0 00 00 00 0		(
KcsA/1-160 40 L L A G SYLAVLAER GAPGAQLITYPRALWWSVETATTVGYGDLYPVT 85 Shaker/1-655 403 L F I G VVLF SSAVYFAEA G SENSFFK SIPDAF WWAVVTMTTVGYGDMTPVG 452 Kv1.2/1-499 335 L F I G VVLF SSAVYFAEA DERD SQFPS IPDAF WWAVVSMTTVGYGDMVPTT 384 Kv2.1/1-857 338 LAMG IMIFSSLVFFAEK DEDDTKFKSIPASFWWAVVSMTTVGYGDMVPTT 384 Kv2.1/1-857 338 LAMG IMIFSSLVFFAEK DEDDTKFKSIPASFWWAVVSMTTVGYGDMVPTT 384 Kv3.1/1-585 352 LALGVLIFATMIYYAER IGAQPNDPSASEHTHFKNIP IGFWWAVVSMTTVGYGDMVPTT 398 Kv4.1/1-651 333 TMAIIIFATVMFYAEKGTSKTNFTSIPAAFWYTIVTMTTLGYGDMVPST 382 S6 S6 Kv2.1/1-857 388 LGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRETGGEGAGYLQVTSCP.KIPS 440 Kv2.1/1-857 388 LGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRETGGEG	KcsA/1-160	1		MF	PMLS	GLI							1						VIV	39
KcsA/1-160 40 LAG SYLAVLAER GAPGAQLITYPRALWWSVETATTVGYGDLYPVT 85 Shaker/1-655 403 LFIGVVLFSSAVYFAEA GSENSFFKSIPDAFWWAVVTMTTVGYGDMYPT 86 Kv1.2/1-499 335 LFIGVVLFSSAVYFAEA DERDSQFPSIPDAFWWAVVSMTTVGYGDMYPT 384 Kv2.1/1-857 338 LAMGIMIFSSLVFFAEA DEDDTKFKSIPASFWWATITMTTVGYGDMYPT 384 Kv2.1/1-857 338 LAGGVLTFATMIYYAERIGAQPNDPSASEHTHFKNIPIGFWWAVVSMTTVGYGDMYPT 398 Kv3.1/1-585 352 LALGVLTFATMIYYAERIGAQPNDPSASEHTHFKNIPIGFWWAVVTMTTLGYGDMYPT 398 Kv4.1/1-651 333 TMAILIFATVMFYAEK GTSKTNFTSIPAAFWYTIVTMTTLGYGDMYPST 382 S6 KcsA/1-160 86 LWGRLVAVVVMVAGITSFGLVTAALATWFV GREQERRG HFVRHSEKAAE 134 Shaker/1-655 453 VWGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRETDQEEMQSQNFNHVTSCP YLPG 510 KKSA/1-160 86 LWGRLVGSLCAIAGVLTIALPVPVIVSNFNYFYHRETDQEEMQSQNFNHVTSCP YLPG 510 Kv3.1/1-655 453 VWGKIVGSLCAIAGVLTIALPVPVIVSNFNYFYHRETGGEEQ AQYLQVTSCP Kv3.1/1-655 KKSA Kostord solspan="2">Kostord solspan="2">Kv3.1/	Kv1.2/1-499 Kv2.1/1-857 Kv1.2/2.1/1-513 Kv3.1/1-585 Kv4.1/1-651	344 280 287 298 302 288	PVSPQD DA LQ LQ	K S S N G Q Q G Q G F F A A		LAIL RRVV RRVV LGFL SGAF				<pre>{LLL FKL FKL FKL FKL FKL</pre>	GRH SRH ARH SRH TRH SRH	G S A S K G S K G S T G S K G F V G S Q G		LGR LGQ LGF LGQ LGH	- WR T L K T L K T L R T L R T L R	A A G A S M A S M A S M A S M A S T S C A	AAT REL NEL NEL NEF SEL	VLL GLL GLL GLL LLL GFL	I F F I F F I L F I F F I I F L F S	402 334 337 348 351 332
KcsA/1-160 40 LLAG LLAG SylAvLAE R	Kv1.2/1-499 Kv2.1/1-857 Kv1.2/2.1/1-513 Kv3.1/1-585 Kv4.1/1-651	344 280 287 298 302 288	PVSPQD DA LQ LQ	KSSNG QQGQG F F AA		AIL AIL RRVV RRVV LGFL SGAF			- L V F V F R I L R I L R I L R I L R V F R		GRH SRH ARH SRH TRH SRH	GSA SKG SKG SKG FVG SQG	LAI LAS LAI RV LRI	LGR LGG LGF LGH LGY	·WR TLK TLR TLR TLR TLR	A A G A S M A S M A S M A S M S C A	AAT REL NEL REL NEF SEL	GLL GLL GLL GLL GLL GFL	I F F I F F I L F I F F I I F L F S	402 334 337 348 351 332
KcsA/1-160 86 LWG RLVAVVVMVAG ITSFGLVTAALATWFV···GREQERRG·····HFVRHSEKAAE 134 Shaker/1-655 453 VWG KIVG SLCAIAGVLTIALPVPVIVSNFNYFYHRETDQEEMQSQNFNHVTSCP·YLPG 510 Kv1.2/1-499 385 IGG KIVG SLCAIAGVLTIALPVPVIVSNFNYFYHRETEGEEQ··AQYLQVTSCP·KIPS 440 Kv2.1/1-857 388 LLG KIVG GLCCIAGVLVIALPIPIIVNNFSEFYKEQKRQEKAIKRREA·LERA··KRNG 443 Kv1.2/2.1/1-513 399 IGG KIVG SLCAIAGVLTIALPVPVIVSNFNYFYHRETEGEEQ··AQYLQVTSCP·KIPS 454 Kv1.2/2.1/1-513 399 IGG KIVG SLCAIAGVLTIALPVPVIVSNFNYFYHRETEGEEQ··AQYLQVTSCP·KIPS 454 Kv1.2/2.1/1-513 399 IGG KIVG SLCAIAGVLTIALPVPVIVSNFNYFYHRETEGEEQ··AQYLQVTSCP·KIPS 454 Kv3.1/1-585 411 WSG MLVG ALCALAGVLTIAMPVPVIVNNFGMYSLAMAKQKLPKKKKKHIPRPP·QLGS 488	Kv1.2/1-499 Kv2.1/1-857 Kv2.1/1-857 Kv3.1/1-513 Kv3.1/1-585 Kv4.1/1-651	344 280 287 298 302 288	PVSPQD DA LQ LQ	KSSNG QQGQG F F AA		LAIL RRVV RRVV LGFL SGAF	RVIF QIFF QIFF RVVF VTLF			F K L F K L F K L F K L F K L F K L	GRH SRH ARH SRH TRH SRH	GSA SKG SKG SKG FVG SQG	LAI LAI LAS LAI LRV LRI	LGR LGG LGF LGH LGY ehe	- WR TLK TLR TLR TLR TLR	A A G A S M A S M A S M A S M A S T S C A	AAT REL NEL NEL SEL	GLL GLL GLL GLL GFL		402 334 337 348 351 332
KosA/1-160 86 LWG RLVAVVVMVAG ITSFGLVTAALATWF V···GREQERRG·····HFVRHSEKAAE 134 Shaker/1-655 453 VWG KIVG SLCAIAG VLTIALPVPVIVSNFNYFYHRETDQEEMQSQNFNHVTSCP·YLPG 510 Kv1.2/1-499 385 IGG KIVG SLCAIAG VLTIALPVPVIVSNFNYFYHRETEGEEQ··AQYLQVTSCP·KIPS 440 Kv2.1/1-857 388 LLG KIVG GLCCIAG VLVIALPIPIIVNNFSEFYKEQKRQEKAIKRREA·LERA·KRNG 443 Kv1.2/2.1/1-513 399 IGG KIVG SLCAIAG VLTIALPVPVIVSNFNYFYHRETEGEEQ··AQYLQVTSCP·KIPS 454 Kv1.1/1-585 411 WSG MLVG SLCAIAG VLTIALPVPVIVSNFNYFYHRETEGEEQ··AQYLQVTSCP·KIPS 454 Kv3.1/1-585 411 WSG MLVG SLCAIAG VLTIALPVPVIVSNFNYFYHRETEGEEQ··AQYLQVTSCP·KIPS 454	Kv1.2/1-499 Kv2.1/1-857 Kv1.2/2.1/1-513 Kv3.1/1-585 Kv4.1/1-651 Kv4.1/1-655 Kv1.2/1-499 Kv2.1/1-857 Kv1.2/2.1/1-513 Kv3.1/1-585 Kv4.1/1-651	344 280 298 302 288 40 403 335 338 349 352 333	L L A G L Q L Q 	K S S N G Q Q G Q G F F A A A F S S L F S S I F S S I F S S I F A T N I F A T N	AVL AVYF AVYF AVYF AVYF AVYF AVYF AVYF AVYF	AER- AEA- AEA- AEA- AEA- AEA- AEA- AEA-			- G AI - G AI - G AI - G SI - D EI - D EI - D EI - S A SI - G T		GRH SRH SRH SRH SRH SRH SRH SRH SRH SRH S	G SA SKG SKG SKG FVG SQG YPR IPD IPD IPD IPD	LH. LQI LQI LQI LQI LRV LRI LRV LRI AFW AFW AFW AFW AFW	LG R LG Q LG F LG Q LG H LG H LG Y WAV WAV WAV WAV WAV Y T I	VWR TLK TLK TLR TLK ETA VSM VSM VSM VTM VTM	AAGASM ASMASM RSYN ASM SCA TTV TTV TTV TTV TTV	AAT RELL NELL NEF SEL GYG GYG GYG GYG GYG GYG GYG	G L L G L L G L L G L L G F L D M V D M V D M V D M V	PVT PVG PTT PKT PST	402 334 337 348 351 332 85 452 384 387 398 410 382
KcsA/1-160 86 LWG RLVAVVVMVAG ITSFG VTAALATWF VGREQERRGHFVRHSEKAAE 134 Shaken/1-655 453 VWG KIVG SLCAIAGVLT IALPVPVIVSNFNYFYHRETDQEEMQSQNFNHVTSCP.YLPG 510 Kv1.2/1-499 385 IGGKIVG SLCAIAGVLT IALPVPVIVSNFNYFYHRETEGEEQ. AQYLQVTSCP.KIPS 440 Kv2.1/1-857 388 LLGKIVG SLCAIAGVLTIALPVPVIVSNFNYFYHRETEGEEQ. AQYLQVTSCP.KIPS 443 Kv1.2/2.1/1-513 399 IGGKIVG SLCAIAGVLTIALPVPVIVSNFNYFYHRETEGEEQ. AQYLQVTSCP.KIPS 454 Kv3.1/1-585 411 WSGMLVG ALGVLTIALPVPVIVSNFNYFYHRETEGEEQ. AQYLQVTSCP.KIPS 454 Kv3.1/1-585 411 WSGMLVG ALGVLTIALPVPVIVSNFNYFYHRETEGEEQ. AQYLQVTSCP.KIPS 458	Kv1.2/1-499 Kv1.2/1-499 Kv2.1/1-857 Kv3.1/1-585 Kv4.1/1-651 Kv4.1/1-655 Kv1.2/1-499 Kv2.1/1-857 Kv1.2/2.1/1-513 Kv3.1/1-585 Kv4.1/1-651	344 280 287 298 302 288 40 403 335 338 349 352 333	L L A G D A L Q L Q 	K S S N G Q Q G Q Q F A F A F A F A F A F		AER- AER- AEA- AEA- AEA- AEA- AEA- AER-			- G A I I L R I L R I L R I L R I L R I L R V F R - G S - G S - D E S A S S A S - G T	FKL FKL FKL FKL FKL FKF FKS FKS SCT SC SC SC SC SC SC SC SC SC SC SC SC SC	GRHH SRHASRH SRHTSRH SRHTSRH FFPSS FFPSS FFSKN	GSA SKG SKG STG SKG SQG YPR IPD IPA IPD IPA	LH. LQI LQI LQI LQI LQI LQI LQI LQI LQI LQI	LGR LGQ LGF LGQ LGH LGY WAV WAV WAV WAV WAV	VWR TLK TLK TLR TLR TLR VTM VSM VSM VSM VSM VSM	AAGASMAASMASMASMASTASCA	A A T R E L L R E L L S E L S E L G Y G G Y G	CLL GLL GLL GLL GFL DLY DMT DMV DMV DMV	PVT FF IFF IFF FF FF FF PVG PTT PKT PST	402 334 337 348 351 332 85 452 384 387 398 410 382
	Kv1.2/1-499 Kv2.1/1-857 Kv1.2/2.1/1-513 Kv3.1/1-585 Kv4.1/1-651 Kv4.1/1-655 Kv1.2/1-499 Kv2.1/1-857 Kv1.2/2.1/1-513 Kv3.1/1-585 Kv4.1/1-651	344 280 287 298 302 288 40 403 335 338 349 352 333	L L A G	K S S N G Q Q G Q Q F F A A A A 		A E R - A E R - A E A -			- G AI - G AI - G AI - G S - D EI - D EI S ASI - G T	FKL FKL FKL FKL FKL FKL FKL FKL FKL FKL	GRH SRH ARH SRH SRH SRH FKS FFS FFS FFS FFS FFS	G S A S K G S K G S K G S K G F V G S Q G I P D I P D	LH. LQI LQI LQI LRI LRI POR AFW AFW AFW AFW AFW	LG R LG Q LG F LG Q LG H LG Y WAV WAV WAV WAV WAV	VR TLK TLR TLR TLR TLK ETA VTM VSM VSM VSM VTM	AAGASMASMASMASMASMASMASMASMASMASMAST TTVV TTVV TTVV TTVV TTVV TTV	A A T R E L R E L R E L S E L G Y G G Y G	CLL GLL GLL GLL GLL CGFL CDMV CDMV CDMV CDMV CDMV	PVT ILFS LFS PVG PTT PTT PST	402 334 337 348 351 332 85 452 384 387 398 410 382

S1

← Fig. S5. Sequence alignment of K⁺ channels.

Sequence alignment of Shaker (*Drosophila melanogaster* P08510), KcsA (*Streptomyces lividans* P0A334), Kv1.2 (*Rattus norvegicus* P63142), Kv2.1 (*Rattus norvegicus* P15387), Kv1.2/2.1 chimera(*Rattus norvegicus* PDB: 6EBK), Kv3.1 (*Rattus norvegicus* P25122) and Kv4.1 (*Mus Musculus* Q03719). Blue regions indicate similarity and dark blue region indicate identity. Cartoons represent secondary structure features. Green arrows highlight important residues in the charge transfer center and red bar indicates residues that change conformation most dramatically between Shaker-IR and W434F.

← Fig. S6. Cryo-EM imaging of Shaker W434F.

(A) Cryo-EM micrograph of Shaker W434F. (B) 2D class averages of the particles in different orientations. (C) Fourier Shell Correlation (FSC) curves. (D) Direction distribution plots of the 3D reconstruction. (E) Local resolution map for the entire TM region. (F) Local resolution map for the S5-S6 pore domain, highlighting the dark blue region within the outer pore that shows the best resolution in the overall structure. (G) Regional cryo-EM density for Shaker W434F.

Fig. S7. Structural alignment of Shaker-IR with the W434F mutant.

(A) Superimposition of the Shaker-IR (gray) and W434F (brown) viewed from the side (top image) or from the external side of the membrane (bottom). (B) Close-up view of the conformational change within the outer pore domain viewed from the external side of the membrane. (C) Cryo-EM density of P-loop for the W434F mutant. Density for two distinct rotamers of D447 are indicated by arrows.

Fig. S8. Ion densities in the selectivity filter of Shaker-IR and the W434F mutant.

(A) Ion density of Shaker-IR using C1 symmetry reconstruction shown in the overall map and half maps (lowpass at 3.5 Å). 4 ions (purple) are fit into S1-S4 sites (left panel), with residues in the filter shown in stick. (B) Ion density of Shaker W434F using C1 symmetry reconstruction for the overall map and half maps (lowpass at 3.5 Å). Cryo-EM density between S1 and S2 sites are much weaker for W434F compared with Shaker-IR.

Fig. S9. MD simulations of Shaker-IR and the W434F mutant.

For the portion of the calculated MD trajectories wherein a transmembrane voltage is applied (300 mV for Shaker-IR and 300/450 mV for W434F), the figures on the left side quantify the root-meansquare (RMS) difference between each of the snapshots (in intervals of 120 ps) and the corresponding cryo-EM structure. RMS differences are quantified for all non-hydrogen atoms in the protein structures (black), only for the backbone atoms (red), and only for the backbone atoms of residues 442 to 445. On the right, the figure shows normalized probability histograms of the time-series shown on the left; mean values and standard-deviations are provided in each case.

← Fig. S10. Comparison of Shaker Kv channel structures with KcsA.

(A) Superimposition of S6 and pore helix (two opposing subunits) of Shaker-IR (7SIP) and KcsA in the presence of high K⁺ (200 mM K⁺, 1K4C). (B) Superimposition of S6 and pore helix of Shaker-IR (7SIP) and KcsA in the presence of low K⁺ (3 mM K⁺, 1K4D). (C) Superimposition of S6 and pore helix of Shaker-IR (7SIP) and W434F mutant (7SJ1). (D) Superimposition of S6 and pore helix of KcsA in the presence of high K⁺ (1K4C) and the KcsA rapidly-inactivating Y82A mutant (5VKE). Superimpositions of the pore domain (S5-S6) were created using Fr-TM-Align. HOLE diagrams of (E) KcsA in the presence of high K⁺ (1K4C), (F) KcsA in the presence of low K⁺ (1K4D), and (G) KcsA fast-inactivating Y82A mutant (5VKE). Radii \leq 1Å are shown in red, radii \leq 2Å and > 1Å are shown in green, and radii larger than 2Å are shown in light blue.

	Shaker-IR	Shaker-W434F
	(EMDB-25147)	(EMDB-25152)
	(PDB 7SIP)	(PDB 7SJ1)
		(
Data collection and		
processing		
Magnification	105,000	105,000
Voltage (kV)	300	300
Detector	Gatan K3	Gatan K3
Electron exposure $(e - / Å^2)$	52	52
Defocus range (µm)	-0.5 to -1.5	-0.5 to -1.5
Pixel size (Å)	0.43	0.43
Symmetry imposed	C4	C4
Initial particle images (no.)	4,934,881	7,446,104
Final particle images (no.)	229,379	212,083
Map resolution (Å)	3.0	2.9
FSC threshold	0.143	0.143
Refinement		
Initial model used (PDB code)	6FBM	6FBM
initial model ased (1DD code)	0LDIVI	
Model resolution (Å)	3.1	3.2
FSC threshold	0.5	0.5
Map sharpening <i>B</i> factor ($Å^2$)	-129	-102
Model composition		
Non-hydrogen atoms	7560	6495
Protein residues	892	784
Ligands	36	35
<i>B</i> factors (Å ²)		
Protein	65.23	35.3
Ligand	60.7	28.7
R.m.s. deviations		
Bond lengths (Å)	0.003	0.003
Bond angles (°)	0.508	0.531
Validation		
MolProbity score	1.14	1.43
Clashscore	3.49	7.17
Poor rotamers (%)	0	0
Ramachandran plot		
Favored (%)	98.72	98.01
Allowed (%)	1.28	1.99
Disallowed (%)	0	0

Table S1. Cryo-EM data collection, refinement and validation statistics.

Table S2. Multistep protocol to equilibrate the molecular systems constructed in	n this
simulation study.	

Step ^a	1	2	3	4	5	6	7	8	9
Positional restraints ^b (kcal/mol/Å ²)	60	60	15	4	-	-	-	-	-
Distance restraints ^c (kcal/mol/Å ²)	-	-	-	-	4	1	1	-	-
Dihedral Φ , Ψ and χ_1 restraints (kcal/mol/deg ²)	-	-	-	-	16	4	4	4	1
Distance-to-center restraints ^d (kcal/mol/Å ²)	-	-	-	-	60	15	-	-	-
Center-of-mass restraints ^e (kcal/mol/Å ²)	1	1	1	1	1	1	1	1	1
Length of simulation (ns)	1	1	1	1	50	25	25	25	25

^a This protocol was carried out with NAMD 2.13 at 0 mV and preceded the trajectories calculated on Anton2 discussed in the manuscript. All restraints used during the equilibration are harmonic potentials. The table specifies the force constant used for each kind at each step in the protocol.

^b Positional restraints on all non-hydrogen atoms in the protein and on K⁺ and water oxygens in the selectivity filter.

^c Distance restraints on selected hydrogen-bonds and hydrophobic interactions behind the selectivity filter.

^d K⁺ and water molecules were restrained to remain near the geometric center of their designated binding sites in selectivity filter; each center was defined by eight backbone/sidechain oxygens.

^e The protein center-of-mass was restrained to remain near the center of the simulation box.

Movie S1. Morph between the structures of Shaker-IR and the W434F mutant

Movie S2. MD simulation of K⁺ dynamics and permeation through Shaker-IR.

The movie depicts snapshots of K⁺ (magenta, red, purple, yellow, orange spheres) near and within the ion selectivity filter of Shaker-IR (gray cartoon), for a 1- μ s fragment of the trajectory (starting at 1.5 μ s), under 300 mV. Water molecules within 3.8 Å of these K⁺ ions are shown (cyan spheres). The backbone atoms of residues 443-445 and the backbone and sidechain atoms of residue 442 are highlighted (excluding hydrogens).

Movie S3. MD simulation of K⁺ dynamics and permeation through Shaker-W434F.

The movie depicts snapshots of K⁺ (magenta, red, purple, yellow, orange spheres) near and within the ion selectivity filter of Shaker W434F (gray cartoon), for a 1- μ s fragment of the trajectory (starting at 2.0 μ s), under 300 mV for the first 500 ns and under 450 mV for the last 500 ns. Water molecules within 3.8 Å of these K⁺ ions are shown (cyan spheres). The backbone atoms of residues 443-445 and the backbone and sidechain atoms of residue 442 are highlighted (excluding hydrogens).