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Materials and Methods Supplementary 

In this document, the energy estimation methodology is described in more detail. First, a description 

of the energy estimation for the set of features used as input for the random forest (RF) classifier and 

the classifier itself is provided. Next, estimation of the required energy for the proposed convolutional 

neural network (CNN) model is described. Finally, energy estimation for the recurrent neural network 

(RNN) classifier is explained. The energy estimation is given in terms of the number of arithmetic 

operations and memory accesses. 

1 Time-domain Features for Random Forest Classifier 

For a subset of features including mean absolute deviation (MAD), variance, kurtosis, and skewness, 

which require a common set of operations, they are computed only once in advance and stored into the 

memory. Via these operations, zero-mean values of the signal and their square values are calculated. 

For calculating the zero-mean values, the N inputs and the mean value are loaded, processed, and 

restored into the memory: 𝑙𝑜𝑎𝑑𝑚𝑒𝑎𝑛−𝑓𝑟𝑒𝑒 = 𝑁 + 1, 𝑎𝑑𝑑𝑚𝑒𝑎𝑛−𝑓𝑟𝑒𝑒 = N, and 𝑠𝑡𝑜𝑟𝑒𝑚𝑒𝑎𝑛−𝑓𝑟𝑒𝑒 = 𝑁. 

The same procedure is performed for the calculation of their square values with 𝑙𝑜𝑎𝑑(𝑚𝑒𝑎𝑛−𝑓𝑟𝑒𝑒)2 = 𝑁, 

𝑚𝑢𝑙𝑡(𝑚𝑒𝑎𝑛−𝑓𝑟𝑒𝑒)2 = N, and 𝑠𝑡𝑜𝑟𝑒(𝑚𝑒𝑎𝑛−𝑓𝑟𝑒𝑒)2 = 𝑁. 

1.1 Maximum 

To calculate the maximum value each element is compared to the previously found maximum. 

Therefore, N loads are required, where N is the number of elements in the array. As each element is 

compared to the previously selected maximum and as the first value in the input vector is set as initial 

maximum, N-1 comparisons are executed. The resulting maximum value is stored once into the 

memory. 

1.2 Mean 

The arithmetic mean value is calculated as 𝑥 =
1

𝑁
⋅ ∑ 𝑥𝑖

𝑁
𝑖=1 . Thus, it consists of N loads, where N is the 

number of input data, N-1 add operations, one multiplication, and one store operation. 

1.3 Mean Absolute Deviation  

The estimation of the MAD is based on the following formula: 𝑀𝐴𝐷 =
1

𝑁
∑ |𝑥𝑖 − 𝑥̅|𝑁

𝑖=1 . For its 

calculation, N+1 values are loaded: N zero-mean values and a known positive value. The latter is the 

second parameter of N compare instructions, used to estimate the sign of the zero-mean values.  

Due to high pass filtering, the EEG signal has a zero mean value (no offset). Assuming a Gaussian 

distribution for the EEG data, the probability of a negative signal value is equal to the probability of a 

positive one, therefore the probability that an operation must be performed to make the zero-mean 

value positive is 𝑃𝑠𝑢𝑏 = 0.5. This assumption results in 𝑁 − 1 additions to sum up the zero-mean 
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values and 𝑃𝑠𝑢𝑏 ⋅ 𝑁 additions to obtain the sum of absolute values. It follows one multiplication and a 

store operation. 

1.4 Variance 

The empirical variance is calculated as 𝑣𝑎𝑟 =
1

𝑁
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1 . This requires N loads of the squared 

zero-mean values, N-1 additions, one multiplication and a store operation. 

1.5 Skewness 

The sample skewness is computed as the Fisher-Pearson coefficient of skewness, as follows: 𝑔1 =
𝑚3

𝑚2
3/2 

where 𝑚𝑘 is the biased sample 𝑘th central moment, and 𝑥̅ is the sample mean: 𝑚𝑘 =
1

𝑁
∑ (𝑥𝑖 − 𝑥̅)𝑘𝑁

𝑖=1 . 

To calculate the skewness, first, the zero-mean values, the squared zero-mean values, and the variance 

(𝑚2) are loaded, resulting in 2𝑁 + 1 loads. Next, to calculate the numerator of 𝑔1 (𝑚3), zero-mean and 

squared zero-mean values are used to calculate the sum through 𝑁 − 1 multiply-accumulate (MAC) 

operations and one multiplication. Then, the calculated sum is multiplied by 
1

N
. Subsequently to 

calculate the denominator of 𝑔1 (𝑚2
3/2

) the variance is multiplied with the square root of itself. Finally, 

a division is required for the calculated numerator and denominator. Then the result is saved using a 

store operation. 

1.6 Kurtosis 

For the Kurtosis, the calculation procedure used for skewness can be followed with minor changes. 

The kurtosis is defined as follows: 𝑔2 =
𝑚4

𝑚2
2 − 3 where 𝑚4 and 𝑚2 are the fourth and second sample 

moment about the mean, respectively, and are calculated using the equation introduced in the previous 

section. In this case, only the squared zero-mean values must be loaded, and no standard deviation is 

required. An overview of the required operation follows: 𝑙𝑜𝑎𝑑𝑘𝑢𝑟𝑡 = 𝑁+1, 𝑀𝐴𝐶𝑘𝑢𝑟𝑡 = 𝑁 − 1, 

𝑚𝑢𝑙𝑡𝑘𝑢𝑟𝑡 = 3, 𝑑𝑖𝑣𝑘𝑢𝑟𝑡 = 1,and 𝑠𝑡𝑜𝑟𝑒𝑘𝑢𝑟𝑡 = 1. 

1.7 Line Length 

Line length for a single window is defined as 𝐿𝐿 =
1

𝐾
⋅ ∑ |𝑥𝑘 − 𝑥𝑘−1|

𝑁
𝑘=2  (1), where the constant 

normalization factor can be dropped to save computations, resulting in 𝐿𝐿 = ∑ |𝑥𝑘 − 𝑥𝑘−1|
𝑁
𝑘=2 . For the 

calculation, N input values are loaded from memory and each value is subtracted from the previous 

one. The sign of the results of the subtractions is proved with the compare operation and, in case of 

negative value, its inversion is required. This allows to obtain the sum of absolute values, as seen for 

the MAD calculation. The 𝑁 − 1 subtractions and 
𝑁

2
 addition operations required for the change of sign 

of the negative subtraction values are added to the 𝑁 − 1 add operations to calculate the sum. One store 

operation is required for the final result. 

1.8 Entropy 
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The information entropy is defined as: 𝐻 = −∑ 𝑝𝑖 ⋅ 𝑙𝑜𝑔2(𝑝𝑖)𝑖 , where 𝑝𝑖 is the probability of 

occurrence of a symbol i in a set of symbols (2). The probabilities of occurrence of data in the input 

vector is estimated using a histogram. The input values are sorted to the belonging bin by scaling them 

by a factor 
1

2𝑏𝑠
, where bs denotes the related bit shift in integer arithmetic. Then, the values are 

converted to integer to address and increment the relevant count variable. Depending on the range of 

the values 𝐴𝑚𝑎𝑥, and the number of bins 𝑁𝑏𝑖𝑛𝑠, 𝑏𝑠 is retrieved as 𝑏𝑠 =  
𝑐𝑒𝑖𝑙(𝑙𝑜𝑔2(𝐴𝑚𝑎𝑥))

𝑙𝑜𝑔2(𝑁𝑏𝑖𝑛𝑠)
. The result of 

the multiplication 𝑝𝑖 ⋅ 𝑙𝑜𝑔2(𝑝𝑖) is gained using the counts as input for a lookup table of width N, as N 

is the maximum number of occurrences a count can have. Finally, the loaded results for each count 

variable are summed. The complete set of operations required for this feature are 𝑙𝑜𝑎𝑑𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  𝑁 +

2𝑁𝑏𝑖𝑛𝑠, 𝑚𝑢𝑙𝑡𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  𝑁, 𝑓𝑙𝑜𝑎𝑡2𝑖𝑛𝑡𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑁, 𝑎𝑑𝑑𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑁 + 𝑁𝑏𝑖𝑛𝑠 − 1, and 𝑠𝑡𝑜𝑟𝑒𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = 𝑁 + 1. 

2 Frequency-domain Features for Random Forest classifier 

The calculation of the frequency-domain features is based on the power spectrum that is obtained using 

the discrete Fourier transform (DFT). To minimize spectral leakage, a window function was applied 

before performing the DFT. The application of a window function to the input data consists of the 

multiplication of every data point with the values of the window function stored in memory. Thus, the 

input data and the window function need to be loaded, multiplied, and stored again. This results in 2N 

loads, N multiplications, and N store operations. For implementation, the Cooley-Tukey Radix-2 FFT 

algorithm (3) was chosen. According to (4) the number of complex multiplications and additions in the 

FFT can be computed as complexMultFFT =
M

2
  ⋅ log2 (

M

2
) and complexAddFFT =  𝑀  ⋅ log2(M), 

where M is the number of input samples. The multiplication of two complex numbers consists of 4 real 

multiplications and 2 real additions, such that multFFT =  4 ⋅ complexMultFFT. The complex addition 

corresponds to 2 real additions, that together with the additions from the complex multiplication, result 

in addFFT = 2 ⋅ complexAddFFT + 2 ⋅ complexMultFFT. 

The number of load and store operations depends on the number of stages that constitute the FFT. In 

every stage, the twiddle-factors for the FFT and the input data of the corresponding FFT-stage need to 

be loaded from memory. Given that the number of stages in the FFT is stagesFFT = log2(N), the total 

loaded values are 𝑙𝑜𝑎𝑑𝐹𝐹𝑇 = 𝑠𝑡𝑎𝑔𝑒𝑠𝐹𝐹𝑇   ⋅ 3M, and the total stores are 𝑠𝑡𝑜𝑟𝑒𝐹𝐹𝑇 = 𝑠𝑡𝑎𝑔𝑒𝑠𝐹𝐹𝑇   ⋅ 2M.  

For calculating the power spectrum, the arithmetic and store operations required for the FFT must be 

counted. The Fourier transformed signals must be squared, summed up and the M results stored, 

resulting in 𝑚𝑢𝑙𝑡𝑃𝑆 = 𝑀 ⋅ 2, 𝑎𝑑𝑑𝑃𝑆 = 𝑀, 𝑙𝑜𝑎𝑑𝑃𝑆 = 2 ⋅ 𝑀, 𝑠𝑡𝑜𝑟𝑒𝑃𝑆 = 𝑀.  

2.1 Spectral Entropy 

The spectral entropy probabilities of the power of each frequency bin are calculated by normalizing 

the signal power 𝑃𝑖 of frequency bin 𝑖. This is done by dividing it by the overall signal power ∑ 𝑃𝑖
𝑁−1
𝑖=0 :  

𝑝𝑖 =
𝑃𝑖

∑ 𝑃𝑖
𝑁−1
𝑖=0

. Different from the entropy calculation in the time domain, where amplitudes are counted, 

no aggregation of values is performed for the spectral entropy. Therefore, a direct data retrieval would 

require a big lookup table, which is not appropriate for this application. This issue is resolved by using 

a smaller lookup table with linear interpolation between the points. The operations required for the 
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table look up are 𝑙𝑜𝑎𝑑𝐿𝑈𝑇 = 2, 𝑓𝑙𝑜𝑎𝑡2𝑖𝑛𝑡𝐿𝑈𝑇 = 1, 𝑖𝑛𝑡2𝑓𝑙𝑜𝑎𝑡𝐿𝑈𝑇 = 1, 𝑚𝑢𝑙𝑡𝐿𝑈𝑇 = 3, 𝑎𝑑𝑑𝐿𝑈𝑇 = 3, 

𝑠𝑡𝑜𝑟𝑒𝐿𝑈𝑇 = 1. 

As for the entropy a lookup table containing the multiplication 𝑝𝑖 ⋅ 𝑙𝑜𝑔2(𝑝𝑖) was used, the spectral 

power values are summed up and each spectral power bin is normalized with the signal power. The 

results are accumulated until all spectral bins are considered. The resulting operations are 𝑙𝑜𝑎𝑑𝑆𝐸 =
𝑁

2
+

𝑁

2
, 𝑑𝑖𝑣𝑆𝐸 =

𝑁

2
, 𝐿𝑈𝑇 − 𝑜𝑝𝑠𝑆𝐸 =

𝑁

2
, 𝑎𝑑𝑑𝑆𝐸 =

𝑁

2
+

𝑁

2
− 2, and 𝑠𝑡𝑜𝑟𝑒𝑆𝐸 = 2. 

2.2 Mean Spectral Power 

The mean spectral power is the signal power divided by the fixed number of frequency bins. As the 

total spectral power is calculated for the spectral entropy, the required operations are 

𝑙𝑜𝑎𝑑𝑚𝑒𝑎𝑛−𝑆𝑃 = 1, 𝑚𝑢𝑙𝑡𝑚𝑒𝑎𝑛−𝑆𝑃 = 1, and 𝑠𝑡𝑜𝑟𝑒𝑚𝑒𝑎𝑛−𝑆𝑃 = 1. 

2.3 Maximum Spectral Power 

The maximum spectral power is found with the same algorithm used for the maximum value in the 

time-domain features. However, the number of values to be loaded decreases to 
𝑁

2
, such that 

𝑙𝑜𝑎𝑑𝑚𝑎𝑥−𝑆𝑃 =
𝑁

2
, 𝑐𝑜𝑚𝑝𝑚𝑎𝑥−𝑆𝑃 =

𝑁

2
− 1, 𝑠𝑡𝑜𝑟𝑒𝑚𝑎𝑥−𝑆𝑃 = 1. 

2.4 Spectral Power Variance 

The spectral power variance is defined with the following equation: 𝑣𝑎𝑟𝑆𝑃 =
2

𝑁
∑ (𝑃𝑖 − 𝑃̅)2𝑁 2⁄

𝑖=1 . In this 

case (𝑃𝑖 − 𝑃̅)2 needs to be calculated. The calculations required for this feature are obtained by 

combining the operation to calculate (𝑃𝑖 − 𝑃̅)2 with the variance calculation in the time domain. As a 

result, 𝑙𝑜𝑎𝑑𝑣𝑎𝑟−𝑆𝑃 =
𝑁

2
+ 1, 𝑎𝑑𝑑𝑣𝑎𝑟−𝑆𝑃 =

𝑁

2
, 𝑀𝐴𝐶𝑣𝑎𝑟−𝑆𝑃 = 

𝑁

2
, 𝑚𝑢𝑙𝑡𝑣𝑎𝑟−𝑆𝑃 = 1, and 𝑠𝑡𝑜𝑟𝑒𝑣𝑎𝑟−𝑆𝑃 =1 

is the computational load. 

2.5 Band Power 

The spectral power for each band is calculated by summing up the stored power spectrum values of the 

correspondent frequency range. Hence, the number of bins to sum depend on the bandwidth 𝐵 of the 

feature and the frequency resolution 𝛥𝑓 =
1

𝑡𝑤
 of the FFT, where 𝑡𝑤 is the length of the window in the 

time domain. The number of loads is then calculated as 𝑙𝑜𝑎𝑑𝑏𝑎𝑛𝑑𝑝𝑜𝑤𝑒𝑟 =
𝐵

𝛥𝑓
, the additions are 

𝑎𝑑𝑑𝑏𝑎𝑛𝑑𝑝𝑜𝑤𝑒𝑟 =
𝐵

𝛥𝑓
− 1, and storing the result leads to 𝑠𝑡𝑜𝑟𝑒𝑏𝑎𝑛𝑑𝑝𝑜𝑤𝑒𝑟 = 1. 

The band power is calculated in the following frequency ranges: theta band (4-8 Hz) (5), alpha band 

(8-13 Hz) (6), beta band (13-30 Hz), and gamma band (30-45 Hz). 

2.6 Epileptogenicity Index 

The epileptogenicity index is defined as the ratio of the power in higher frequency bands (beta + 

gamma) to the lower frequency bands (theta + alpha): 𝐸𝑝𝑖𝑖𝑛𝑑𝑒𝑥 =
𝑃𝛽+𝑃𝛾

𝑃𝜃+𝑃𝛼
. For its calculation, the 
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previously stored power values are loaded. The required load, arithmetic, and store operations are as 

follows: 𝑙𝑜𝑎𝑑𝑒𝑝𝑖 = 3, 𝑎𝑑𝑑𝑒𝑝𝑖 =
9 𝐻𝑧

𝛥𝑓
+ 1, 𝑑𝑖𝑣𝑒𝑝𝑖 = 1, and 𝑠𝑡𝑜𝑟𝑒𝑒𝑝𝑖 = 1. 

3 Random Forest Classifier 

To estimate of the required energy for the RF classifier, the highest possible energy consumption was 

assumed. Consequently, an ensemble of 100 decision trees, which are grown to their maximum allowed 

depth, was considered for the estimation. This model results in 1000 compare operations, and 1100 

memory accesses.  

4 Convolutional Neural Network Energy Estimation 

In the following, the energy estimation for each layer of the proposed CNN architecture is discussed. 

4.1 Preprocessing 

The scaling of the input data by the standard deviation can be combined with the constant factor 0.2 in 

the equation 𝑥̂(𝑡) = 𝑡𝑎𝑛ℎ(0.2 ⋅ 𝑥(𝑡)), resulting in a single parameter multiplication. The linear part in 

the piecewise linear approximation of the tanh function is merged into this operation. For the upper 

and lower bounds of the tanh function, a comparison with the threshold values is required. All input 

values and the thresholds must be loaded to be processed, resulting in 𝑙𝑜𝑎𝑑𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑁 ⋅ 𝐶 + 1. The 

required number of multiplications and comparisons is 𝑚𝑢𝑙𝑡𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝑁 ⋅ 𝐶, 𝑐𝑜𝑚𝑝𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 2 ⋅

𝑁 ⋅ 𝐶, and to store the result, the following amount of store operations is needed: 𝑠𝑡𝑜𝑟𝑒𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 =

𝑁 ⋅ 𝐶. 

4.2 Convolutional Layers 

The output of a 2-D convolutional layer consists of a 2-D feature map for each of the filters 𝐹𝑖 ∈ ℝ𝑥×𝑦 

for 𝑖 ∈ {1, . . . , 𝑁𝑓𝑖𝑙𝑡}, where x is the filter length in the first dimension, which corresponds to the number 

of electrodes in the input layer, and y is the filter length in the second dimension, which corresponds 

to the time axis in the input layer. Nfilt represents the number of filters in the convolutional layer. A 

single feature map is produced by striding a filter over the input data array and performing the filter 

operation in each position. A filter operation consists of the following steps: 1- application of a dot 

product, which includes multiply and add operations, between the filter weights and the input data that 

is covered by the filter, and 2- adding the bias value, which is learned during the training phase for 

each filter, to the dot product. It follows that every filter operation can be reduced to so many MAC-

operations as filter elements. For every filter operation, an output of the resulting feature map 𝑂𝑖 is 

generated. 𝑂𝑖 ∈ ℝ𝑤×ℎ depend on layer parameters, such as kernel stride and the type of padding that 

is used. For 𝑂𝑖, the number of MAC-operations for a 2-D convolutional layer is calculated 

irrespectively of the layer parameters as 𝑀𝐴𝐶𝑐𝑜𝑛𝑣2𝐷 = 𝑥 ⋅ 𝑦 ⋅ 𝑤 ⋅ ℎ ⋅ 𝑁𝑓𝑖𝑙𝑡. To add the bias the 

following number of additions are required: 𝑎𝑑𝑑𝑐𝑜𝑛𝑣2𝐷 = 𝑤 ⋅ ℎ ⋅ 𝑁𝑓𝑖𝑙𝑡. Assuming that in a sequential 

computation logic for each MAC-operation the data and the filter need to be loaded, the number of 

load operations for the 2-D convolutional layer is estimated as 𝑙𝑜𝑎𝑑𝑐𝑜𝑛𝑣2𝐷 = 2 ⋅ 𝑀𝐴𝐶𝑐𝑜𝑛𝑣2𝐷 +

𝑎𝑑𝑑𝑐𝑜𝑛𝑣2𝐷. The result of each filter operation is stored into memory, thus leading to 
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𝑠𝑡𝑜𝑟𝑒𝑐𝑜𝑛𝑣2𝐷 =  𝑤 ⋅  ℎ ⋅  𝑁𝑓𝑖𝑙𝑡. As the activation function can be applied directly after calculating the 

filter output and before storing it to memory, no additional memory access overhead is needed. 

However, an arithmetic overhead in the form of a comparison is needed for the rectified linear unit 

(ReLU) activation function to prove if the output is bigger than 0:  

𝑐𝑜𝑚𝑝𝑅𝑒𝐿𝑈 = 𝑤 ⋅ ℎ ⋅ 𝑁𝑓𝑖𝑙𝑡. 

4.3 Max-Pooling Layers 

Max-pooling performs a max operation by striding a window over the input, operating on a subset of 

the input data for every stride. The max-pooling operation corresponds to the max operation previously 

introduced in the feature calculation section. Hence, the same number of arithmetic and memory 

operations applies for each stride. The multiplication of the number of operations required to calculate 

the maximum with the number of outputs, as explained for the convolutional layer, gives the total 

number of operations in the max-pooling Layer. 

4.4 Batch Normalization 

Because for CNNs, the batch normalization parameters are learned for each feature map, instead of 

each neuron activation, they can be incorporated into the filter parameters (7). This eliminates the need 

for batch normalization transforms on the convolutional layers. 

4.5 Dense Layer 

Dense layer is a synonym for a fully-connected neural network layer, in which every individual neuron 

of the layer is connected to the previous layer via a weight 𝑤𝑖𝑗, where 𝑖 ∈ {1,… ,𝑁𝑖𝑛} corresponds to 

the input number with Nin total inputs and 𝑗 ∈ {1,… ,𝑀𝑛𝑒𝑢𝑟𝑜𝑛𝑠} to the neuron number with 𝑀𝑛𝑒𝑢𝑟𝑜𝑛𝑠 

total neurons. The network activations 𝑛𝑒𝑡⃑⃑⃑⃑ ⃑⃑   of each neuron in the layer can be calculated using matrix 

arithmetic with the weight matrix W being 

𝑊 = (

𝑤11 ⋯ 𝑤1𝑀

⋮ ⋱ ⋮
𝑤𝑁1 ⋯ 𝑤𝑁𝑀

), 

with the input vector v⃑ ∈ ℝ𝑁, and the bias vector b⃑ ∈ ℝ𝑀 as 

𝑛𝑒𝑡⃑⃑⃑⃑ ⃑⃑  = v⃑ 𝑇 ⋅ 𝑊 + 𝑏⃑ . 

As a result of the vector-matrix multiplication, the number of MAC-operations in a dense layer is 

𝑀𝐴𝐶𝐷𝑒𝑛𝑠𝑒 = 𝑀𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ⋅ 𝑁𝑖𝑛. In addition, the following number of additions is required for adding the 

bias: 𝑎𝑑𝑑𝐷𝑒𝑛𝑠𝑒 = 𝑁𝑖𝑛. Next, the memory accesses are calculated similar to the convolutional layer, 

considering that the input data, weight, and bias parameters need to be loaded from the memory 

𝑙𝑜𝑎𝑑𝐷𝑒𝑛𝑠𝑒 = 2 ⋅ 𝑀𝑛𝑒𝑢𝑟𝑜𝑛𝑠 ⋅ 𝑁𝑖𝑛 + 𝑁𝑖𝑛. 

Furthermore, the network output needs to be stored 

𝑠𝑡𝑜𝑟𝑒𝐷𝑒𝑛𝑠𝑒 = 𝑀𝑛𝑒𝑢𝑟𝑜𝑛𝑠. 
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The selected activation function (ReLU, or sigmoid in the proposed model) can be applied before 

storing the result into memory. The respective operations and memory accesses must be added to the 

calculations above. A possible implementation of the sigmoid function is shown in 5.2. 

5 Recurrent Neural Network Energy Estimation 

In this section, given the model layers, the number of arithmetic operations and memory accesses for 

the RNN model are calculated. For these calculations, 32-Bit floating-point operations are assumed. 

5.1 Preprocessing 

The input data is preprocessed by calculating the time derivative for each channel and is restored into 

memory. 

5.2 Long Short-term Memory Layer 

For calculation of the total number of operations in a long short-term memory (LSTM) layer, the 

recursive processing of the input is considered. As a result, the operations of an LSTM cell must be 

calculated for each of the N total time steps as follows: NLSTM−Cells ⋅ N𝑡𝑠 where NLSTM−Cells is the 

number of LSTM cells in the LSTM layer and N𝑡𝑠 is the total number of time steps, which is equal to 

the input window length. 

To calculate the number of operations in a single cell the following equations based on (8) and (9) are 

considered, which calculate the internal state of a single LSTM cell at a single time step, where 𝑐𝑡 is 

the internal state value at time step t and ℎ𝑡 the output of the LSTM cell:  

𝑐𝑡 = 𝑐𝑡−1 ⋅ 𝜎(𝑛𝑒𝑡𝑓𝑡) + 𝜎(𝑛𝑒𝑡𝑖𝑡) ⋅ 𝑡𝑎𝑛ℎ(𝑛𝑒𝑡𝑐𝑡
) 

ℎ𝑡 =  𝑡𝑎𝑛ℎ (𝑐𝑡) ⋅ 𝜎(𝑛𝑒𝑡𝑜𝑡
) 

The network activations 𝑛𝑒𝑡 of the gates 𝑓, 𝑖, 𝑜, and the kernel c are calculated with a fully-connected 

layer, the input of which are multiplied by a weight vector for each LSTM cell, or a weight matrix for 

all LSTM cells. The length of the weight vector for each activation is Lw = Nfeat + NLSTM−Cells + 1, 

where Nfeat is the number of input features which is equal to the number of EEG-channels, and 1 

accounts for the bias weight. The activation functions 𝜎 and 𝑡𝑎𝑛ℎ are implemented using a lookup 

table. To reduce computational costs, a lookup table was used without interpolation between the points. 

By using a lookup-table of 8192 points, the maximum absolute error of the sigmoid functions is 

4.84 × 10−4, and the one of the tanh function is 9.62 × 10−4.  

Additionally, it was considered that the internal state 𝑐𝑡−1 of the LSTM-cells at t = 0 is 0, hence the 

equation of 𝑐0 reduces to 𝑐𝑡 = 𝜎(𝑛𝑒𝑡𝑖𝑡) ⋅ 𝑡𝑎𝑛ℎ(𝑛𝑒𝑡𝑐𝑡
). Furthermore, as also ht=−1 = 0, the calculation 

of all activations 𝑛𝑒𝑡 reduces to the feature weights and the bias at the first time step. The memory 

accesses to retrieve the network parameters, as well as the accesses to store the results are considered 

in the calculation.  
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5.2.1 Time-Distributed Dense Layer 

The same considerations as for the dense layer of a CNN are made here with two exceptions. The first 

one is that all results need to be multiplied by N𝑡𝑠, as the dense layer is calculated for each time step. 

The second is that the activation function is linear, so no additional operation is required as input and 

output are equal 

5.3 Global Average Pooling Layer 

The global average pooling layer averages the outputs of the time-distributed dense layer over the time 

axis t. In this layer, the outputs of the previous layer are accumulated directly after their calculation, 

thus avoiding store operations for all time steps. Thereafter, they are averaged by dividing them with 

N𝑡𝑠. 

5.4 Output Layer 

The output layer consists of a single dense cell with a sigmoid activation function and can be calculated 

similar to the CNN with N𝐷𝑒𝑛𝑠𝑒 = 1 and with the operations needed for lookup-table-access. 
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