
Supplementary information

Figure S1: Integration frequency of WT and acetylation mutant IN proteins with respect to common genomic features. Frequency of integrations falling within (A) RefSeq genes, or within 1 kb of (B) CpG islands, (C) DNase hypersensitivity sites, (D) RNA polymerase II binding sites and various pre-infection histone modification sites in HeLa cells (E-H) was calculated using BedTools. Frequency of integrations in a matched random control (MRC) data set is shown as dashed line. Data is shown as the average of three independent replicates +/- SEs. Statistical significance of integration frequency relative to MRC was gauged by a one-sample, two tailed t-test (*p<0.05, all p-values shown in Table S3). Source data are provided as a Source Data file.

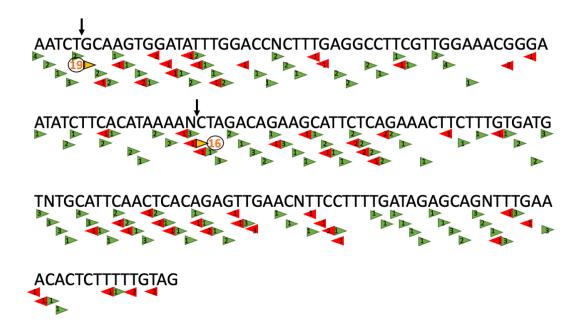


Figure S2: Consensus sequence around the site of integration for viruses carrying WT or K258R mutant. Consensus sequence around the site of integration (+/-20 bp) was generated by MEME for integrations generated by WT or K258R IN depicted as (A) probability of nucleotide at each position or (B) as a function of entropy. Cumulative data from three independent biological replicates was used for analysis.

Figure S3: Integration frequency into centromeres using different mapping

algorithms. NGS data from three independent biological replicates was mapped to the GRCh38 human genome assembly using (A) Bowtie2 end-to-end alignment (shown in main text), (B) Bowtie2 sensitive local alignment or (C) BLAT alignment algorithms. Bar graphs show the integration frequency into centromeres as determined by each algorithm. Graphed data is presented as an average of three independent biological replicates +/- SEs. Absolute number of detected unique integrations for all libraries summed is shown below each graph. Source data are provided as a Source Data file.

Figure S4: Schematic depicting integration events into alphoid repeat monomer consensus sequence. Shown are the exact sites of integration for each unique integration event that mapped to the alphoid repeat sequence from three independent experiments. The number of integrations at each location as well as their orientation is noted. Arrows point to hot-spot locations of integration.

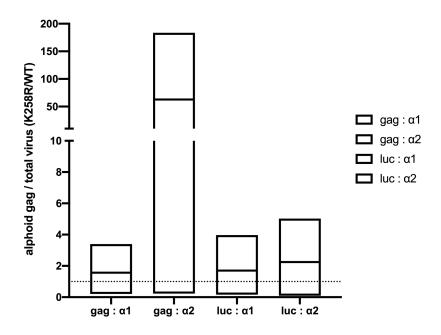
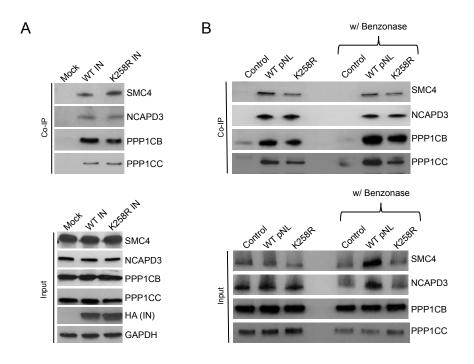



Fig S5: K258R mutant virus integrates near alphoid repeats more often than WT virus in Jurkat cells. Integration into centromeric alphoid repeat DNA was quantified using a alphoid-virus nested PCR approach as described in Fig. 5. First round PCR was performed with primers in the alphoid repeat ($\alpha 1$, $\alpha 2$) and primers in either the 5' end of *gag* or the 3' end of the luciferase reporter gene. Shown are the results of a second round nested quantitative PCR using LTR specific primers normalized to total virus levels. Data from three independent replicates is shown relative to WT as box plots to show the minimum, maximum and mean values. Source data are provided as a Source Data file.

Figure S6: Validation of candidate host factor binding to WT and K258R mutant IN proteins. (A) Upper panel: HA-tagged IN proteins were immunoprecipitated from HEK293T cells after transfection with plasmids expressing either WT or K258R mutant IN, or mock transfected. Immunoprecipitated proteins were analyzed by Western blots probed with antisera specific for the indicated candidate host factors. Lower panel: Proteins present in the lysates input to the immunoprecipitation probed with the indicated antisera. (B) Repeat of coimmunoprecipitation as in panel A, performed with addition of benzonase to the lysate to digest RNA and DNA, as indicated. Three independent replicates were performed, representative blots shown. See Source Data for unedited blots.

<u>**Table S1**</u>: Statistical analysis of integration preferences of K258R mutant IN protein as compared to WT (paired t-test or Fisher's exact test, two-tailed, significance level of p = 0.05).

	Paired t-test (N=3)	Fisher's exact test	
RefSeq genes	0.3247	<0.0001	
TSS	0.1691	<0.0001	
CpG islands	0.1547	< 0.0001	
RNA Pol II	0.2656	0.0051	
DNase HS	0.3578	0.0.006	
H3K27ac	0.3797	<0.0001	
H3K36me3	0.2531	<0.0001	
H3K4me3	0.3805	0.0025	
H3K9me3	0.2278	0.1847	
Centromeric	0.3860	<0.0001	

Table S2: Host proteins immunoprecipitated with WT or K258R mutant IN protein.

Sample(s)	Host protein names		
WT/K258R common	PRKDC, MDN1, MYBBP1A, NUP205, CAND2, GCN1, NUP188, CKMT1A,		
binding partners	IMMT, HEATR1, IPO4, UBE3C, AIFM1, FANCI, ABCD3, ATP2A2, ABCE1,		
	LTN1, SUCLA2, COQ8B, ATAD3C, DDX20, AFG3L2, ATAD3A, ATAD3B,		
	RCN2, SGPL1, TYK2, SLC16A1, MCM7, TIMM50, ARF4, RRP12, PPP1CB,		
	SLC25A10		
WT specific binding	TEX10, GEMIN4, UNC45A, YME1L1, ARF5, NOP56, EIF2S2, RPL27		
partners			
K258R specific binding	NUP93, JAK1, NCAPD3, GLUD1, CHCHD3, SPATA5, CAND1, TMEM209,		
partners	PLEKHG4, RPP30, HACD3, ILVBL, SMC4, RPSKA4, CAD, ALDH1B1,		
	RPN1, PPP1CC, ATP1A1, HERC5, RTCB		

<u>**Table S3**</u>: Gene ontology analysis of integrase interacting host factors. GO analysis of either all binding partners, or only specific binding partners was performed for WT and K258R IN proteins.

GO category	# of proteins	P-value	Proteins		
WT (all binding part	WT (all binding partners)				
Nucleotide binding	19	5.4E-5	PRKDC, MDN1, CKMT1A, AIFM1, ABCD3, ATP2A2, ABCE1, SUCLA2, COQ8B, ATAD3C, DDX20, AFG3L2, ATAD3A, ATAD3B, TYK2, MCM7, ARF4, YME1L1, ARF5		
WT (specific binding	partners)				
rRNA processing	4	1.7E-3	TEX10, GEMIN4, NOP56, RPL27		
K258R (all binding p	artners)				
Nucleotide binding	26	5.2E-8	JAK1, GLUD1, SPATA5, SMC4, RPS6KA4, CAD, ALDH1B1, ATP1A1, RTCB, PRKDC, MDN1, CKMT1A, AIFM1, ABCD3, ATP2A2, ABCE1, SUCLA2, COQ8B, ATAD3C, DDX20, AFG3L2, ATAD3A, ATAD3B, TYK2, MCM7, ARF4		
Antiviral mechanism by IFN- stimulated genes	6	2.1E-4	NUP93, JAK1, HERC5, NUP205, ABCE1, NUP188		
tRNA processing in the nucleus	5	8.3E-4	NUP93, RPP30, RTCB, NUP205, NUP188		
PTW/PP1 complex	2	4.9E-2	PPP1CB, PPP1CC		
K258R (specific bind	ing partners)		·		
tRNA processing	3	2.3E-2	RPP30, RTCB, NUP93		
ISG15 antiviral mechanism	3	4.7E-2	JAK1, HERC5, NUP93		
Meiotic chromosome condensation / condensin complex	2	5.2E-3	NCAPD3, SMC4		

<u>**Table S4**</u>: Primer sequences used for quantitative PCR analysis of viral DNA intermediates and transcripts.

Target	Primer sequence (5'-3')	
Late RT	TGTGTGCCCGTCTGTTGTGT	
	GAGTCCTGCGTCGAGAGATC	
Luciferase	CGTCTTTCCGTGCTCCAAAAC	
	CAAAGGATATCAGGTGGCCC	
2LTR circles	AACTAGGGAACCCACTGCTTAAG	
	TCCACAGATCAAGGATATCTTGTC	
Alu-gag nest 1	GCCTCCCAAAGTGCTGGGATTACAG	
	GCTCTCGCACCCATCTCTCCC	
Alu-gag nest 2	GCCTCAATAAAGCTTGCCTTGA	
	TCCACACTGACTAAAAGGGTCTGA	
Tat mRNA	GTTTGTTTCATGACAAAAGCCTTA	
	CTATTCCTTCGGGCCTGTC	
Chr1	GTTCCCTTAGACAGAGCAGATTT	
	CAACGCAGTTTGTGGGAATG	
Chr2	TCGTTGGAAACGGGATTGT	
	CTGCTCTATGAAAGGGACTGTT	
Chr4	CTGTAGTATCTGGAAGTGGACATT	
	GGTTCAACTGTGTTCGTTTAGG	
Chr14	GATTTCGTTGGAAACGGGATTAC	
	AGAAAGATCCACGCCTGTTA	
Alphoid-1	GCAAGGGGATATGTGGACC	
Alphoid-2	ACCACCGTAGGCCTGAAAGCAGTC	
5'-gag	GCTCTCGCACCCATCTCTCCC	
3'-luc	AGGCCAAGAAGGGCGGAAAG	

<u>Table S5</u>: Adaptor and primer sequences used for construction of integration site mapping NGS libraries.

Primer name	Primer sequence
Adaptor short arm	P-GATCGGAAGAGCAAAAAAAAAAAAAAAAAAAA
Adaptor long arm	CAAGCAGAAGACGGCATACGAGATnnnnnGTGACTGGAGTTCAGACGTGTGCT
	CTTCCGATC*T
PCR-1-F	TGTGACTCTGGTAACTAGAGATCCCTC
PCR-1-R	CAAGCAGAAGACGGCATACGAGAT
PCR-2-F	AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGA
	TCTGAGATCCCTCAGACCCTTTTAGTCAG
PCR-2-R	CAAGCAGAAGACGGCATACGAGATnnnnnn

nnnnn denotes a 6-bp unique barcode, P denotes phosphorylation and * denotes a phosphorothioate bond

<u>**Table S6**</u>: Statistical analysis of integration preferences of WT or mutant IN proteins as compared to a matched random control (one sample two-tailed t-test, significance level of p = 0.05).

	WT	K258R	K264R	K266R	K273R	QA
RefSeq genes	0.0285	0.8183	0.0463	0.0356	0.0885	0.058
TSS	0.4319	0.1111	0.0197	0.0489	0.2596	0.0849
CpG islands	0.5413	0.1959	0.1735	0.1587	0.7776	0.6058
RNA Pol II	0.3183	0.2166	0.6193	0.0018	0.5446	0.6232
DNase HS	0.8181	0.1693	0.9057	0.8804	0.7553	0.6058
H3K27ac	0.2927	0.9830	0.0079	0.1451	0.2675	0.1759
H3K36me3	0.0336	0.1331	0.0837	0.0304	0.2136	0.1432
H3K4me3	0.2517	0.4915	0.1764	0.0356	0.6527	0.535
H3K9me3	0.0073	0.0653	0.016	0.2742	0.0003	0.0372
Centromeric	0.1580	0.3991	0.9515	0.8294	0.598	0.6204