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Supplementary Notes 

Gigantic Parallel Reporter Assay (GPRA) experimental details 

Expression measurements were performed as described in (de Boer et al., 2020) (Supplementary Fig. 1). 

Briefly, a library of ~200,000,000 random 80 bp promoters was cloned in front of a YFP reporter construct 

within the -160:-80 region of a synthetic promoter scaffold. The promoter scaffold used throughput this 

study included a distal poly-T tract (5 or more Ts), and a proximal poly-A tract (5 or more As) surrounding 

the random 80 mers; these features are common in yeast promoters. Furthermore, the scaffold sequences 

were designed to exclude strong binding sites for TFs. The dual reporter plasmid used is available from 

AddGene (AddGene:127546) and was derived from the plasmid used by (Sharon et al., 2012). This plasmid 

contains URA3, which we use as a selectable marker, a constitutive RFP (with which to control for extrinsic 

noise), and the YFP under variable control. Random 80 mers (and designed 80 mer libraries) were cloned 

into an XhoI site using Gibson assembly. The resulting libraries were transformed into S. cerevisiae strains 

lacking URA3 using the lithium acetate method (De Boer, 2017), selecting on SD-Ura media, and ensuring 

that at least 100,000,000 transformants were achieved for the random high-complexity libraries and >100x 
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coverage for designed libraries. Because this is a low copy number CEN plasmid that is segregated like a 

chromosome during cell division, if a yeast cell is transformed with two different promoters, subsequent 

cell divisions will ensure with a very high probability that the two plasmids end up in different descendant 

cells. For random libraries, the strain Y8205 was used, but later experiments including the designed libraries 

were performed in S288C::ura3, which is less auxotrophic. Accordingly, all cases except that in random 

test dataset (complex media), the models were trained on sequences assayed in one strain of yeast and tested 

on sequences assayed in another, likely leading to underestimation of the model’s performance due to bona 

fide differences between the strains. 

 

Yeast were grown continuously in SD-Ura over the course of two days, and kept in log phase for ~10 

generations to allow for reporters to reach equilibrium prior to sorting, diluting the media by 1:4 three times 

during this period as necessary to keep cells in log phase (OD below 0.8). All cultures were grown in a 

shaker incubator, at 30°C and approximately 250 RPM. Yeast were harvested by centrifugation, washed 

once in ice-cold PBS, resuspended in ice-cold PBS, and kept on ice prior to and during sorting. Sorting was 

performed with a Moflo Astrios (Beckman Coulter) sorting in three sets of 6 bins (all equal width and 

adjacent) each over the course of ~8 hours, dividing the time equally for the three sets. Cells were sorted 

by the log ratio of RFP to YFP signal (using mCherry and GFP absorption/emission), which controls for 

extrinsic sources of variation that affect both reporters (e.g., cell size, plasmid copy number). Once sorted, 

cells were kept on ice. Sorted samples were centrifuged to pellet sorted cells, the PBS/sheath fluid aspirated, 

leaving ~0.5 mL remaining, then the cells resuspended in 1 mL SD-Ura, transferred to a 50mL conical tube 

containing 9mL media, and the sorting tube washed once with SD-Ura, and transferred to the same conical 

tube. This produced 18 50 mL tubes each containing ~10 mL of SD-Ura and sorted yeast cells; one per 

sorting bin. These were allowed to grow for 2-3 days, until all samples reached saturation. Plasmids were 

isolated using Qiagen spin miniprep kits, as adapted for yeast according to the manufacturer's website 

(https://www.qiagen.com/ca/resources/resourcedetail?id=5b59b6b3-f11d-4215-b3f7-

995a95875fc0&lang=en). Nextera adaptors and multiplexing indices were added by PCR, indexed samples 

were mixed in proportion to the number of cells sorted per bin, and the resulting libraries sequenced paired-

end, 76 bp each, using an Illumina Nextseq 500 and 150 cycle kits so that complete coverage of the promoter 

could be achieved, including overlap in the center.  

 

The sorting bins differed slightly each time FACS was performed for a promoter library. This resulted from 

the inability of the cell sorter (MoFlo Astrios) to accurately preserve bin configurations on different days 

and between calibrations. Consequently, the 18 bins were re-assigned for each experiment, and/or laser 

intensities were adjusted, such that the distribution of RFP:YFP ratios were correctly positioned within the 

https://www.qiagen.com/ca/resources/resourcedetail?id=5b59b6b3-f11d-4215-b3f7-995a95875fc0&lang=en
https://www.qiagen.com/ca/resources/resourcedetail?id=5b59b6b3-f11d-4215-b3f7-995a95875fc0&lang=en
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bins. Sorting bins were defined to be uniform in width (expression range) and included the vast majority 

(>98%) of the distribution and the entirety of the high end of expression, but leaving out the bottom tail of 

expression. The bottom end of expression tended to be dominated by noise and outliers with abnormally 

low YFP:RFP ratios. However, the sensitivity at the low end of expression increased in our experiments 

over time, such that model predictions (in particular for the complex media model) were squished at the 

low end (e.g. Extended Data Fig. 1, 3 lower left corners). 

 

The paired reads representing both sides of the promoter sequence were aligned using the overlapping 

sequence in the middle, constrained to have 40 (+/-15) bp of overlap, and discarding any reads that failed 

to align well within these constraints. This was not required for the designed libraries. Promoters were 

aligned to themselves using Bowtie2 (Langmead et al., 2009) to identify clusters of related sequences, 

merging these clusters and taking the sequence with the most reads as the “true” promoter sequence for 

each cluster. The designed library reads were aligned to the promoter sequences we ordered using Bowtie2, 

and only perfect matches were considered in further analysis. Mean expression level for each promoter (as 

in the processed files) was taken as the average of the bins, weighted by the number of times the promoter 

was observed in each bin. For the designed libraries (that included all the high-quality test data 

experiments), we calculated expression for all promoters for which any reads were seen, but used only those 

for which we saw at least 100 reads for the analyses described to reduce the amount of measurement error 

present in the data. For high-complexity random libraries, all promoters were used. 

Biochemical models 

The biochemical models were created and used as described previously (de Boer et al., 2020). Code is 

available on GitHub (https://github.com/de-Boer-Lab/CRM2.0). Briefly, the models are trained using the 

“makeThermodynamicEnhancosomeModel.py” program within the https://github.com/de-Boer-

Lab/CRM2.0/blob/master/usefulScripts/makeProgressiveBiochemicalModels.bat script (using the “110 -

eb” parameters which describe the sequence length (110) and the expected binding TF model (-eb)). 

Training happens in 5 stages, with each subsequent stage restoring the parameters learned in the previous 

step before continuing training, and optimizing the noted new parameters as well as all others that were 

previously learned: (1) potentiation and activity parameters are learned, after having initialized the motifs 

to known motifs for each TF, and TF concentrations initialized to the min Kd possible with each motif 

(corresponding to 50% occupancy of a perfect binding site); (2) concentration parameters are optimized; 

(3) motif models are optimized; (4) TF binding/activity limits are introduced and optimized; and (5) 

position-specific activities are introduced and optimized.  

https://github.com/de-Boer-Lab/CRM2.0
https://github.com/de-Boer-Lab/CRM2.0/blob/master/usefulScripts/makeProgressiveBiochemicalModels.bat
https://github.com/de-Boer-Lab/CRM2.0/blob/master/usefulScripts/makeProgressiveBiochemicalModels.bat
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Each training round is performed with a full epoch of the training data (5 epochs total). Inference is 

performed using the “predictThermodynamicEnhancosomeModel.py” program. In order to get regulatory 

strength for a TF, the “-dotf” parameter was used, and inference run again. This parameter sets the 

concentration parameter of the indicated TF to 0, and then predicts expression. An example for how to use 

these parameters and programs to calculate regulatory complexity is included here: https://github.com/de-

Boer-Lab/CRM2.0/tree/master/usefulScripts. For all analyses, the biochemical models using position-

specific activities were used with the exception of the biochemical model-derived ECC, where the non-

positional model was used, because the position-specific activity parameters we had previously found are 

partly dependent on the surrounding sequence context (de Boer et al., 2020). The decrease in % error (100% 

x (1-r2)), that is, the fraction of variance unexplained relative to the biochemical model is around ~45% 

((0.962 - 0.9262) / (1- 0.9262) (positional biochemical model) for the Native test data. The biochemical 

models were used in sections where we required model interpretability (Fig. 2d), but the deep learning 

models were used elsewhere, since the biochemical models are slower than the deep learning models to run 

inference on and have lower predictive performance on the test data. 

ECC calculation details and considerations 

The ECC depends on both simulated and natural variation in promoter sequences. The natural variation in 

promoters is not independently sampled, since promoters from closely related strains often have identical 

sequences. Consequently, even when there are 1,011 orthologous promoters for each gene in the 1,011 

whole yeast genomes dataset, there will typically be many fewer unique promoter sequences. Meanwhile, 

each sequence in the simulated variation is sampled independently (to increase robustness of the estimation 

of the null expectation), so, here, there are often 1,011 unique promoter sequences. The simulated variation 

was generated by placing random mutations within the gene’s promoter consensus (the most abundant base 

at each position in the orthologous set), while preserving the Hamming distance distribution observed in 

the natural sequences (Methods). Despite these sets each having the same Hamming distance distribution 

relative to the consensus, the standard deviation (SD) calculated from N independently sampled sequences 

(as in the simulation) is biased towards being greater than that for N dependently sampled sequences (as in 

evolution), resulting in the raw ECC values being biased in favor of “conservation” as a result of a statistical 

bias rather than due to selection.  

 

To demonstrate that this bias is not evolutionary in nature we calculated a “mock” ECC where both the 

numerator and denominator represent simulated variation. In the mock ECC, the sequences in the numerator 

are sampled independently and match the Hamming distance distribution of the natural variation (as in the 

https://github.com/de-Boer-Lab/CRM2.0/tree/master/usefulScripts
https://github.com/de-Boer-Lab/CRM2.0/tree/master/usefulScripts
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standard ECC), but the denominator (normally the natural variation) is sampled in a way that matches both 

the Hamming distance distribution and the number of unique sequences at each Hamming distance (relative 

to the natural variation). Despite both sets of sequences being randomly sampled and having matched 

Hamming distance distributions, the mock ECC is slightly positively biased (Supplementary Fig. 2a), 

highlighting the need for a correction factor. Consequently, we used the median of these mock ECCs 

�log2(
𝜎𝜎𝐶𝐶𝑖𝑖
𝜎𝜎𝐶𝐶′𝑖𝑖

)� as the correction factor. 

 

While it is theoretically better to have gene-specific correction factors, these are much more 

computationally intensive to calculate and provide little benefit in practice. To generate gene-specific 

correction factors, we need to make many instances of simulated variation for each gene, estimate the gene-

specific bias, and use it to correct the observed ECC. Doing this with 1,111 simulations for each gene 

showed that there was little difference in the resulting ECC values, compared to a global correction factor 

(Supplementary Fig. 2b). Given the computational intensity of this approach (which, after optimization, 

still takes several days to run) and low practical utility, we favored the approach with a global correction 

factor. We do provide the gene-specific corrected ECCs in Supplementary Table 1. 

 

The substitution rate in the genome is not uniform, but we use a uniform substitution rate when calculating 

the ECC. To test for the impact of this choice, we re-calculated the ECC using the substitution rates 

observed in the 1,011 yeast genomes promoters and found that the ECCs were largely concordant 

(Supplementary Fig. 2c). Since the mutations we observe in promoters are themselves biased (having 

survived selection), both approaches yield similar ECC values, and it is much easier to use a uniform base 

substitution rate, we use the uniform substitution rate ECC throughout the study.   

 

Finally, we note that our approach for computing the ECC assumes that the relative effects of mutations 

within a sequence are similar regardless of the surrounding sequence context. 

Comparison of ECC to RNA-seq expression 

We examined the robustness of our finding that ECC distributions differ significantly between genes with 

conserved and divergent expression (by RNA-seq) to the threshold we chose to define expression 

conservation. To this end, we performed the Wilcoxon rank sum test analysis across a range of thresholds 

for each dataset. Both the Saccharomyces and Ascomycota results were significant (P<0.05) at all 

thresholds, and much more significant (p<10-5) at a threshold of 10% and above (Supplementary Fig. 3a-

c).  
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For mammals, we used the threshold of 25% applied in the original publication (Chen et al., 2019). In 

addition, we performed the Wilcoxon rank sum test analysis across a range of thresholds and found that the 

results were similarly significant for the full range of thresholds bar one (5%, the lowest threshold; 

Supplementary Fig. 3d). The null hypothesis could not be rejected at the 5% threshold, given the smaller 

number of yeast gene one-to-one orthologs in mammals in both the expression conservation classes.  

 

In principle, the ECC can be calculated across orthologous regulatory sequences from many different 

species (as opposed to individuals within a species, as we did here), but we advise caution if doing so. The 

ECC assumes that the function relating sequence to gene expression is the same across the orthologous 

sequences being compared. Since regulatory sequences evolve much faster than the regulators 

themselves(Weirauch and Hughes, 2010), this assumption is likely a reasonable approximation within a 

species, but as evolutionary distances increase, regulators will diverge, gradually eroding this assumption. 

An alternative is to use gene orthology to infer the extent of expression conservation in one species using 

ECCs calculated in another species (Extended Data Fig. 4b). However, such relations would extend only 

to well-mapped orthologs.  

 

Benchmarking of sequence-to-expression models 

We examined different neural network architectures for their ability to predict expression when trained on 

our data. We compared our transformer model to three model architectures from the literature: DeepAtt (Li 

et al., 2020), DeepSEA (Zhou and Troyanskaya, 2015), and DanQ (Quang and Xie, 2016). (We focus here 

on comparison to the transformer model, as the convolutional model was not used for some of the compared 

tasks, such as calculation of the ECC. However, equivalent comparisons can be made with the convolutional 

using the code shared) Although these models differ from our own and from each other, we adopted each 

of the model architectures for our application to the best of our ability using the source code 

(https://github.com/jiawei6636/Bioinfor-DeepATT) from each original publication (the adopted model 

architecture implementation can be found on our GitHub repo at:  

https://github.com/1edv/evolution/tree/master/manuscript_code/model/benchmarking_models) for the 

purpose of this benchmarking analysis. The precise details of the benchmarking architectures can be found 

in the code, and are described below. Note, that the input and output layers (which are the same for each 

model) are omitted from the lists below. 

 

https://github.com/jiawei6636/Bioinfor-DeepATT
https://github.com/1edv/evolution/tree/master/manuscript_code/model/benchmarking_models
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1) DeepATT :  

- Convolution (filters=256, kernel_size=30) 

- MaxPool (pool_size = 3, strides = 3) 

- Dropout (0.2 probability) 

- BiDirectional LSTM (16 units) 

- MultiHeadAttention 

- Dropout (0.2 probability) 

- Dense (16 units) 

- Dense (16 units) 

 

2) DeepSEA :  

- Convolution (filters=320, kernel_size=8) 

- MaxPool (pool_size = 3, strides = 3) 

- Dropout (0.2 probability) 

- Convolution ( filters=480, kernel_size=8) 

- MaxPool (pool_size = 3, strides = 3) 

- Dropout (0.5 probability ) 

- Dense (64 units) 

- Dense (64 units) 

 

3) DanQ :  

- Convolution (filters=320, kernel_size=26) 

- MaxPool (pool_size = 3, strides = 3) 

- Dropout (0.2 probability) 

- BiDirectional LSTM (320 units) 

- Dropout (0.5 probability) 

- Dense (64 units) 

- Dense (64 units) 

 

Next, we trained each of these adapted models using the same training data (in complex media) as the 

original convolutional and transformer model, and tested each of the model’s predictive power on a set of 

high-quality native DNA sequences measured in our system. We found that our transformer model 

outperformed the other three architectures on these data (Supplementary Fig. 4a), as expected given that 

these other approaches were designed for other purposes. 
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We also used each of these models to calculate the ECC, finding that the resulting ECC values are highly 

correlated to the ECCs predicted by the transformer model (Supplementary Fig. 4b-d). This shows that 

our framework leads to equivalent biological conclusions when used with model architectures that have 

overall comparable predictive performance. 

 

To rule out the possibility that the transformer model’s increased performance results from learning of 

technical biases, we compared the transformer model’s ECC to an ECC calculated using the interpretable 

biochemical model (de Boer et al., 2020), also trained using GPRA data, which, with a single convolutional 

layer and many fewer parameters, is presumably less able to capture technical biases. Here too, we found 

that the ECCs are highly similar between the two models (Supplementary Fig. 5g). Finally, we found that 

the ECC values computed using the transformer model are better at predicting expression conservation as 

measured by RNA-seq across the range of possible thresholds considered (Supplementary Fig. 5h). 

 

Ablation analysis of the sequence-to-expression transformer model 

The transformer model was motivated by several intuitions aimed to help it leverage known aspects of cis-

regulation(Weirauch et al., 2013; Brodsky et al., 2020), but which may or may not be explicitly captured. 

The first convolutional block with three layers, was motivated by the idea to identify sites that are important 

for computing the expression target, and could be analogous to a TF scanning the length of the sequence 

for binding sites. The first layer was aimed towards an abstract representation of first order TF-sequence 

interactions by operating with convolutional kernels on the sequence in the forward and reverse strands 

separately to generate strand-specific features (each individual kernel in the first layer can be thought of as 

possibly learning the motif of one TF, or a combined representation of the motifs)(Alipanahi et al., 2015; 

Zhou and Troyanskaya, 2015; Shrikumar, Greenside and Kundaje, 2017; Quang and Xie, 2019) and we 

designed the width of the first convolutional layer (30 bp) to be sufficient to capture the largest TF motifs 

known in yeast(de Boer and Hughes, 2012); the second was aimed towards capturing interactions between 

strands, by using a 2D convolution (implemented using the tf.keras.layers.Conv2D layer, and convolving 

along the sequence dimension) on the combined features from the individual strands; and the third layer 

was aimed towards capturing higher order interactions, such as TF-TF cooperativity. We zero-pad the 

convolution blocks to allow the convolutional filters to detect motif instances near the edges of the input 

sequence. The second block was motivated by an analogy to combining the biochemical activities of 

multiple bound TFs and accounting for their positional activities. Its transformer-encoder with a multi-head 
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self-attention module(Vaswani et al., 2017) could capture relations between features extracted by the 

convolutional block at different positions in the sequence, by attending to them simultaneously using a 

scaled dot product attention function. This could be analogous to the model learning ‘where to look’ within 

the sequence. Then, a bidirectional Long Short-Term Memory (LSTM) layer in this block was motivated 

by the idea of capturing long range interactions between the sequence regions. Finally, a multi-layer 

perceptron block was motivated by the idea of capturing cellular operations that occur after TFs are 

recruited to the promoter sequence, by pooling all the features extracted from the sequence through the 

previous layers and learning a scaling function that transforms these abstract feature representations of 

biomolecular interactions into an expression estimate. While these were our motivations in architecting the 

model, because our focus was predictive ability and not interpretability of regulatory mechanisms, we do 

not know if the model in fact captured these relations in this way. 

In order to determine whether any of the transformer model’s layers were superfluous, we conducted an 

ablation study. For each ablation experiment, we initialized a new model from scratch after removing the 

ablated layer individually from the original transformer model architecture, while retaining every other 

component of the original transformer model. Then, we trained this new model using the same training data 

(in complex media) as the original transformer model, and tested the resulting models on the high-quality 

random DNA test data. We found that each layer has non-trivial individual contributions to our predictions, 

with the full model performing better than any of the ablated models (Supplementary Fig. 6).  

 
 

Expression distribution at the robustness cleft and the malleable archetype 

While our observation that sequences with intermediate expression levels are move likely to be near the 

malleable archetype (Amalleable) and depleted near the robustness cleft (Fig. 4d), could in theory result from 

a saturation artifact of our reporter construct, our ratiometric sorting strategy allowed us to detect saturation 

and none was observed. Instead, the robustness cleft could reflect sequences at the stable extremes of one 

or more activation steps of gene expression (e.g. near 100% or 0% nucleosome occupied), while the 

malleable archetype could reflect instability around the inflection points.   
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Supplementary Figures 
 

 
Supplementary Fig. 1 | GPRA experiment overview. Yeast are transformed with a library of random 80 bp sequences driving 

YFP expression, the cells recovered and selected for successful transformants, and grown in the target media in log phase. Yeast 

are then sorted by the ratio of YFP to RFP into 18 different uniform expression bins. Yeast are then recovered in selection media 

(SD-Ura), plasmids isolated, sequencing libraries created, and the promoters in each expression bin sequenced with high-throughput 

sequencing. 
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Supplementary Fig. 2 | a, Comparison of raw ECC distributions for natural variation (red) and matched simulated variation (green, 

“mock ECC”). Both are biased towards having an ECC above 0. b, Comparison of ECCs with global correction (x axis) and gene-

specific correction factors (y axis). c, ECC with uniform substitutions (y axis) is highly correlated to the ECC computed using the 

observed substitution rate (x axis). d, e, Fitness responsivity is not associated with simple sequence diversity, but is associated with 

ECC. Fitness responsivity (y axes) and mean Hamming distance (d, x axis) or ECC (e, x axis) for each of 80 genes (points). f, g, 

Genes whose expression changes have stronger effects on organismal fitness have mutationally robust regulatory sequences. 

Mutational robustness (x axes) and fitness responsivity (f, y axis) or ECC (g; y axis) for each of 80 genes (points) for which the 

expression-to-fitness curves were quantified (Keren et al., 2016). (b-g) Spearman’s 𝜌𝜌 and associated two-tailed p-values are shown. 

The light blue error bands represent the respective 95% confidence intervals. h, Mutational effects follow a power law distribution. 
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Probability density (y axis) and expression effect of mutation (magnitude) (x axis) plotted on log-log axes (solid line) alongside the 

goodness of fit (dash line) of the power law distribution.  
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Supplementary Fig. 3 | a,b, Expression variance (by RNA-seq) for Saccharomyces (a) and Ascomycota (b). Green boxes: genes 

called as divergent; orange: genes called as conserved by the thresholds in this study (as in Extended Data Fig. 4b). c, Sensitivity 

of ECC enrichment significance (Wilcoxon rank sum test -log10(P-values); y axis) to “conserved” vs. ”divergent” thresholds (x 

axis) for Ascomycota (light gray) and Saccharomyces (dark gray). P=0.05: dashed line. d, Sensitivity of ECC enrichment 
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significance (Wilcoxon rank sum test, “Mammalian p-value”) to “conserved” vs. “divergent” thresholds (“Threshold (%)”) in 

mammals. The columns display the number of genes determined to be in each class at each threshold. 
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Supplementary Fig. 4 | a, Benchmarking of performance against existing neural network architectures. Pearson correlation 

coefficient between model predictions and test data (x axis) for four model (y axis). All models were trained on the same training 

dataset, and tested on the same set of native promoter test sequences in complex media. While all approaches performed reasonably 

well, the transformer model architecture used in this paper out-performed the others on the native test sequence dataset. b-d, 

Comparison of ECC calculated with our model (y axis) and with (b) DeepAtt, (c) DeepSEA and (d) DanQ (x axis). In each case, 

the ECC predictions are highly correlated between each approach and our model. (Outliers not shown for the panel (c) to maintain 

scaling and visibility; Pearson’s r was computed using all of the data including outliers.). e-h, The convolutional and transformer 

models have highly correlated predictions. Predicted expression from the convolutional (x axis) and transformer (y axis) models in 

complex (e-f) and defined (g-h) media for random (e-g) and native (f-h) test datasets. (b-h) Pearson’s 𝑟𝑟 and associated two-tailed 

p-values are shown. 
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Supplementary Fig. 5 | Comparison of the biochemical and transformer models. Measured and predicted expression in 

complex media for (a-c) random test data as, and (d-f) native test data. (a,b,d,e) Measured (y-axes) and predicted (x-axes) 

expression, for (a,d) biochemical and (b,e) transformer models. (c,f) transformer (x-axes) and biochemical (y-axes) model 

predictions. (a-f) Pearson’s 𝑟𝑟 and associated two-tailed p-values are shown. g,h, The transformer model outperforms the 

biochemical model in differentiating expression conservation status. g, Comparison of ECCs calculated for each gene (points) for 

the transformer model (x axis) versus the biochemical model (y axis). Spearman’s 𝜌𝜌 and associated two-tailed p-values are shown. 

h, Significance (y axis) of rank sum statistics for how well ECCs calculated with each method separates conserved versus not 

conserved genes across Saccharomyces (dark brown) and Ascomycota (light brown).  
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Supplementary Fig. 6 | Each layer individually contributes to model performance. Performance (x axis, Pearson’s r between the 

model predictions and random test data) of the transformer model variants (y axis) with each layer individually ablated, and the 

full transformer model (bottom). The full transformer model outperforms all other versions with any model component ablated. 

The two-tailed p-value corresponding to each performance metric shown is < 5*10-234. 
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Supplementary Fig. 7 | Sequences took diverse paths to evolve extreme expression. a-b, The number (y axis) of mutations 

across each promoter position (x axis; -160 to -80 region) for trajectories under the SSWM regime starting with native promoter 

sequences when (a) maximizing or (b) minimizing expression in defined media using the convolutional model. Some of the 

observed bias to TSS-proximal mutations may be related to prior observations of proximal repressor activity bias(de Boer et al., 

2020). c,d, The number (y axis) of mutations of each type (x axis) for trajectories under the SSWM regime starting with native 
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promoter sequences when (c) maximizing or (d) minimizing expression in defined media. Colors represent the mutational step (1-

10).  
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Supplementary Fig. 8 | a,b, Examples of regulatory complexity changes under stabilizing selection. TF regulatory interaction 

strengths for original (x axes) and evolved (y axes) sequences after 32 neutral (expression maintaining) mutations for each TF 

(points) for -160:-80 promoter regions for (a) YDR476C, whose regulatory complexity was high and decreased (from 0.3 to 0.25), 

and (b) AIF1, whose complexity was low (dominated by the TF Abf1p) and increased (from 0.14 to 0.21). Both have approximately 

the same predicted expression levels (13.7 and 14.3 respectively).   
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Supplementary Fig. 9 | Predicted expression divergence under random genetic drift. Distribution of the change in predicted 

expression (y axis) for native yeast promoter sequences (n=5,720) at each mutational step (x axis) for trajectories simulated under 

random mutational drift using the transformer model. Silver bar: differences in expression between unrelated sequences. Expression 

decreases with increasing mutation number because the average expression of the starting set of native sequences is greater than 

for random DNA, and so including random mutations are more likely to decrease expression than increase it. Midline: median; 

boxes: interquartile range; whiskers: 5th and 95th percentiles.  

  



22 

 

 

 
Supplementary Fig. 10 | Growth phenotypes of CDC36 promoter mutant strains. Maximum growth (y axis, top), duration of lag 

phase (y axis, middle) and saturation of growth (y axis, bottom) for two WT strains and two engineered strains (x axis). Bars: means, 

dots: replicate measurements. P-values: Student’s t-test; two-sided, unpaired, equal variance. n=3 replicates/strain. 
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Supplementary Figure 11: Robustness of moderation of regulatory complexity to the degree of stabilizing selection. 
(a,d,g,j,m) Distributions of regulatory complexity (y-axes) for sets of sequences with initial high (light blue) and low (orange) 
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regulatory complexity, and evolved sequences at different mutation steps, with native and random sequences shown for reference 
(dark and light gray respectively). Here, n is the number of trajectories included. All evolved sequences were designed to mimic 
stabilizing selection by requiring that expression changes by no more than 0.5 expression units relative to the original using the 
GPU model. Also shown are the measured (y-axes) and model predicted (x-axes) expression levels for the convolutional 
(b,e,h,k,n) and transformer (c,f,i,l,o) models. Results are shown for all complete experimental trajectories (a-c), or when 
including only trajectories where no evolved sequences had measured or transformer model-predicted expression that differed 
from the measured expression of the original sequence by more than 3 (d-f), 2 (g-i), 1.5 (j-l) or 1 (m-o) expression units. All data 
are for complex media (YPD). (a,d,g,j,m) Midline: median; boxes: interquartile range; whiskers: 5th and 95th percentile range. 
(b,c,e,f,h,i,k,l,n,o) Pearson’s 𝑟𝑟 and associated two-tailed p-values are shown. 
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Supplementary Fig. 12 | The deep transformer neural network architecture for the sequence-to-expression model. a, 
Model architecture with three blocks (horizontal lines) and multiple layers (boxes). b-d. Expanded architecture (Methods) for the 
convolutional (b), transformer encoder (c) and multi-layer perceptron (d) blocks in our transformer model. 
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Supplementary Fig. 13 | Comparison between predictions and measurements of expression at each mutational step in 
complex media. Transformer model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Fig. 2g (n=10,322 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) associated with 
each panel is also shown. The two-tailed p-value corresponding to the performance metric shown in each panel is < 5*10-234. 



27 

 
Supplementary Fig. 14 | Comparison between predictions and measurements of expression at each mutational step in 
complex media. Convolutional model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Fig. 2g  (n=10,322 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) associated with 
each panel is also shown. The two-tailed p-value corresponding to the performance metric shown in each panel is < 5*10-234. 
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Supplementary Fig. 15 | Comparison between predictions and measurements of expression at each mutational step in 
defined media. Transformer model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Extended Data Fig. 1g  (n=6,304 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) 
associated with each panel is also shown. Due to limitations in the number of sequences we could test per experiment, we only 
tested the decreasing expression defined media trajectory to 5 mutations. The two-tailed p-value corresponding to the 
performance metric shown in each panel is < 5*10-234.  
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Supplementary Fig. 16 | Comparison between predictions and measurements of expression at each mutational step in 
defined media. Convolutional model predicted (x-axes) and measured (y-axes) expression for each mutational step (plots) for 
trajectories in Extended Data Fig. 1g (n=6,304 sequences, divided amongst plots). The Pearson’s correlation coefficient (PCC) 
associated with each panel is also shown. Due to limitations in the number of sequences we could test per experiment, we only 
tested the decreasing expression defined media trajectory to 5 mutations. The two-tailed p-value corresponding to the 
performance metric shown in each panel is < 5*10-234.  
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Supplementary Data Fig. 17 | Characterization of sequence trajectories under strong competing selection pressures using 
the transformer model. a-d, Competing expression objectives are slow to reach saturation. a,b, Difference in predicted 
expression (y axis) at each evolutionary time step (x axis) under selection to maximize (red) or minimize (blue) the difference 
between expression in defined and complex media, starting with either native sequences (a, n=5,720 trajectories) or random 
sequences (b, n=10,000 trajectories). c-d, Distribution of predicted expression (y axis) in complex (blue) and defined (red) media 
at each evolutionary time step (x axis) for a starting set of native sequences (c, n=5,720 trajectories) and random sequences (d, 
n=10,000 trajectories). Midline: median; boxes: interquartile range; whiskers: 5th and 95th percentile range. e Motifs enriched 
within sequences evolved for competing objectives in different environments. Top five most enriched motifs, found using 
DREME(Bailey, 2011) (Methods) within sequences computationally evolved from a starting set of random sequences to either 
maximize (left) or minimize (right) the difference in expression between defined and complex media, along with DREME E-
values, the corresponding rank of the same motif when using native sequences as a starting point, the likely cognate TF and that 
TF’s known motif. 
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Supplementary Fig. 18 | Sequences took diverse paths to evolve extreme expression in simulations with the transformer 

model. a-b, The number (y axis) of mutations across each promoter position (x axis; -160 to -80 region) for trajectories under the 

SSWM regime starting with native promoter sequences when (a) maximizing or (b) minimizing expression in defined media using 

the transformer model. c,d, The number (y axis) of mutations of each type (x axis) for trajectories under the SSWM regime starting 

with native promoter sequences when (c) maximizing or (d) minimizing expression in defined media. Colors represent the 

mutational step (1-10). 
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Supplementary Fig. 19 | The transformer model captures expression plateau better than the convolutional model when 

simulating trajectories under SSWM for 32 mutational steps. Distribution of predicted expression levels (y axis) in complex 

media at each mutational step (x axis) for sequence trajectories under SSWM favoring high (red) or low (blue) expression, starting 

with native promoter sequences using the convolutional (a, n=5,720 trajectories) or transformer (b, n=5,720 trajectories) models. 

The transformer model predicts an expression level  plateau (like the measured expression in Fig. 2g), while the convolutional 

model predictions do not plateau at higher mutational distances. Midline: median; boxes: interquartile range; whiskers: 5th and 95th 

percentile range. 
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Supplementary Fig. 20 | Summary statistic scatterplot for trajectories under SSWM. Mean measured expression (y axis) and 

mean predicted expression (x axis) at each step in the mutational trajectories for native sequences under SSWM for the 

convolutional (a,b) and transformer (c,d) model in the complex (b,d) and defined (a,c) media, as in Supplementary Fig. 19. The 

Pearson’s correlation coefficient (PCC) and the corresponding two-tailed p-value are shown. 
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Supplementary Fig. 21 | Sequence differences between training and test data. The distribution of the Hamming distance 

between each sequence in the (a) random or (b) native test sets and the closest sequence in in the random training set.  
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Supplementary Tables 

Supplementary Tables 

Supplementary Table 1 | The Expression Conservation Coefficient (ECC), mutational robustness, 

evolvability vector archetypal coordinates, predicted expression, ECC using gene-specific correction 

factors, and ECC non-neutrality p-values corresponding to all native promoter sequences.  

 

Supplementary Table 2 | The GO terms enriched by the ECC ranking. One-sided p-values were computed 

using minimum hypergeometric statistics, taking into account multiple testing as previously described(Eden 

et al., 2009). 

 

Supplementary Tables 1 and 2 are provided as an Excel file.  
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Supplementary Table 3 | Primers used in this study. The list of single stranded oligonucleotides used. 

This table can be found in the Supplementary Information document. 

Name Sequence (5’-3’) Orientation Description Reference 

pCDC36_DBVPG6765_

WT_fw ATCCATACACAAGACTCATAGAA Fw WE gRNA 

This study 

pCDC36_DBVPG6765_

WT_rv AACTTCTATGAGTCTTGTGTATG Rv WE gRNA 

This study 

D6765_to_Y12_ssODN 

TTCCATCTCTATATAACAAAGTAT

TTCTTTATTTTCTAATAGTTCCTTT

CTACGAGTCTTGTGTATGTTTATA

AAGAGTGAGCTCTTTTGTTATGAA

GT Duplex 

ssODN SA 

allele 

This study 

pCDC36_seq_F TCACACGTAGACGACTTGCCA Fw Sequencing This study 

pCDC36_seq_R2 CCTTGTAGTTTTTGCATATCTAGT Rv Sequencing This study 

Seq_3_Fw ACTTGCCACATCCTGGTGTT Fw Sequencing This study 

Seq_3_Rv ATGTTTCTGCCCACGGTGAT Rv Sequencing This study 

CDC36_Fw CATGACCTTAGGAGCGGACT Fw qPCR This study 

CDC36_Rv TCCACTTCGCTTCTGGATGT Rv qPCR This study 

ACT1_Fw TTGGCCGGTAGAGATTTGAC Fw qPCR Teste et al. 

ACT1_Rv CCCAAAACAGAAGGATGGAA Rv qPCR Teste et al. 
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RPN2_Fw 

GCGGATACAGGCACATTGGATAC

C Fw qPCR 

Teste et al. 

RPN2_Rv 

TGTTGCTACCTTCTCTACCTCCTT

ACC Rv qPCR 

Teste et al. 

pT-pA_GibsRI GAACTGCATTTTTTTCACATCNNN

NNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNNNNNNNNNNNN

NNNNNNNNNNNGGTTACGGCTGT

TTCTTAA 

Fw Random 

promoter 

oligo for use 

in pTpA 

promoter 

context 

de Boer et 

al 

R-pT_GibsDS TTAAGAAACAGCCGTAACC Rv For double-

stranding 

pT-

pA_GibsRI 

de Boer et 

al 

Nextera_i5LN5_GpT TCGTCGGCAGCGTCAGATGTGTA

TAAGAGACAGNNNNNTGCATTTT

TTTCACATC 

Fw Nextera 

adaptor 

addition, 

with 5 

random 

bases to help 

clustering 

de Boer et 

al 

Nextera_i7R_GpA GTCTCGTGGGCTCGGAGATGTGT

ATAAGAGACAGAACAGCCGTAAC

C 

Rv Nextera 

adaptor 

addition 

de Boer et 

al 
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Supplementary Table 4 | Strains. The list of yeast strains used.  

Strain Genotype Reference 

Y8205 MATalpha, can1delta ::STE2pr-Sp_his5 

lyp1delta ::STE3pr-LEU2 his3delta1 

leu2delta0 ura3delta0 

Charles Boone Lab – strain 

verified by auxotrophy 

S288C::ura3 MATα SUC2 gal2 mal2 mel flo1 flo8-1 

hap1 ho bio1 bio6 ura3delta0 

de Boer et al. 2020 – strain 

verified by PCR of URA3 

DBVPG6765 

(WE) 

MATalpha, ho::NatMX, ura3::KanMX Cubillos, Louis & Liti 

(DOI: 10.1111/j.1567-

1364.2009.00583.x) 

Y12 (SA) MATalpha, ho::NatMX, ura3::KanMX Cubillos, Louis & Liti 

WE C7 DBVPG6765 derivate with SA Upc2 

binding site 

This study – pCDC36 

genotype verified by Sanger 

sequencing 

WE C23 DBVPG6765 derivate with SA Upc2 

binding site 

This study  – pCDC36 

genotype verified by Sanger 

sequencing 
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