

# <sup>2</sup> Supplementary Information for

- a ATP allosterically stabilizes Integrin-linked kinase for efficient force generation
- 4 Isabel M. Martin, Michele M. Nava, Sara A. Wickström and Frauke Gräter
- 5 Frauke Gräter and Sara Wickström.
- 6 E-mail: frauke.graeter@h-its.org; sara.wickstrom@helsinki.fi

### 7 This PDF file includes:

- 8 Supplementary text
- 9 Figs. S1 to S8 (not allowed for Brief Reports)
- <sup>10</sup> Table S1 (not allowed for Brief Reports)
- Legends for Movies S1 to S13
- 12 SI References

1

- <sup>13</sup> Other supplementary materials for this manuscript include the following:
- 14 Movies S1 to S13

## **15** Supporting Information Text

## 16 Detailed methods

Equilibrium molecular dynamics simulations. The crystal structures of the human ILK(WT) kinase domain in complex with the 17 CH2-domain of  $\alpha$ -parvin either with ATP (Protein Data Bank (PDB)-code 3KMW) or without ATP (3KMU, (1)) were used. To achieve 18 starting structures without parvin, those coordinates were deleted. The PDB-code 6MIB (2) was used for the simulations with the 19 ILK(L207W) mutation. Point mutations for ILK(R225/R349A) were generated using pymol. All MD simulations were carried out using 20 GROMACS 2018.1 (3). The Amber99sb\*-ILDNP force-field (4, 5), TIP3-water model (6) and ATP-parameters (7) were used. The starting 21 configurations were solvated in the center of a dodecahedron box with (at least) 3 nm between each periodic image. Sodium and chloride 22 ions corresponding to a physiological concentration of 100 mM were added resulting in a system with overall zero charge. An energy 23 minimization was performed with the steepest descent method, followed by 500 ps in the NVT and 500 ps in the NPT ensemble with 24 harmonic constraints on all protein atoms with a force constant of 1000 kJ mol<sup>-1</sup> nm<sup>-1</sup> to equilibrate water and ions. The production runs 25 were carried out in the NPT ensemble without constraints on heavy atoms. All bonds between hydrogens and protein heavy atoms were 26 constrained using the LINCS algorithm (8). Therefore, a timestep of 2 fs could be used. The temperature was kept constant at T = 300 K 27 using the velocity rescaling thermostat (9) with a coupling time of 0.1 ps. The two temperature coupling groups were (1) all protein and 28 ATP atoms and (2) all water and ions. The pressure was kept constant at 1 bar using the isotropic Parrinello-Rhaman barostat (10) with a 29 coupling time of 2 ps and a compressibility of  $4.5 \times 10^{-5}$  bar<sup>-1</sup>. The neighbors list was updated every 10 fs with the Verlet scheme. A 30 cutoff of 1.0 nm was used for all non-bonded interactions and long-range electrostatic interactions were treated using the Particle mesh 31 Ewald method (PME, (11)) with a grid spacing of 0.16 nm with cubic interpolation. If not stated otherwise the systems were simulated for 32 500 ns. For the analysis the first 20 ns were neglected as equilibration period, as inspected from the protein backbone root-mean square 33 deviation (RMSD). 20 individual production runs were carried out, with random velocities and their own equilibration phases, totaling to a 34 total simulation time used for the analysis of 9.6 µs per condition. 35

Guided molecular docking. To determine a patch of residues on ILK that is most likely in contact with kindlin-2 we employed a guided
 molecular docking approach. One available crystal structure of the nearly complete mouse kindlin-2 is missing only two loops within the
 F1 domain and the PH-domain (PDB: 5XPY, (12)). Unfortunately, the ILK-binding helix (PDB: 2MSU, (13)) is located at the edge of the

PH domain and is only partially included in the nearly full structure. Therefore, we combined all available partial structures of kindlin-2
 (ILK-binding helix: 2MSU; free PH-domain: 4F7H and 2LKO (14, 15); N-terminus: 2LGX (16)) and aligned them with the main body
 of kindlin-2 (PDB: 5XPY) using UCSF-Chimera (17). This structural alignment was performed according to an underlying sequence
 alignment with the human kindlin-2 generated with T-coffee (18). Since the structures of the free PH-domains do not overlap in sequence

43 with the main kindlin body, they were placed near the artificially inserted loop in the F2 domain of the main body structure in such a way

that the residues that follow in the sequence have a minimal distance to each other. In doing so six rotations of the PH-domains were

generated. For the missing loop within the F1 domain there is no crystal structure, but it is far apart from the ILK binding site and thus

we regard it as neglectable for the ILK binding. The final full structures were generated by a homology modeling using MODELLER (19) based on the positions of the placed fragments. For each of the six conformations, four models were generated. Eleven models in

which the F1-loop was not threaded through the protein were selected for further analysis. Those were subjected to a short 20 ns to

49 30 ns MD simulation (see above for simulation parameters). A cluster analysis over the whole trajectory determined the most populated

<sup>50</sup> conformations, which were selected for the guided molecular docking with Haddock2.2 (20). For ILK, the most populated structure from

the 100 ns MD simulation of PDB-code 3KMW was used. The experimentally validated residues of ILK that are in direct contact with kindlin-2 (K423, I427, (21)) were chosen as the actively participating residues. The residues of kindlin-2 (L353, E354, L357, E358) that

were shown to interact with ILK (13) were set as active residues as well. Passive residues were defined automatically around the active

residues. Seven docking protocols were successful and used for further analysis.

Determination of pulling sites. The ILK:kindlin-2 docking poses were used to determine the most physiological cluster of residues for mechanical perturbation. From the 361 highest scoring docking poses we determined the residues in ILK that are in contact with kindlin-2 within a cutoff of 0.35 nm. The residues that occur in most of the docking poses are: P419, H420, K423, I427, K435, M441, K448. These were then taken as the patch of residues for force-probe MD. For parvin, we adopted a similar approach. From the structures of the parvin-CH2 domain in complex with the paxillin LD1 domain (PDB-codes: 4EDN (22) and 2K2R (23)) the residues on parvin that are interacting with paxillin within the same threshold of 0.35 nm were determined. This resulted in the residues A249, T252, V264, T267, R369 as the patch of residues on parvin for pulling.

Force-probe molecular dynamics simulations. We used force-probe MD to simulate the effects of mechanical perturbation on the system. The end-conformations of the equilibrium simulations were placed in the center of a rectangular box of  $30 \text{ Å} \times 15 \text{ Å} \times 15 \text{ Å}$  and rotated so that the axis between the putative pulling points is in line with the x-axis of the box. The system was energy minimized, followed by short simulations in the NVT and NPT ensemble as described above. For the production run the respective residue patches were subjected to harmonic spring potentials with a force constant of  $50 \text{ kJ} \text{ mol}^{-1} \text{ mm}^{-1}$  moving in opposite directions with a constant velocity (v= 1 m s<sup>-1</sup> to 0.01 m s<sup>-1</sup>). 10 simulations were performed per velocity and condition. The simulations were stopped upon dissociation of ILK:parvin.

MD analysis and visualization. The computational analysis was performed with GROMACS tools and post-processed with Python 3. If

<sup>70</sup> not stated otherwise, the first 20 ns of each equilibrium simulation were excluded from the analysis. The RMSD of the backbone atoms

vas calculated in relation to the first frame of the production run. Further, the two starting structures of the holo and apo complex were

<sup>72</sup> found to be remarkably similar to each other (1). Thus, the differences in RMSD do not reflect differences in the overall structure of

the ILK pseudokinase domain but rather show that ATP influences the dynamical behavior. The saltbridge occupancy/residue contact
 probabilities were calculated by determining the number of frames of the whole trajectory with a residue-residue distance below a

probabilities were calculated by determining the number of frames of the whole trajectory with a residue-residue distance below a
 threshold of 0.35 nm. To determine the interface area between ILK and parvin, we calculated the solvent accessible surface area (SASA,

(24)) for both proteins alone and for the complex. The interface area can be calculated according to equation 1:

77

$$\frac{1}{2}(SASA_{ILK} + SASA_{parvin} - SASA_{complex})$$
<sup>[1]</sup>

We define a complex dissociation event if the interface area is below 0.6 nm. For visualization of protein structures we used visual molecular dynamics (VMD; (25)). For the generation of the final figures we used Inkscape.

Principle component analysis. We performed principle component analysis (PCA, reviewed in (26)) with GROMACS utilities covar and 80 anaeig to identify the major correlated structural motions. The first 20 ns of each equilibrium MD trajectory were neglected and the PCA 81 was conducted on the C- $\alpha$  atoms of the cumulative trajectories of the ILK holo und apo state or ILK(L207W). Rotational and translational 82 motions were removed by superimposing the structures along the trajectory onto the invariant core. A covariance matrix from the C- $\alpha$ 83 positions was generated. The eigenvectors that describe the direction of motion, are generated by diagonalization of the covariance 84 matrix. The corresponding eigenvalue describes the magnitude (energetic contribution) of that component to the motion. Projection of 85 the trajectory on the eigenvectors shows the motions of the protein along this mode of motion. All trajectories were projected onto the 86 eigenvectors generated by the apo state. The top two eigenvectors were considered to construct the two-dimensional histogram. 87

**Force distribution analysis.** We used force distribution analysis (FDA (27)) implemented into GROMACS to calculate the changes in internal forces between the ILK holo and apo states. In FDA the pairwise forces between atom pair i and j are calculated considering all interaction types between protein atoms. These time-averaged pairwise forces can be non-zero even in equilibrium simulations. For a residue based analysis the inter-residue forces were calculated according to equation 2:

$$F_{u,v} = \sum_{i \in u, j \in v} F_{ij}$$
<sup>[2]</sup>

where i is an atom of residue u and j is an atom of residue v, with u and v being different and where  $F_{ij}$  is the pairwise force between atoms i and j. The FDA was performed on each individual trajectory per condition and the resulting average forces of the apo state were subtracted from those of the holo state. The networks shown are connected edges for at least 3 residues with force differences above a given threshold. Each interaction in the graphs shows a statistically significant change in internal forces (Mann-Whitney test, p <0.05).

97 The punctual stress is the sum of the absolute values of scalar pairwise forces acting on each atom i:

98

92

$$S_i = \sum_j |F_{ji}| \tag{3}$$

Plasmid constructs. Full length mouse ILK cDNA was cloned into the EcoRI site of pEGFP-N1 plasmid (Clontech). The R255A, R349A,
 and L207W mutations were generated by performing site-directed mutagenesis PCR using Quik Change II Mutagenesis Kit (Agilent) with
 the following primers:

<sup>102</sup> R255A forward: 5'-CCTTGTACTCCAGTCTGCAACCTTCAGCACCTTCA-3' and

<sup>103</sup> R255A reverse 5'-TGAAGGTGCTGAAGGTTGCAGACTGGAGTACAAGG-3';

<sup>104</sup> R349A forward 5'-AGGCGCATACATGGCCCCAGGGCACTGG-3' and

<sup>105</sup> R349A reverse 5'-CCAGTGCCCTGGGGCCATGTATGCGCCT-3';

L207W forward: 5'-CCTGCCAGCGGCCTTTCCACCACTCTCCAGAATGATTCTCA-3' and

L207W reverse 5'-TGAGAATCATTCTGGAGAGTGGTGGAAAGGCCGCTGGCAGG-3'.

Cell culture and transfection. Immortalized ILK-/- mouse fibroblasts were obtained as described (28) and cultured in Dulbecco's MEM, 109 10 % FBS (Gibco) in 5 % CO<sub>2</sub> at 37 °C. Transient transfections were performed using Lipofectamine 3000 reagent (Invitrogen) according

to the manufacturer's instructions. After 24 h of transfection cells were subjected to specific experimental analyses.

Immunoprecipitation. Transfected cells grown on polystyrene dishes were rinsed in phosphate-buffered saline (PBS), suspended in
 lysis buffer (50 mM Tris–HCl buffer (pH 8.0) containing 150 mM NaCl, 1% Triton-X 100, 0.05% sodium deoxycholate, 10 mM EDTA,
 protease, and phosphatase inhibitors (Roche)), and cleared by centrifugation. GFP immunoprecipitation was performed using Miltenyi
 Biotec MultiMACS GFP Isolation Kit (Mylteni Biotec 130-091-125) according to the manufacturer's protocol. The immunocomplexes were
 eluted in Laemmli sample buffer by boiling and analyzed by western blotting.

<sup>116</sup> **Western Blotting.** Lysates were reduced in Laemmli sample buffer at 95 °C, separated by PAGE in the presence of SDS, transferred <sup>117</sup> onto PVDF membranes and subjected to western blot analyses using the standard protocols. The following antibodies were used: anti- $\alpha$ <sup>118</sup> parvin (Cell Signalling; 4026 ; 1:2500), anti-GFP (Invitrogen; A1112; 1:2500) and anti-rabbit HRP (Bio-Rad Laboratories). Western blots <sup>119</sup> were quantified using densitometry (ImageJ software) (29) from four independent experiments. Generation of soft and stiff substrates. 8 kPa and 40 kPa polyacrylamide (PAA) gels (7.5% acrylamide/0.25% bis-acrylamide) were
 cast on 20 x 20 glass coverslips after which fibronectin was chemically crosslinked on gels using Sulfo-SANPAH (Pierce). Gel stiffness
 was measured as described (30). For traction force microscope gels were manufactured as above by additioning 0.2 μm fluorescent
 beads (1:125; Polysciences). Gels were washed in 70% Ethanol and rinsed extensively in PBS after which transfected cells were plated,
 allowed to adhere and live imaged for focal adhesion dynamic analysis or used for traction force microscopy experiments.

Focal adhesion dynamics. Transfected cells on 8 kPa and 40 kPa Fibronectin-coated PAA gels were imaged using a Zeiss Axiovert 125 inverted microscope coupled to a CSUX1 spinning-disc device (Yokogawa) equipped with a 488 nm laser, sCMOS camera (Hamamatsu) 126 and an environment chamber. Imaging was performed with a 100×oil immersion objective (Zeiss) at 37 °C, 5% CO<sub>2</sub>. Images were 127 acquired at a frame rate of 1 frame/30 sec for 30 min. To quantify adhesion dynamics, time-lapse movies were preprocessed using 128 Fiii (29) by subtracting the background, denoising and linear contrast enhancement. Image sequences were then submitted to Focal 129 Adhesion Server Analysis FAAS (31). The following settings were used: no median filter was applied, detection threshold was set 130 to 2.5. The minimal size for focal adhesion detection, namely the focal adhesion threshold area was set to 20 pixels after a careful 131 visual inspection of the focal adhesion segmentation and tracking. The number of focal adhesions per cell was then normalized to the 132 corresponding cell area. To this purpose, cell edges were manually traced. Assembly and disassembly events per adhesion per cell were 133 collected based on R<sup>2</sup> values greater or equal 0.8 (31). 134

Traction Force Microscopy. Traction force microscopy was performed essentially as described (32). Transfected cells were cultured on 8 kPa PAA. Imaging was performed using a spinning disc microscope described above with a 40x glycerol objective at 37 °C with 5 % CO<sub>2</sub>. Cells were imaged prior and after the addition of 10X trypsin to detach cells and obtain bead displacement images. Calculation of traction forces was performed using particle imaging velocimetry (PIV) and Fourier transform traction cytometry (FTTC) with regularization (10<sup>-9</sup>) using Fiji (29) as described previously (33). Traction forces were reconstructed at a grid spacing of 5 µm and total cellular force was calculated from the average of traction magnitudes. At least 30 cells/condition were analysed.

<sup>141</sup> **Migration assay and cell tracking.** Transfected cells (5000 cells/well) were plated on 4-well chamber slides (Thermo Scientific<sup>TM</sup> <sup>142</sup> Nunc<sup>TM</sup> Lab-Tek<sup>TM</sup> II Chamber Slide<sup>TM</sup>) and imaged by using differential interference contrast (DIC) optics with a Zeiss Axiovert inverted <sup>143</sup> microscope coupled to a CSUX1 spinning-disc device (Yokogawa) equipped with a 488 nm laser, sCMOS camera (Hamamatsu) and an <sup>144</sup> environment chamber. Imaging was performed with a 25× oil immersion objective (Zeiss) at 37 °C, 5% CO<sub>2</sub>. Images were acquired <sup>145</sup> at a frame rate of 1 frame/30 min for 12 h. To quantify individual cell trajectories, cells were manually tracked by using the Fiji plugin <sup>146</sup> Trackmate (34). The mean distance and cell velocity were calculated by averaging the displacement (in  $\mu$ ) and the velocity ( $\mu$ m/min) <sup>147</sup> between consecutive frames.

Micropattern fabrication. Micropatterned adhesive surfaces were generated using the PRIMO optical module (Alvéole, France) 148 controlled by the Leonardo plugin (V3.3, Alveole) mounted on a Nikon TI-E inverted microscope (Nikon Instruments) equipped with a 149 Super Plan FLuor 20x ELWD lens (Nikon) lens and a DMD-based UV (375 nm). Crossbow-shaped micropatterns (length 35 µm, width 150 17.5 µm, radius 17.5 µm) were projected onto plasma-cleaned (Corona Treater, ETP), PLLgPEG-passivated (0.1 mg/ml PLL-g-PEG 151 (PLL (20)-g [3.5]- PEG (2), SuSoS) 35 mm glass-bottom dishes (Ibidi). Patterned areas were then washed multiple times with PBS and 152 conjugated with a uniform coating of 10 µg/ml fibronectin for 1 h at 37 °C. The substrates were then washed with PBS, prior to seeding 153 10000 transfected fibroblast cells onto each 35 mm dish. Cells were allowed to adhere on the patterns for 16 h, at which time they fixed 154 and processed for immunofluorescence and quantification analyses. 155

Immunofluorescence stainings and confocal microscopy. Cells were fixed in 4 °C paraformaldehyde, permeabilized with 0.3 % 156 Triton X-100 in PBS, and blocked in 5% bovine serum albumin (BSA). Samples were subsequently incubated overnight in primary 157 antibody in 1 % BSA/0.3 % Triton X-100/PBS, followed by washing in PBS and incubation in secondary antibody in 1 % BSA/0.3 % Triton 158 X-100/PBS. Finally, samples were mounted in Elvanol. The following antibodies were used: *α*-parvin (Cell Signaling; 4026; 1:100), 159 phospho-Myosin Light Chain 2 (Thr18/Ser19) (Cell Signaling; 3674; 1:200), Paxillin (BD Transduction Laboratories; 610051; 1:300). 160 Alexa Fluor 568 and 647 conjugated secondary antibodies (1:300, all from Invitrogen). Actin was labeled with Alexa Fluor 568 (Invitrogen; 161 A12380 1:600), or 647-conjugated phalloidin (Invitrogen; A22287 1:100). All fluorescence images were collected by laser scanning 162 confocal microscopy (SP8X; Leica) with Leica Application Suite software (LAS X version 2.0.0.14332), using 63x oil-immersion objective. 163 Images where acquired at room temperature using sequential scanning of frames of 0.3 µm thick confocal planes (pinhole 1) after which 164 5 planes encompassing complete cell focal adhesions or actin stress fibers were projected as a maximum intensity confocal stack. 165 Images were collected with the same settings for all samples within an experiment. Quantification of adhesion areas was performed 166 using Fiji (29). First, ILK, or paxillin focal adhesions were identified using intensity-based thresholding (threshold area set to 10 pixels). 167 Subsequently, focal adhesion surface area was measured by Analyze particle tools in Fiji. The cell area (in  $\mu$ m<sup>2</sup>) was measured by 168 manually tracing the cell boundary given by adhesions, phalloidin, and pMLC2 stainigs. The number of focal adhesions were normalized 169 by the corresponding cell area. 170

Statistical Analysis. Statistical analyses were performed using GraphPad Prism software (GraphPad, version 8) and Python. Statistical significance was determined by the specific tests indicated in the corresponding figure legends. All experiments presented in the manuscript were repeated at least in 3 independent experiments/biological replicates. No datapoints were excluded from the analyses.

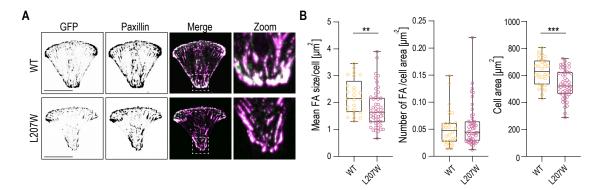



Fig. S1. (A) Representative immunofluorescence images of ILK(WT)-GFP and ILK(L207W)-GFP cells stained with paxillin on crossbow micropatterned surfaces. Paxillin localizes at focal adhesions both in ILK(WT)-GFP and ILK(L207W)-GFP cells. (B) Quantification of focal adhesion size/cell, number of focal adhesion/cell and cell area. (n > 25 cells/condition pooled across 4 independent experiments. \*\*p= 0.0052, \*\*\*p= 0.0004, Mann-Whitney). Scale bars 20 μm.

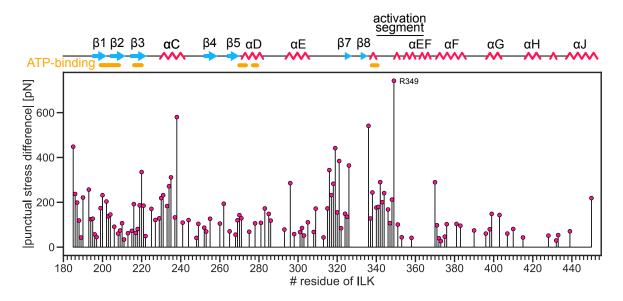



Fig. S2. Absolute differences in punctual stress between holo and apo ILK (only statistically significant differences across 20 independent simulations are shown; p < 0.05, Mann-Whitney test). Secondary structure elements and ATP-binding patches are indicated.

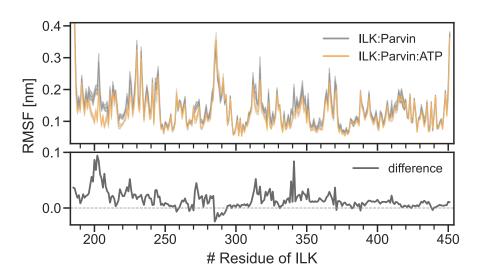



Fig. S3. Root mean square fluctuation (RMSF) of ILK holo (orange) and apo (grey) computed for the backbone atoms are shown as a function of residue number. Error bands denote the 95% confidence interval.

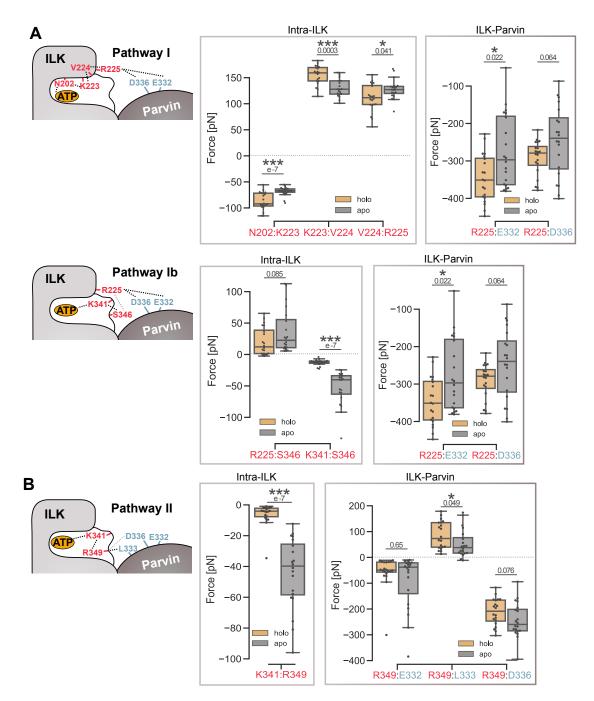



Fig. S4. ATP-dependent pathways of internal force propagation between ILK and parvin. Average pairwise forces between the indicated residue pairs are calculated from FDA for 20 individual runs compared between the apo and holo complex. Statistical significance determined by Mann-Whitney test. Positive and negative force values indicate repulsion and attraction, respectively. (A) Pathway I and pathway Ib (not quite statistically significant) involving the saltbridge-forming residue R349.

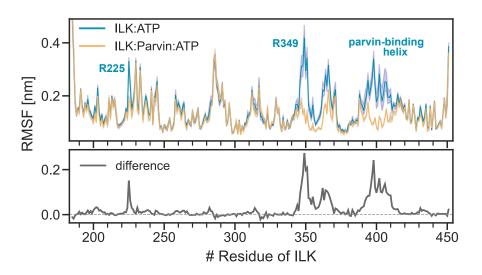



Fig. S5. Root mean square fluctuation (RMSF) of ILK in complex with parvin(orange) and without (cyan) computed for the backbone atoms are shown as a function of residue number. Error bands denote the 95 % confidence interval.

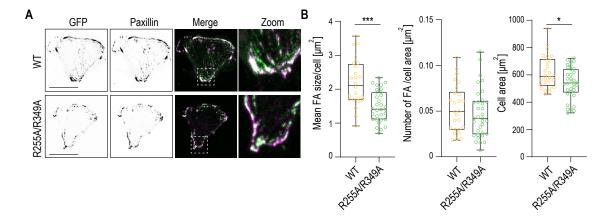



Fig. S6. (A) Representative immunofluorescence images of ILK(WT)-GFP and ILK(R255A/R349A)-GFP cells stained with paxillin on crossbow micropatterned surfaces. Paxillin localizes to focal adhesions both in ILK(WT)-GFP and ILK(R255A/R349A)-GFP cells (right panels). (B) Quantification of focal adhesion size and number (n > 24 cells/condition pooled across 4 independent experiments. \*\*\*p= 0.0001, \*p= 0.0260, Mann-Whitney). Scale bars 20 µm

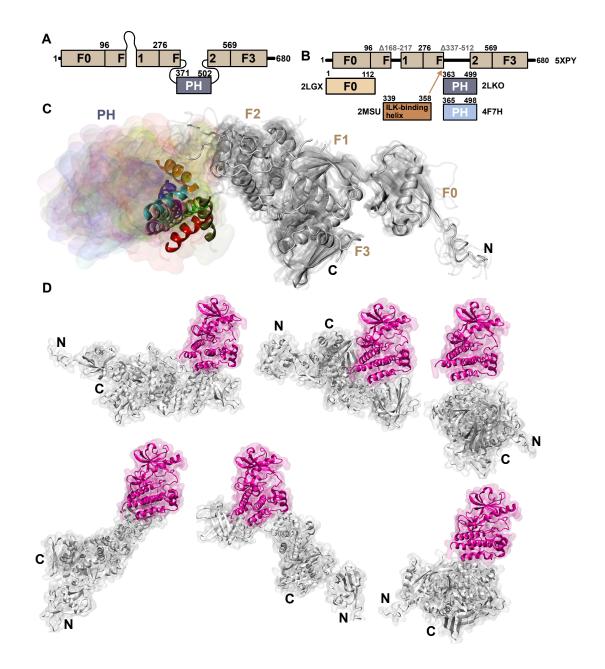
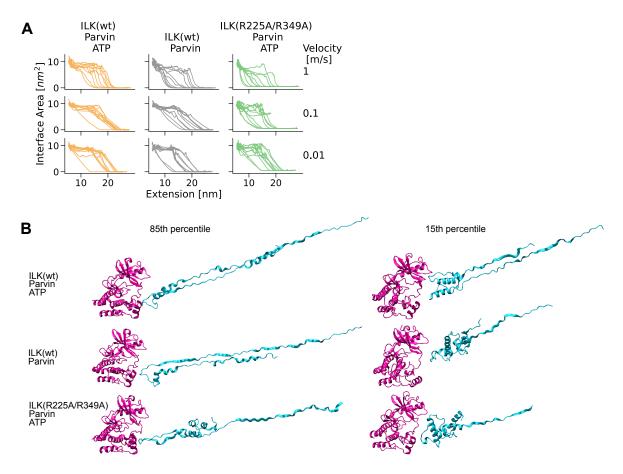




Fig. S7. Kindlin-2 modeling and ILK:kindlin-2 docking. (A) Schematic overview of full kindlin-2. (B) Schematic overview of available kindlin-2 partial crystal structures with pdb-codes. (C) Full human kindlin-2 homology models with different placements of PH-domains in surface representation in different colors. For visualization purposes one helix within the PH-domain represented in cartoon. (D) 6 exemplaric ILK:kindlin-2 docking poses from guided docking. ILK in pink and kindlin-2 in light grey. N- and C-terminus of kindlin-2 are labeled.



**Fig. S8.** ILK:parvin complex under mechanical force. (A) ILK:parvin interface area as a function of extension between the two force application patches for ILK(WT) holo and apo and ILK(R225A/R349A) at three different pulling velocities from  $1 \text{ m s}^{-1}$  to 0.01 m s<sup>-1</sup>. Trajectories are smoothed with a rolling average. (B) Snapshots at the time of complex dissociation indicating the 15th and 85th percentile of each distribution.

| ID1                                    | Protein           | ID2        | Protein       | difference pairwise force [pN] | p-value                                   |
|----------------------------------------|-------------------|------------|---------------|--------------------------------|-------------------------------------------|
| 186                                    | ILK               | 187        | ILK           | -16.38                         | 0.031517102                               |
| 190                                    | ILK               | 192        | ILK           | -16.93                         | 5.89592E-05                               |
| 193                                    | ILK               | 217        | ILK           | -18.16                         | 0.001014099                               |
| 193                                    | ILK               | 219<br>195 | ILK           | 18.75                          | 1.10447E-05<br>0.004320184                |
| 194<br>194                             | ILK               |            | ILK<br>ILK    | -22.79                         |                                           |
| 194                                    | ILK<br>ILK        | 211<br>208 | ILK           | -43.21<br>-18.89               | 0.000509073<br>1.80745E-05                |
| 197                                    | ILK               | 208        | ILK           | 44.86                          | 0.000103734                               |
| 198                                    | ILK               | 199        | ILK           | -36.32                         | 1.10447E-05                               |
| 198                                    | ILK               | 200        | ILK           | -26.57                         | 6.79562E-08                               |
| 199                                    | ILK               | 200        | ILK           | 99.66                          | 6.79562E-08                               |
| 199                                    | ILK               | 208        | ILK           | -21.41                         | 6.79562E-08                               |
| 199                                    | ILK               | 271        | ILK           | 22.23                          | 3.70512E-05                               |
| 199                                    | ILK               | 323        | ILK           | 33.04                          | 6.79562E-08                               |
| 200                                    | ILK               | 201        | ILK           | 128.52                         | 6.79562E-08                               |
| 200                                    | ILK               | 202        | ILK           | 124.32                         | 6.79562E-08                               |
| 200                                    | ILK               | 206        | ILK           | 16.73                          | 0.000247061                               |
| 200                                    | ILK               | 207        | ILK           | -57.99                         | 2.35566E-06                               |
| 200                                    | ILK               | 220        | ILK           | 85.98                          | 6.79562E-08                               |
| 200                                    | ILK               | 283        | ILK           | 18.37                          | 5.22689E-07                               |
| 200                                    | ILK               | 323        | ILK           | -20.14                         | 0.001782376                               |
| 201                                    | ILK               | 202        | ILK           | 24.72                          | 0.002341273                               |
| 201                                    | ILK               | 205        | ILK           | 34.27                          | 7.89803E-08                               |
| 201                                    | ILK               | 206        | ILK           | 53.72                          | 9.17277E-08                               |
| 201                                    | ILK               | 223        | ILK           | -56.78                         | 6.0148E-07                                |
| 202                                    | ILK               | 204        | ILK           | -56.31                         | 0.000509073                               |
| 202                                    | ILK               | 205        | ILK           | -61.46                         | 0.000160981                               |
| 202                                    | ILK               | 220        | ILK           | 62.63                          | 3.49946E-06                               |
| 202                                    | ILK               | 223        | ILK           | -18.74                         | 0.000115901                               |
| 202                                    | ILK               | 323        | ILK           | 16.67                          | 1.65708E-07                               |
| 202                                    | ILK               | 351        | ILK           | -31.39                         | 0.005115262                               |
| 203                                    | ILK               | 204        | ILK           | 42.72                          | 0.000562904                               |
| 203                                    | ILK               | 341        | ILK           | 15.32                          | 0.001348582                               |
| 204                                    | ILK               | 220        | ILK           | 65.63                          | 6.79562E-08                               |
| 204                                    | ILK               | 223        | ILK           | 53.39                          | 3.29311E-05                               |
| 204                                    | ILK               | 341        | ILK           | 28.09                          | 4.16576E-05                               |
| 204                                    | ILK               | 345        | ILK           | -23.17                         | 0.022269911                               |
| 205                                    | ILK               | 206        | ILK           | -77.52                         | 1.23464E-07                               |
| 205                                    | ILK               | 221        | ILK           | -32.38                         | 0.000160981                               |
| 206                                    | ILK               | 207        | ILK           | -25.08                         | 0.003638826                               |
| 206                                    | ILK               | 208        | ILK           | -24.74                         | 1.57567E-06                               |
| 206                                    | ILK               | 220        | ILK           | 124.52                         | 9.17277E-08                               |
| 206                                    | ILK               | 221        | ILK           | -51.21                         | 0.00037499                                |
| 206                                    | ILK               | 223        | ILK           | 83.74                          | 2.21776E-07                               |
| 207                                    | ILK               | 208        | ILK           | 145.09                         | 9.12665E-07                               |
| 207                                    | ILK               | 218        | ILK           | 77.75                          | 6.79562E-08                               |
| 207                                    | ILK               | 219        | ILK           | 57.78                          | 1.80297E-06                               |
| 207                                    | ILK               | 220        | ILK           | 123.34                         | 1.91771E-07                               |
| 208                                    | ILK               | 209        | ILK           | -35.12                         | 0.002798602                               |
| 208                                    | ILK               | 218        | ILK           | 35.85                          | 2.92486E-05                               |
| 208                                    | ILK               | 219        | ILK           | -63.12                         | 7.57738E-06                               |
| 209                                    | ILK               | 216        | ILK           | 21.64                          | 2.0616E-06                                |
| 209                                    | ILK               | 218        | ILK           | 28.88                          | 1.20089E-06                               |
| 209                                    | ILK               | 271        | ILK           | -50.35                         | 7.89803E-08                               |
| 210                                    | ILK               | 217        | ILK           | -22.44                         | 0.000304799                               |
| 211                                    | ILK               | 212        | ILK           | 24.34                          | 0.001014099                               |
| 211                                    | ILK               | 216        | ILK           | 41.67                          | 0.016668799                               |
| 212                                    | ILK               | 217        | ILK           | -23.13                         | 0.000144383                               |
| 216                                    | ILK               | 217        | ILK           | 56.04                          | 3.70512E-05                               |
| 216                                    | ILK               | 270        | ILK           | -17.65                         | 0.001014099                               |
| 216                                    | ILK               | 271        | ILK           | -58.23                         | 6.79562E-08                               |
| 217                                    | ILK               | 218        | ILK           | 170.17                         | 6.79562E-08                               |
| 217                                    | ILK               | 219        | ILK           | -25.86                         | 6.61045E-05                               |
| 217                                    | ILK               | 254        | ILK           | 21.88                          | 0.001480977                               |
| 217                                    | ILK               | 268        | ILK           | -35.18                         | 2.0616E-06                                |
| 217                                    | ILK               | 270        | ILK           | 20.75                          | 2.56295E-07                               |
| 217                                    | ILK               | 271        | ILK           | -21.35                         | 0.000199707                               |
| 218                                    | ILK               | 219        | ILK           | -40.88                         | 0.01929238                                |
| 218                                    | ILK               | 268        | ILK           | 62.09                          | 9.12665E-07                               |
| 218                                    | ILK               | 269        | ILK           | -118.51                        | 2.56295E-07                               |
| 218                                    | ILK               | 271        | ILK           | -18.88                         | 0.013320516                               |
| 219                                    | ILK               | 220        | ILK           | -66.66                         | 1.57567E-06                               |
| 219                                    | ILK               | 267        | ILK           | -33.75                         | 0.000920913                               |
| 219                                    | ILK               | 268        | ILK           | 47.33                          | 0.002341273                               |
| 220                                    | ILK               | 221        | ILK           | -16.43                         | 0.006557193                               |
| 220                                    | ILK               | 266        | ILK           | 25.09                          | 0.000115901                               |
| 220                                    | ILK               | 267        | ILK           | -33.81                         | 0.01929238                                |
| 220                                    | ILK               | 338        | ILK           | -30.99                         | 0.001480977                               |
| 220                                    | ILK               | 339        | ILK           | 259.93                         | 6.79562E-08                               |
| 220                                    | ILK               | 340        | ILK           | 76.02                          | 6.79562E-08                               |
| 220                                    | ILK               | 341        | ILK           | 58.81                          | 6.79562E-08                               |
| 222                                    | ILK               | 223        | ILK           | -31.91                         | 0.001227183                               |
| 222                                    | ILK               | 224        | ILK           | -30.25                         | 4.53897E-07                               |
| 222                                    | ILK               | 264        | ILK           | -36.15                         | 3.0691E-06                                |
| 222                                    | ILK               | 265        | ILK           | -22.72                         | 0.031517102                               |
| 222                                    | ILK               | 342        | ILK           | -39.45                         | 2.56295E-07                               |
|                                        | ILK               | 345        | ILK           | 18.33                          | 0.03851496                                |
| 222                                    | ILK               | 224        | ILK           | 24.88                          | 0.000338195                               |
| 223                                    |                   |            |               | -16.27                         | 0.041123594                               |
| 223                                    | ILK               | 225        | ILK           |                                | 0.041120004                               |
| 223<br>224<br>225                      | ILK<br>ILK        | 227        | ILK           | 27.78                          |                                           |
| 223<br>224<br>225<br>225               | ILK<br>ILK<br>ILK |            | ILK<br>Parvin | 27.78<br>-71.31                | 0.031517102<br>0.022269911                |
| 222<br>223<br>224<br>225<br>225<br>226 | ILK<br>ILK        | 227        | ILK           | 27.78                          | 0.031517102<br>0.022269911<br>0.007113494 |

| 227        | ILK        | 259        | ILK        | -23.45          | 0.036048327                |
|------------|------------|------------|------------|-----------------|----------------------------|
| 229        | ILK        | 233        | ILK        | 23.12           | 0.041123594                |
| 232        | ILK        | 259        | ILK        | 46.86           | 0.000247061                |
| 234        | ILK        | 235        | ILK        | -23.63          | 0.036048327                |
| 235        | ILK        | 256        | ILK        | 15.69           | 0.002798602                |
| 235        | ILK        | 257        | ILK        | -17.18          | 0.036048327                |
| 235        | ILK        | 266        | ILK        | 33.04           | 0.000247061                |
| 235        | ILK        | 267        | ILK        | -29.47          | 0.000160981                |
| 235        | ILK        | 342        | ILK        | 35.44           | 5.87357E-06                |
| 236        | ILK        | 240        | ILK        | 25.29           | 0.000160981                |
| 237        | ILK        | 240        | ILK        | 15.77           | 0.008354827                |
| 238        | ILK        | 242        | ILK        | -25.11          | 0.002139261                |
| 239<br>239 | ILK<br>ILK | 256<br>267 | ILK<br>ILK | 37.45<br>-16.72 | 3.70512E-05<br>0.001348582 |
| 239        | ILK        | 342        | ILK        | 16.47           | 0.00604033                 |
| 239        | ILK        | 243        | ILK        | 31.4            | 0.000274511                |
| 250        | ILK        | 337        | ILK        | -22.47          | 0.022269911                |
| 251        | ILK        | 269        | ILK        | -27.93          | 0.004702533                |
| 251        | ILK        | 272        | ILK        | 34.49           | 7.57738E-06                |
| 252        | ILK        | 269        | ILK        | 24.74           | 0.033717669                |
| 253        | ILK        | 267        | ILK        | 28.54           | 2.92486E-05                |
| 254        | ILK        | 268        | ILK        | -86.48          | 0.000920913                |
| 255        | ILK        | 267        | ILK        | 24.3            | 0.000199707                |
| 256        | ILK        | 267        | ILK        | -22.03          | 0.020734594                |
| 257        | ILK        | 265        | ILK        | 21.2            | 0.00556046                 |
| 258        | ILK        | 259        | ILK        | -32.62          | 0.000920913                |
| 258        | ILK        | 262        | ILK        | -35.17          | 0.000415502                |
| 259        | ILK        | 265        | ILK        | -18.15          | 0.004320184                |
| 262        | ILK        | 264        | ILK        | -17.29          | 4.16576E-05                |
| 264        | ILK        | 266        | ILK        | 18.83           | 0.003966239                |
| 267        | ILK        | 268        | ILK        | -43.51          | 0.000460073                |
| 267        | ILK        | 338        | ILK        | -57.57          | 3.41558E-07                |
| 268        | ILK        | 269        | ILK        | -34.37          | 0.011432829                |
| 269        | ILK        | 270        | ILK        | -50.5           | 2.92486E-05                |
| 270        | ILK        | 271        | ILK        | 53.32           | 0.000144383                |
| 271        | ILK        | 272        | ILK        | -34.58          | 0.009045397                |
| 272        | ILK        | 275        | ILK        | -52.32          | 3.29311E-05                |
| 272<br>272 | ILK        | 326        | ILK        | 78.23           | 2.35566E-06<br>5.16578E-06 |
|            | ILK        | 327        | ILK        | -38.48          |                            |
| 272        | ILK        | 328        | ILK        | -26.61          | 3.70512E-05                |
| 272<br>273 | ILK<br>ILK | 334<br>274 | ILK<br>ILK | -23.08<br>73.03 | 0.000338195<br>0.000247061 |
| 273        | ILK        | 274        | ILK        | -19.96          | 6.61045E-05                |
| 276        | ILK        | 277        | ILK        | 22.45           | 0.027483422                |
| 276        | ILK        | 278        | ILK        | 70.97           | 2.68977E-06                |
| 276        | ILK        | 322        | ILK        | 19.16           | 0.000835717                |
| 276        | ILK        | 325        | ILK        | 34.57           | 0.006557193                |
| 276        | ILK        | 326        | ILK        | 83.08           | 5.16578E-06                |
| 277        | ILK        | 281        | ILK        | 44.46           | 0.022269911                |
| 277        | ILK        | 322        | ILK        | -24.4           | 0.025639272                |
| 277        | ILK        | 325        | ILK        | -36.37          | 0.001348582                |
| 278        | ILK        | 283        | ILK        | -32.07          | 0.000460073                |
| 278        | ILK        | 323        | ILK        | -48.33          | 9.27796E-05                |
| 279        | ILK        | 284        | ILK        | 22.05           | 0.003966239                |
| 282        | ILK        | 283        | ILK        | 36.73           | 0.005115262                |
| 282        | ILK        | 389        | ILK        | 22.03           | 0.04986369                 |
| 283        | ILK        | 323        | ILK        | 44.59           | 0.002139261                |
| 296        | ILK        | 300        | ILK        | -38.04          | 0.023903146                |
| 296        | ILK        | 451        | ILK        | 27.75           | 0.003638826                |
| 298        | ILK        | 301        | ILK        | 20.67           | 0.033717669                |
| 300<br>300 | ILK        | 304        | ILK        | -18.82          | 0.014363848                |
|            | ILK        | 332        | ILK        | 16.48           | 0.046791615                |
| 301<br>305 | ILK<br>ILK | 381<br>306 | ILK<br>ILK | 18.72<br>-17.13 | 0.043880384<br>0.007711805 |
| 307        | ILK        | 310        | ILK        | 16.37           | 0.043880384                |
| 307        | ILK        | 311        | ILK        | -32.93          | 0.003336179                |
| 308        | ILK        | 309        | ILK        | 22.85           | 0.002798602                |
| 308        | ILK        | 335        | ILK        | 17.76           | 0.000835717                |
| 311        | ILK        | 315        | ILK        | -19.88          | 0.023903146                |
| 312        | ILK        | 317        | ILK        | 15.55           | 0.022207185                |
| 315        | ILK        | 340        | ILK        | 16.19           | 0.031517102                |
| 317        | ILK        | 340        | ILK        | 23.39           | 0.009786487                |
| 317        | ILK        | 366        | ILK        | 26.95           | 0.001782376                |
| 317        | ILK        | 374        | ILK        | 54.25           | 0.036048327                |
| 318        | ILK        | 324        | ILK        | -33.84          | 0.006557193                |
| 318        | ILK        | 335        | ILK        | -41.81          | 0.000509073                |
| 318        | ILK        | 340        | ILK        | 21.33           | 0.025639272                |
| 318        | ILK        | 341        | ILK        | 27.66           | 0.011432829                |
| 319        | ILK        | 324        | ILK        | 37              | 0.000686822                |
| 319        | ILK        | 339        | ILK        | -32.15          | 0.000562904                |
| 320<br>320 | ILK<br>ILK | 321<br>377 | ILK<br>ILK | 67.16<br>52.01  | 0.000144383                |
| 320<br>320 | ILK        | 377        | ILK        | -29.61          | 0.000757881<br>0.003056629 |
| 320        | ILK        | 323        | ILK        | 60.47           | 0.001115947                |
| 321        | ILK        | 325        | ILK        | -32.49          | 0.013320516                |
| 321        | ILK        | 339        | ILK        | 26.37           | 0.001782376                |
| 321        | ILK        | 355        | ILK        | 64.66           | 0.001480977                |
| 321        | ILK        | 381        | ILK        | 26.23           | 0.000686822                |
| 322        | ILK        | 323        | ILK        | -48.68          | 0.01929238                 |
| 322        | ILK        | 324        | ILK        | -28.73          | 0.000247061                |
| 322        | ILK        | 381        | ILK        | 32.78           | 0.002341273                |
| 322        | ILK        | 384        | ILK        | 85              | 4.54008E-06                |
| 323        | ILK        | 324        | ILK        | -54.77          | 0.001115947                |
| 323        | ILK        | 326        | ILK        | 52.39           | 2.56295E-07                |
| 323        | ILK        | 339        | ILK        | 63.3            | 0.000415502                |
| 323        | ILK        | 355        | ILK        | -22.34          | 0.000129405                |
|            |            |            |            |                 |                            |

| 323 | ILK              | 384 | ILK              | 67.31          | 0.023903146 |
|-----|------------------|-----|------------------|----------------|-------------|
| 323 | ILK              | 335 | ILK              | -16.84         | 0.007711805 |
| 324 | ILK              | 336 | ILK              | 62.02          | 0.04986369  |
| 324 |                  | 326 |                  |                |             |
|     | ILK              |     | ILK              | -35.23         | 0.029440884 |
| 325 | ILK              | 334 | ILK              | -21            | 0.007113494 |
| 326 | ILK              | 327 | ILK              | 49.2           | 0.003638826 |
| 326 | ILK              | 333 | ILK              | 28.94          | 0.001625258 |
| 326 | ILK              | 334 | ILK              | 30.84          | 0.031517102 |
| 326 | ILK              | 336 | ILK              | 19.12          | 0.041123594 |
| 326 | ILK              | 339 | ILK              | -30.83         | 6.0148E-07  |
| 328 | ILK              | 332 | ILK              | -36.78         | 0.009045397 |
| 335 | ILK              | 336 | ILK              | 94.34          | 0.000115901 |
| 336 | ILK              | 339 | ILK              | 34.29          | 0.001227183 |
| 337 | ILK              | 338 | ILK              | -54.5          | 0.003336179 |
| 337 | ILK              | 339 | ILK              | 79.45          | 0.000144383 |
| 338 | ILK              | 339 | ILK              | 55.18          | 0.001782376 |
| 338 | ILK              | 340 | ILK              | -119.49        | 1.91771E-07 |
| 338 | ILK              | 341 | ILK              | -33.41         | 6.79562E-08 |
| 339 | ILK              | 341 | ILK              | -113.25        | 0.000222203 |
| 340 | ILK              | 342 | ILK              | -41.42         | 2.0616E-06  |
| 341 | ILK              | 345 | ILK              | 54.02          | 2.0616E-06  |
| 341 | ILK              | 346 | ILK              | 40.31          | 6.79562E-08 |
| 341 | ILK              | 349 | ILK              | 37.75          | 1.91771E-07 |
| 341 | ILK              | 351 | ILK              | -15.24         | 3.70512E-05 |
| 342 | ILK              | 345 | ILK              | 122.12         | 1.20089E-06 |
| 343 | ILK              | 345 | ILK              | -42.76         | 5.89592E-05 |
| 345 | ILK              | 346 | ILK              | 63.7           | 0.000222203 |
| 348 | ILK              | 349 | ILK              | -54.93         | 0.001953348 |
| 349 | ILK              | 333 | Parvin           | 32.97          | 0.04986369  |
| 355 | ILK              | 356 | ILK              | 26.1           | 0.036048327 |
| 355 | ILK              | 377 | ILK              | 59.59          | 1.59972E-05 |
| 355 | ILK              | 384 | ILK              | 48.48          | 0.03851496  |
| 359 | ILK              | 360 | ILK              | -24.99         | 0.000509073 |
| 364 | ILK              | 311 | Parvin           | -19.72         | 0.007711805 |
| 365 | ILK              | 366 | ILK              | -16.05         | 0.003336179 |
| 366 | ILK              | 370 | ILK              | 21.95          | 0.016668799 |
| 370 | ILK              | 373 | ILK              | 20.31          | 0.020734594 |
| 370 | ILK              | 373 | ILK              |                | 0.004702533 |
| 370 | ILK              | 433 | ILK              | -97.79<br>16.4 | 0.013320516 |
|     |                  |     |                  |                |             |
| 376 | ILK              | 377 | ILK              | 22.8           | 0.006557193 |
| 380 | ILK              | 381 | ILK              | 29.64          | 0.027483422 |
| 380 | ILK              | 383 | ILK              | 26.85          | 0.025639272 |
| 390 | ILK              | 391 | ILK              | 35.67          | 0.000103734 |
| 392 | ILK              | 393 | ILK              | -19.31         | 0.031517102 |
| 397 | ILK              | 398 | ILK              | -16.7          | 0.010581211 |
| 397 | ILK              | 401 | ILK              | -15.1          | 0.002341273 |
| 399 | ILK              | 403 | ILK              | 33.51          | 0.001953348 |
| 400 | ILK              | 401 | ILK              | 32.92          | 0.003966239 |
| 400 | ILK              | 404 | ILK              | -24.26         | 0.00604033  |
| 408 | ILK              | 409 | ILK              | -16.62         | 0.015478602 |
| 432 | ILK              | 436 | ILK              | -16.32         | 0.03851496  |
| 436 | ILK              | 437 | ILK              | -17.5          | 0.033717669 |
| 450 | ILK              | 451 | ILK              | -33.86         | 0.000415502 |
| 254 | Parvin           | 362 | Parvin           | 17.78          | 0.01929238  |
| 285 | Parvin           | 287 | Parvin           | 31.15          | 0.046791615 |
| 291 | Parvin           | 352 | Parvin           | 16.99          | 0.000103734 |
| 292 | Parvin           | 294 | Parvin           | 25.06          | 0.002139261 |
| 296 | Parvin           | 300 | Parvin           | -17.37         | 0.015478602 |
| 299 | Parvin           | 300 | Parvin           | 40.85          | 0.001480977 |
| 308 | Parvin           | 313 | Parvin           | 19.37          | 0.005115262 |
| 309 | Parvin           | 311 | Parvin           | 34.06          | 0.004702533 |
| 310 | Parvin           | 312 | Parvin           | -18.48         | 0.001625258 |
| 328 | Parvin           | 332 | Parvin           | 21.7           | 0.043880384 |
| 331 | Parvin           | 334 | Parvin           | -15.69         | 0.001782376 |
| 331 | Parvin           | 335 | Parvin           | 31.26          | 0.006557193 |
| 332 | Parvin           | 335 | Parvin           | -52.9          | 1.80745E-05 |
| 333 | Parvin           | 335 | Parvin           | -21.47         | 0.013320516 |
| 333 | Parvin           | 336 | Parvin           | -25.48         | 0.027483422 |
| 333 | Parvin           | 337 | Parvin           | 39.47          | 0.001953348 |
| 334 | Parvin           | 335 | Parvin           | 49.79          | 0.003056629 |
| 334 | Parvin           | 336 | Parvin           | -16.11         | 0.007113494 |
| 334 | Parvin           | 339 | Parvin           | 23.5           | 0.027483422 |
| 336 | Parvin           | 337 | Parvin           | -33.96         | 0.002798602 |
| 336 | Parvin           | 338 | Parvin           | 27.38          | 0.020734594 |
| 339 | Parvin           | 340 | Parvin           | 29.53          | 0.008354827 |
| 343 | Parvin           | 344 | Parvin           | 17.88          | 0.010581211 |
| 344 | Parvin           | 345 | Parvin           | 36.64          | 0.000686822 |
| 344 | Parvin           | 345 | Parvin           | 28.86          | 0.017938613 |
| 345 | Parvin           | 348 | Parvin           | -19.89         | 0.020734594 |
| 347 |                  | 346 | Parvin           | 21.97          | 0.009786487 |
| 347 | Parvin<br>Parvin | 351 | Parvin<br>Parvin | 31.93          | 0.009786487 |
|     |                  |     |                  |                |             |
| 350 | Parvin           | 352 | Parvin           | 27.12          | 0.007711805 |
| 354 | Parvin           | 355 | Parvin           | 21.76          | 0.04986369  |
| 356 | Parvin           | 357 | Parvin           | 15.97          | 0.036048327 |
| 357 | Parvin           | 358 | Parvin           | 23.12          | 0.046791615 |
| 359 | Parvin           | 360 | Parvin           | 23.94          | 0.009786487 |
| 364 | Parvin           | 368 | Parvin           | 55.99          | 0.001625258 |
| 367 | Parvin           | 368 | Parvin           | 21.08          | 0.041123594 |

Table S1. Differences in pairwise forces between the holo and apo state calculated from FDA (n = 20 independent trajectories, p < 0.05, Mann-Whitney).

174 Movie S1. ILK large-scale motions captured by PC1 ("inter-lobe wringing motion") extracted from PCA. Interpolation between

the extreme conformations (red and blue) along PC1. ILK is shown as C- $\alpha$  traces. See also Figure 1D.

<sup>176</sup> Movie S2. ILK large-scale motions captured by PC2 ("lobe clamping motion") extracted from PCA. Interpolation between the <sup>177</sup> extreme conformations (red and blue) along PC2. ILK is shown as C- $\alpha$  traces. See also Figure 1D.

Movie S3. Representative movies of ILK(WT)-GFP (left) and ILK(L207W)-GFP cells (right) shown in Fig. 2D and imaged on
 8 kPa substrates. Arrowheads and asterisks (in magenta) indicate adhesion growth and adhesion disassembly, respectively.
 Frame rate 1 min/frame. Scale bar 20 μm.

Movie S4. Representative movies of ILK(WT)-GFP (left) and ILK(L207W)-GFP cells (right) shown in Fig. 2D and imaged on
 40 kPa substrates. Arrowheads and asterisks (in magenta) indicate adhesion growth and adhesion disassembly, respectively.
 Frame rate 1 min/frame. Scale bar 20 μm.

Movie S5. Representative movies of ILK(WT)GFP (left) and ILK(R255A/R349A)-GFP cells (right) shown in Fig. 4D and imaged
 on 8 kPa substrates. Arrowheads and asterisks (in magenta) indicate adhesion growth and adhesion disassembly, respectively. Frame rate 1 min/frame. Scale bar 20 μm.

Movie S6. Representative movies of ILK(WT)GFP (left) and ILK(R255A/R349A)-GFP cells (right) shown in Fig. 4D and im aged on 40 kPa substrates. Arrowheads and asterisks (in magenta) indicate adhesion growth and adhesion disassembly,
 respectively. Frame rate 1 min/frame. Scale bar 20 µm.

Movie S7. Example of ILK(pink):parvin(cyan) dissociation after significant parvin unfolding in force-probe MD simulations as exemplified here by the holo complex, where this behavior is more commonly observed. Residues investigated in this study

are shown in ball-and-stick representation, the pulling patch for constant velocity pulling with 1 m/s is indicated in dark grey.

<sup>193</sup> Movie S8. Example of ILK(pink):parvin(cyan) dissociation after marginal parvin unfolding in force-probe MD simulations as <sup>194</sup> exemplified here by the apo complex, where this behavior is more commonly observed. Residues investigated in this study <sup>195</sup> are shown in ball-and-stick representation, the pulling patch for constant velocity pulling with 1 m/s is indicated in dark grey.

<sup>196</sup> Movie S9. Example of ILK(pink):parvin(cyan) dissociation with no parvin unfolding in force-probe MD simulations as exem-<sup>197</sup> plified here by the ILK(R225A/R349A):parvin holo complex. Residues investigated in this study are shown in ball-and-stick <sup>198</sup> representation, the pulling patch for constant velocity pulling with 1 m/s is indicated in dark grey.

Movie S10. Real time imaging of ILK-/-GFP cell migration. Representative movie of ILK-/-GFP cells cultured on glass and
 captured by spinning disc time-lapse microscopy at initial (0 h) and 12 h time. Trajectories in magenta and green. Frame rate
 30 min/frame. Scale bar 20 μm.

Movie S11. Real time imaging of ILK(WT)-GFP cell migration. Representative movie of ILK(WT)-GFP cells cultured on glass
 and captured by spinning disc time-lapse microscopy at initial (0 h) and 12 h time. Trajectory in magenta and green. Frame
 rate 30 min/frame. Scale bar 20 μm.

Movie S12. Real time imaging of ILK(L207W)-GFP cell migration. Representative movie of ILK(L207W)-GFP cells cultured on glass and captured by spinning disc time-lapse microscopy at initial (0 h) and 12 h time. Trajectory in magenta. Frame rate 30 min/frame. Scale bar 20 μm.

<sup>208</sup> Movie S13. Real time imaging of ILK(R255A/R349A)-GFP cell migration. Representative movie of

<sup>209</sup> ILK(R255A/R349A)-GFP cells cultured on glass and captured by spinning disc time-lapse microscopy at initial (0 h) and 12 h

time. Trajectories in magenta and green. Frame rate 30 min/frame. Scale bar 20 μm.

### 211 References

1. K Fukuda, S Gupta, K Chen, C Wu, J Qin, The pseudoactive site of ilk is essential for its binding to alpha-parvin and localization to focal adhesions. *Mol. cell* **36**, 819–830 (2009).

2. J Vaynberg, et al., Non-catalytic signaling by pseudokinase ilk for regulating cell adhesion. *Nat. communications* **9**, 4465 (2018).

3. MJ Abraham, et al., Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. *SoftwareX* **1-2**, 19–25 (2015).

4. RB Best, G Hummer, Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. *The journal physical chemistry*. *B* **113**, 9004–9015 (2009).

- 5. AE Aliev, et al., Motional timescale predictions by molecular dynamics simulations: case study using proline and hydroxyproline sidechain dynamics. *Proteins* **82**, 195–215 (2014).
- 6. WL Jorgensen, J Chandrasekhar, JD Madura, RW Impey, ML Klein, Comparison of simple potential functions for simulating liquid water. *The J. Chem. Phys.* **79**, 926–935 (1983).
- 7. KL Meagher, LT Redman, HA Carlson, Development of polyphosphate parameters for use with the amber force field. *J. computational chemistry* 24, 1016–1025 (2003).
- 8. B Hess, P-lincs: A parallel linear constraint solver for molecular simulation. J. chemical theory computation 4, 116–122 (2008).
- 9. G Bussi, D Donadio, M Parrinello, Canonical sampling through velocity rescaling. *The J. Chem. Phys.* **126**, 014101 (2007).
- 10. M Parrinello, A Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. *J. Appl. Phys.* **52**, 7182–7190 (1981).
- 11. T Darden, D York, L Pedersen, Particle mesh ewald: An n x log(n) method for ewald sums in large systems. *The J. Chem. Phys.* 98, 10089–10092 (1993).
- 12. H Li, et al., Structural basis of kindlin-mediated integrin recognition and activation. *Proc. Natl. Acad. Sci. United States Am.* **114**, 9349–9354 (2017).
- 13. K Fukuda, et al., Molecular basis of kindlin-2 binding to integrin-linked kinase pseudokinase for regulating cell adhesion. *The J. biological chemistry* 289, 28363–28375 (2014).
- 14. J Liu, et al., Structural basis of phosphoinositide binding to kindlin-2 protein pleckstrin homology domain in regulating integrin
   activation. *The J. biological chemistry* 286, 43334–43342 (2011).
- 15. Y Liu, Y Zhu, S Ye, R Zhang, Crystal structure of kindlin-2 ph domain reveals a conformational transition for its membrane anchoring
   and regulation of integrin activation. *Protein & cell* **3**, 434–440 (2012).
- HD Perera, et al., Membrane binding of the n-terminal ubiquitin-like domain of kindlin-2 is crucial for its regulation of integrin activation. *Struct. (London, Engl. : 1993)* 19, 1664–1671 (2011).
- <sup>241</sup> 17. EF Pettersen, et al., Ucsf chimera–a visualization system for exploratory research and analysis. *J. computational chemistry* **25**, 1605–1612 (2004).
- P Di Tommaso, et al., T-coffee: a web server for the multiple sequence alignment of protein and rna sequences using structural
   information and homology extension. *Nucleic acids research* **39**, W13–7 (2011).
- 19. B Webb, A Sali, Comparative protein structure modeling using modeller. Curr. protocols bioinformatics 54, 5.6.1–5.6.37 (2016).
- 20. GCP van Zundert, et al., The haddock2.2 web server: User-friendly integrative modeling of biomolecular complexes. *J. molecular biology* 428, 720–725 (2016).
- 21. YA Kadry, C Huet-Calderwood, B Simon, DA Calderwood, Kindlin-2 interacts with a highly-conserved surface of ilk to regulate focal
   adhesion localization and cell spreading. *J. cell science* **131** (2018).
- 22. S Lorenz, et al., Structural analysis of the interactions between paxillin ld motifs and alpha-parvin. *Struct. (London, Engl. : 1993)* 16, 1521–1531 (2008).
- 23. X Wang, et al., The structure of alpha-parvin ch2-paxillin ld1 complex reveals a novel modular recognition for focal adhesion
   assembly. *The J. biological chemistry* 283, 21113–21119 (2008).
- 24. F Eisenhaber, P Lijnzaad, P Argos, C Sander, M Scharf, The double cubic lattice method: Efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. *J. Comput. Chem.* 16, 273–284 (1995).
- 257 25. W Humphrey, A Dalke, K Schulten, Vmd: visual molecular dynamics. J. molecular graphics 14, 33–8, 27–8 (1996).
- 26. CC David, DJ Jacobs, Principal component analysis: a method for determining the essential dynamics of proteins. *Methods molecular biology (Clifton, N.J.)* **1084**, 193–226 (2014).
- 27. BI Costescu, F Gräter, Time-resolved force distribution analysis. BMC biophysics 6, 5 (2013).
- 28. K Radovanac, et al., Stabilization of integrin-linked kinase by the hsp90-chip axis impacts cellular force generation, migration and
   the fibrotic response. *The EMBO journal* **32**, 1409–1424 (2013).
- 29. J Schindelin, et al., Fiji: an open-source platform for biological-image analysis. *Nat. methods* 9, 676–682 (2012).
- 30. RJ Pelham, Yl Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. *Proc. Natl. Acad. Sci. United States Am.* 94, 13661–13665 (1997).
- 266 31. ME Berginski, SM Gomez, The focal adhesion analysis server: a web tool for analyzing focal adhesion dynamics. *F1000Research* 267 2, 68 (2013).
- 32. M Dembo, YI Wang, Stresses at the cell-to-substrate interface during locomotion of fibroblasts. *Biophys. journal* 76, 2307–2316 (1999).
- 270 33. Q Tseng, et al., A new micropatterning method of soft substrates reveals that different tumorigenic signals can promote or reduce
   271 cell contraction levels. Lab on a chip 11, 2231–2240 (2011).
- 272 34. JY Tinevez, et al., Trackmate: An open and extensible platform for single-particle tracking. *Methods (San Diego, Calif.)* **115**, 80–90 (2017).