SUPPLEMENTAL INFORMATION

Ensemble cryo-electron microscopy reveals conformational states of the nsp13 helicase on the SARS-CoV-2 helicase replication-transcription complex

James Chen^{1,6}, Qi Wang^{2,6}, Brandon Malone^{1,6}, Eliza Llewellyn¹, Yakov Pechersky², Kashyap Maruthi³, Ed T. Eng³, Jason K. Perry⁴, Elizabeth A. Campbell¹, David E. Shaw^{2,5,7}, Seth A. Darst^{1,7,8}

¹Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA.

²D. E. Shaw Research, New York, NY 10036 USA.

³The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027 USA.

⁴Gilead Sciences, Inc., Foster City, CA 94404 USA.

⁵Department of Biochemistry and Biophysics, Columbia University, New York, NY 10032 USA.

⁶These authors contributed equally to this work.

⁷These authors jointly supervised this work. Correspondence to: David.Shaw@DEShawResearch.com; darst@rockefeller.edu

⁸Lead contact: darst@rockefeller.edu

Supplemental information includes 2 tables and 2 videos.

Structural	Dataset 1 ¹			Dataset 2				
class	particles (%)	nominal	particles (%)		map	nominal		
		resolution				resolution		
		(Å) ¹				(Å) ¹		
nsp13₁-RTC	17,345 (20%)	4.0		85,187 (20%)	2	3.2		
nsp13 ₂ -RTC	58,942 (67%)	3.5		315,120 (72%)	3	2.9		
(nsp13 ₂ -RTC) ₂	11,771 (13%)	7.9		35,392 (8%)	4	3.3		
total particles	88,058			435,699				

Supplementary Table 1. Cryo-EM datasets of the nsp13-RTC.

¹Gold-standard FSC calculated by RELION ².

				rmsd (Å) against nsp13 ₂ -RTC class				
BTC-	particles	resolution	rms_cur ^b	nsp13⊤-	nsp13⊤-	nsp13⊤.	1B-	
class ^a		(Å)		аро	engaged	swiveled	open	
			all	5.955	3.715	9.071	8.372	
class1	22,132	4.1	nsp13⊤+nsp13 _F	8.748	5.421	13.349	12.306	
	(9.4%)		nsp13⊤	7.8	1.493	13.282	10.941	
class2	31,364	4.0						
	(13%)							
			all	6.689	5.801	8.325	3.156	
class3	35,082	3.9	nsp13⊤+nsp13 _F	9.888	8.551	12.307	4.614	
	(15%)		nsp13⊤	13.211	11.201	16.101	1.716	
			all	4.626	0.685	7.099	6.246	
class4	146,569	3.6	nsp13 _T +nsp13 _F	6.784	0.963	10.466	9.167	
	(62%)		nsp13⊤	8.776	0.303	13.057	10.854	

Supplementary Table 2. Comparison of nsp13₂-BTC and nsp13₂-RTC classes.

^aExtended Data Fig. 8.

^bAfter superimposition via the α -carbons of nsp12, the nsp13₂-BTC components listed in this column were compared with the same components of the nsp13₂-RTC class using the PyMOL rms_cur command.

Supplemental Videos

Supplementary Video 1. Opening of nsp13_T-RecA domains in nsp13_T-apo vs nsp13_T-engaged states. Related to Fig. 4. The video compares the disposition of the nsp13_T RecA domains in the nsp13_T-engaged vs. the nsp13_T-apo state. In the nsp13_Tengaged state, the RecA domains are closed onto the substrate RNA and bound to ADP-AIF₃, a non-hydrolyzable ATP analog. In the nsp13_T-apo state, the RecA2 domain is rotated open by ~21°, resulting in a translation of the separation between the RecA1 and RecA2 centers-of-gravity by 3.4 Å. The video shows how this conformational change is related to an inchworming model for nsp13_T translocation, and illustrated how nsp13_T translocation drives backtracking of the RTC.

Supplementary Video 2. Structural overview of the nsp13₂-RTC and the nsp13_T-engaged, nsp13_T-open, and nsp13_T-swiveled states. Related to Figs. 2, 3, 5, and 7. The video highlights the nsp13_T conformational changes between the nsp13_T-engaged, nsp13_T-swiveled, and nsp13_T-open states.

References

1. Chen, J. *et al.* Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. *Cell* 182, 1560-1573.e13 (2020).

2. Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure determination in RELION-3. *eLife* 7, (2018).

3. Cardone, G., Heymann, J. B. & Steven, A. C. One number does not fit all: mapping local variations in resolution in cryo-EM reconstructions. *Journal of structural biology* 184, 226–236 (2013).

4. Tan, Y. Z. *et al.* Addressing preferred specimen orientation in single-particle cryo-EM through tilting. *Nature methods* 14, 793–796 (2017).

5. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. *Nat Methods* 14, 290–296 (2017).

6. Malone, B. *et al.* Structural basis for backtracking by the SARS-CoV-2 replication– transcription complex. *Proc National Acad Sci* 118, e2102516118 (2021).