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Supplemental Data 

 

Supplemental Table 1. Whole-genome sequencing coverage statistics.  

 

 Mother Father Child 

Case ID 
Mean 
Depth 

% ≥20X 
Mean 
Depth 

% ≥20X 
Mean 
Depth 

% ≥20X 

1 38X 97% 42X 96% 38X 95% 

2 38X 96% 43X 96X 43X 97% 

3 43X 98% 41X 95% 41X 97% 

4 34X 92% 32X 85% 29X 83% 

5 36X 96% 31X 90% 

40X 97% 

41X 95% 

6 38X 96% 30X 84% 34X 88% 

7 39X 96% 30X 84% 39X 95% 

8 36X 94% 34X 95% 29X 89% 

9 47X 98X 43X 96% 37X 97% 

101 86X 98% 111X 99% N/A N/A 

1Tell-Seq library prep. Mean Depth, average depth of coverage across the genome; % ≥20X, 

percentage of genomic bases covered by at least 20 sequence reads
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Supplemental Table 2. Polygenic model and phenotype definitions in the UKBiobank22. PGS catalog (pgscatalog.org) 

identifiers provided when available.  

Disease (ICD10), (ICD9) codes 
Phenotype terms (UKB data field, description, 

coding) 

Source of polygenic model (PGS 

catalog ID where available)  

 Atrial fibrillation (I48), (4273) None PGS00003523 

Breast cancer  (C50, D05), (174, 2330)  (20001, self reported cancer, 1002) PGS00000824 

Coronary artery disease  (I20, I21, I22), (410, 411) (20002, self reported, 1075) PGS00005425 

Colorectal cancer (C18), (153) (20001, self reported cancer, 1020, 1022) PGS00007426 

Crohn’s disease (K50) (20002, non cancer self reported, 1462)  Liu et al; Huang et al27,28 

Lupus (M32), (710) (20002, non cancer self reported, 1381) Chen et al29 

Pancreatic cancer (C25), (157) (20001, cancer self reported, 1026) PGS00008326 

Prostate cancer (C61), (185) (20001, cancer self reported, 1044) PGS00003030 

Type 1 diabetes 
(E10), (25001, 25011, 

25021, 25091) 

(20002, self reported, 1222), all conditioned on (2976, 

age of diabetes diagnosis, < 35) 
Oram et al31 

Type 2 diabetes 

(E11), (25000, 25010, 

25020, 25090, 2503, 2504, 

2505, 2506, 2507) 

(2443, diabetes diagnosed by doctor, 1), (6177, 

medications for blood pressure, diabetes, etc, 3), all 

conditioned on (2976, age of diabetes diagnosis, > 35) 

PGS00002032 

Ulcerative colitis (K51) (20002, non cancer self reported, 1463) Liu et al; Huang et al27,28 

Vitiligo (L80) (20002, non cancer self reported, 1661) Roberts et al33 

http://pgscatalog.org/
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Supplemental Methods 

Supplemental Note 1: Parental Support method for embryo genotype estimation  

Approach to cleaning noisy genetic measurements from embryo biopsies: “Parental Support Approach” 

 Page 
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Background  

Whole genome reconstruction as discussed in the manuscript involves accurate determination of a subset 

of genotypes derived from microarray measurements from single or few cell biopsies from embryos 

preimplantation (Figure N1A; “PS Embryo Genotypes”; Table N1). “Parental Support”, also referred to as 

the phasing algorithm in this supplement, is a method of combining SNP array measurements from multiple 

embryos and the parents along with recombination frequencies from the HapMap database to enable 

accurate prediction of chromosome copy numbers, insertions and deletions, embryo genotypes, parent 

haplotypes as well as embryo parent haplotype origin hypotheses. We describe the process in US Patent 

8515679_B2. A summary of the method with certain updates follows. Note that phasing and reconstruction 

is completed only for euploid chromosomes. 

 
Figure N1A. Whole genome reconstruction involves two sources of data. 1) Whole genome sequencing of 

prospective parents and 2) SNP microarray genotyping of sibling embryos. Limited DNA in embryo biopsy 

requires amplification and results in inaccuracies in sequence. Figure N1B. Allele measurements at each 

SNP are color-coded based on the parental haplotype of origin in this example. The Parental Support 

algorithm uses an HMM that accounts for measurements on sibling genotypes as well as parental genotypes 

to improve accuracy across several hundred thousand positions. The output of this approach are PS Parental 

Haplotypes and PS Embryo Genotypes at Illumina CytoSNP12b array locations. 
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Parental 

Support 

Microarray 

Inputs  

 

 

Parental 

Microarray Data 

Mother (MD) and father (FD) microarray data, with genotypes marked as 

AA,AB,BB (A=Ref,B=Mut). 

Embryo 

Microarray Data 

Up to k Embryo microarray measurements (ED1,...,EDk), stored as 

intensity values on the “A” channel and “B” channel.  

We denote the full set of data below as :D=(D1,...,Dn)=(MDt,FDt,EDtj), t=1,...,n, j=1,...,k. 

Parental 

Support 

Outputs 

PS Parental 

Haplotypes 

A best estimate of each phased parental genotype, denoted as (genotype 

at haplotype1,genotype at haplotype 2).  

 

E.g. phased genotype AB signifies that A comes from the first haplotype 

and B from the second. For each position on the microarray, the possible 

phased parental haplotypes are {AA, AB, BA, BB}.  

Embryo Parental 

Origin 

Hypothesis 

The particular haplotypes inherited from the specific parent. Denoted as 

H1 or H2, depending on which haplotype the embryo inherited from a 

parent.  

E.g. MH1,FH2 means that the embryo has inherited its mother’s 

haplotype 1 and father’s haplotype 2.  

PS Embryo 

Genotype 

A direct combination of mother, father haplotypes and parental origin 

hypothesis. Calculated only on euploid segments of the genome. 

E.g. if parent haplotypes are (BA,AB) and parent origin hypotheses are 

(H1,H2), the embryo inherits a B from mother (H1 from BA) and a B 

from father (H2 from AB), so the PS embryo genotype is BB. 

Table N1. Definitions of terms used 

Parent Data   PS algorithm usage 

parent context  context name 

embryo 

genotype 

allele 

queried 

Discrete 

 emission model 

Continuous 

emission model parent haplotypes 

parent origin 

hypotheses 

BB|BB no signal A BB A  noise floor A model given BB (BB|BB)   

AA|AA no signal B AA B noise floor B model given AA (AA|AA)   

AA|BB, BB|AA polar AB,BA AB A,B allele dropout model given AB (AA|BB), (BB|AA)   

(AB|BB) signal MA AB or BB A     (AB or BA,BB) mother origin 

(BB|AB) signal FA AB or BB A     (BB,AB or BA) father origin 

(AB,AA) signal MB AB or AA B     (AB or BA,AA) mother origin 

(AA,AB) signal FB AB or AA B     (AA,AB or BA) father origin 

(AB,AB) mixed AA,AB or BB A,B     (AB or BA,AB or BA) mother,father origin 

Table N2. Parent context scenarios and PS algorithm usage 
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Simplified example 

To conceptually illustrate how noisy genetic measurements from sibling embryos and parents can be 

leveraged to increase accuracy, we start with a simplified approach on one chromosome, assuming a) 4 

embryos b) accurate parental genotypes c) no meiotic recombinations in the parents and d) noise in the 

embryo genotypes and only one chromosome inherited from each parent. 

. 

 

We introduce the concept of “Parent Context”, which is the combination of mother and father genotypes at 

a particular site/SNP, denoted as (mother genotype|father genotype). Specific contexts will inform the PS 

algorithm differently. Table N2 presents the possible scenarios of SNP parent contexts and the way in which 

they inform the PS algorithm. Table N3 describes an example implementation. 

 

  GENOTYPE DATA PS OUTPUT 

 Parental Genotypes 

Raw Embryo 

Genotypes (Noisy) 

PS Parental 

Haplotypes PS Embryo Genotypes 

Embryo Parent Origin 

Hypotheses         (1,1) (2,2) (2,1) (1,1)  

SNP mother father E1 E2 E3 E4 mother father e1 e2 e3 e4 Step  

1 AA AA AA AA AA AB AA AA AA AA AA AA STEP1 

2 AA BB AB AB BB AB AA BB AB AB AB AB STEP1 

3 AB BB AB BB BB AB AB BB AB BB BB AB STEP2 

4 AA AB AA AB AA AA AA AB AA AB AA AA STEP2 

5 AB AB AB AB AA AB BA AB AB AB AA AB STEP4 

6 AB BB AB AA AB BB BA BB BB AB AB BB STEP3 

7 AB AB AA AB AA AB BA AB BA AB AA BA STEP4 

8 AB BB AB AB AB AB AB/BA BB ?B ?B ?B ?B STEP3 

Table N3. Sample Data and PS output. Red letters indicate scenarios where PS Embryo Genotypes differ 

from the raw embryo genotypes. 

 

STEP 1 Set homozygous parents and unambiguous parent contexts on SNPs 1,2, so correcting mendelian 

errors in e3 on SNP 1 and e4 on SNP 2. By symmetry, we also set the phase (PS Parental Haplotype) of the 

first heterozygous mother (SNP 3) and father (SNP 4) to AB.  

 

STEP 2 Compute most likely embryo hypotheses for all SNPs with currently phased parents -- SNPs 3,4 

here. We present possible parent origin hypothesis scenarios, and choose the most likely scenario for each 

embryo, as seen in Table N4A.  
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Embryo Parent Origin 

Hypotheses 

(SNP3,SNP 4)  

possible 

embryo 

outcome 

 # SNPs matching with each hypothesis 

MH FH  E1 E2  E3  E4  

1 1 (AB,AA) 2 0 1 2 

1 2 (AB,AB) 1 1 0 1 

2 1 (BB,AA) 1 1 2 1 

2 2 (BB,AB) 0 2 1 0 

Best Embryo Parent Origin Hyp. 

(MH,FH) for each embryo (1,1) (2,2) (2,1) (1,1) 

Table N4A. Step 2 scenarios 

 

STEP 3 Phase parents at sites where only one parent is ambiguous, using embryo genotypes and putative 

parent origin hypotheses for E1 through E4 (determined in Step2) resulting in the most likely estimate of 

PS Maternal Haplotypes for SNPs 6 and 8. The best match is found on SNP 6 and E1, E2 corrected, as seen 

in Table N4B.  

 

Maternal Haplotype Alleles 

 

Resulting Embryo genotype  

(given father=BB & hypotheses from Step 2) # embryo matches for each SNP 

E1 E2 E3 E3  SNP 6 SNP 8 

Maternal 

haplotype 

scenarios  

AB AB BB BB AB 1 2 

BA BB AB AB BB 2 2 

BEST for SNP 6 BA BB AB AB BB    

BEST for SNP 8 AB/BA ?B ?B ?B ?B   

Table N4B. Step 3 scenarios 

In this simplified case both maternal scenarios are equally likely on SNP 8. In the case of embryo data given 

by microarray measurements, we will get one scenario more likely than the other with confidence adjusted 

accordingly.  

 

STEP 4 Phase parents at sites where both parents are ambiguous, using embryo genotypes and putative 

parent origin hypotheses for E1 through E4 (determined in Step2). This results in the most likely estimate 

of PS Parental Haplotypes for SNPs 5 and 7. PS finds the best matches for both SNPs and corrects E1 on 

SNP 7, as seen in Table N4C.  
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scenarios MG FG E1 E2 E3 E3 #match SNP 5 #match SNP 7 

  AB AB AA BB BA AA 0 1 

  AB BA AB BA BB AB 3 2 

  BA AB BA AB AA BA 4 3 

  BA BA BB AA AB BB 0 0 

best SNP 5 BA AB AB AB AA AB     

best SNP 7 BA AB BA AB AA BA     

Table N4C. Step 4 scenarios 

 

Final Output PS Parental Haplotypes, PS Embryo genotypes and parent origin hypotheses are given in 

Table N3 (Column “PS Output”). 

Hidden Markov Model and related parameters 

The full implementation of Parental Support supporting meiotic crossovers involves a Hidden Markov 

Model (HMM) with a forward-backward (FBA) algorithm implemented. 

 
Background: A Hidden Markov Model (HMM) is a statistical Markov model in which the system being 

modeled is assumed to be a Markov process Xt, through “time” t, with unobservable, i.e. hidden states {x}. 

The approach assumes that there is another process Yt, with observable states {y}, whose behavior through 

time depends on X (Figure N2A and N2B). The goal is to learn about X by observing Y. In an HMM we 

assume that for each time instance t, the conditional distribution of Yt depends only on Xt, via probability 

P(y|x)=P(Yt=y|Xt=x). This probability is the emission probability. 

The probability of the observable sequence Y=(Y1,...,Yn) can be written by Bayes rule as 

P(Y)=∑XP(Y|X)P(X).  

  

Figure N2A. Hidden Markov Model setup              Figure N2B. HMM calculation 

For an HMM as in Figure N1A, we are interested in the posterior probability P(Xt=x|(y1,..,yn)), i.e. a 

probability of an unobservable state x at time t, given observed states (y1,..,yn). The forward algorithm 

calculates the joint probability of a hidden state x and (y1,..,yt) A(x,t)=P(Xt=x,y1,..,yt) as 

A(x,t)=P(Yt=yt|Xt=x)*∑zP(x|z,t)*A(z,t-1) thus reducing the problem of order t to the problem of order t-1, 

as seen in Figure N1B. P(x|z,t) is referred to as a hidden state transition probability at time t. Posterior 

probability of any hidden state x at time n is then P(x|(y1,..,yn))~A(x,n).  
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Specific Implementation for Embryo Measurements (Parental Support): This statistical model 

incorporates the fact that an embryo will inherit alleles from the same parent homolog on consecutive SNPs, 

unless a meiotic recombination (with probability estimated in the HapMap database) has occurred between 

the two SNPs. The joint distribution on genotype probabilities thus combines the array data, the individual 

embryo genotypes suggested by the array data, and the parent haplotyping that could produce those 

distributions of genotypes among various embryos. Consecutive SNPs represent “time” t, with additional 

definitions below as shown in Figure N3 and Table N5. The approach is applied to each full chromosome 

separately, at all sites on the array. The number of SNPs per chromosome ranges from 4.3K (chrom 21) to 

23.7K (chrom 2). In an advance over Kumar et al. 2015 the approach is run across the entire chromosome 

instead of smaller regions of the genome. This modified approach allows for crossovers within, as well as 

between bins, as well as inference of problematic genome sections.  

 

Figure N3. HMM framework (“Parental Support”) used to calculate PS Embryo Genotypes and PS Parental 

Haplotypes from microarray measurements on sibling embryos and parents. Between-SNP Transition 

probabilities are calculated using genetic maps and databases of recombination frequency. 

Observed State yt is the combination of parent and embryo microarray measurements at a particular SNP, 

yt=(MDt,FDt,EDtj) for j=1,...,k. 

Hidden State x is defined as a combination of true parent haplotypes and parent origin hypotheses 

x=(MG,FG,MH1,FH1,...,MHk,FHk) where MG,FG∈{AA,AB,BA,BB}, the set of parent haplotype 

pairs and MHj,FHj∈{H1,H2}, the set of parental origin hypotheses. 

Transition 

probability 

The product of haplotype prior frequencies (assuming no parent SNP linkage) and origin 

hypotheses transition probabilities. Specifically, for states x=(MG,FG,MHj,FHj,j=1...k) at SNP t 

and state z=(MGz,FGz,MHzj,FHzj,j=1...k) at time t-1 

Emission 

probability 

P(y|x) is defined as a product of parent and embryo SNP data likelihood (emission probabilities), 

given the true state x 

P(y|x) = P(MD|MG) x P(FD|FG) x ∏j=1,...,kP(EDj|EGj),  

where EGj is the jth embryo genotype, a direct combination of parent haplotypes MG,FG and jth 

parent origin hypotheses (MHj,FHj), as mentioned before. P(MD|MG), P(FD|FG) are parent data 

genomic emission models and P(ED|EG) is the embryo data emission model, further discussed 

below. 
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Output: PS 

Parental 

Haplotype  

Parent haplotypes probability is the marginal of the joint probability P(x|y), for all states having 

specific parent haplotype, i.e. P(MG|y)=∑x∈MGP(x|y). For each parent, we derive the best answer 

g* as the one maximizing this probability, i.e. g*=argmaxg P(g|y), with confidence P(g*). 

Output: Parental 

Origin Hyp. 
The state maximizing the marginal parent origin hypothesis probability P(H|y)=∑x∈HP(x|y). 

Table N5. Additional Definitions related to the Parental Support HMM. 

Calculating Transmission Probabilities 

In the simplified approach described above, we assumed that all parental haplotypes are inherited in the 

embryos without recombination. To model the meiotic recombinations between consecutive SNPs we 

compute the transmission probability from state z at SNP t-1 to state x at SNP t as  

P(x at SNP t|z at SNP t-1)=P(MG,t)*P(FG,t)*∏j=1,...,kP(MHj|MHzj,t)xP(FHj|FHzj,t), where: 

- P(MG,t) and P(FG,t) are parent haplotypes population priors at SNP t, derived from a large set of 

training data and allele frequency public databases. 

- P(MH|MHz,t), P(FH|FHz,t) are the hypotheses transition probabilities, derived via crossover 

probabilities between SNPs t-1 and t, from the HapMap database, simulating a chance of meiotic 

crossover between SNPs. Specifically, P(H1|H1,t)=P(H2|H2,t)=1-ct (no crossover occurred) and 

P(H1|H2,t)=P(H2|H1,t)=ct (crossover occurred), where ct=crossover probability between SNPs t-1 

and t, derived via HapMap database. 

Calculating Emission Probabilities (Emission Models) 

Noise in the microarray measurements of parent or embryo are accounted for in the “emission model” of 

the HMM. Specifically, the emission probabilities are the per SNP product of per channel data likelihood 

given a true genotype G: P(Data|genotype=G)=P(Data on channel A|G)*P(Data on channel B|G). We use 

two different approaches to modeling channel data likelihood: a simplified discrete emission model and a 

more complex continuous emission model (Figure N4).  

 The Discrete Emission Model is defined as the channel independent matrix product:  

Fdin,dout(g,G)=P(genotype=g|true genotype=G, ADI, ADO)=P(#A(g)|#A(G))*P(#B(g)|#B(G))  

 

parameterized using a drop in rate (ADI) and drop out rate (ADO), based on number of alleles A,B in true 

genotype G and measured genotype g, as shown in Table N6. Dropin (ADI) and dropout (ADO) rate 

parameters are fit on a case-by-case basis using microarray intensity data, as follows. 

 

 # alleles in G #alleles in g (measured) 

(true)  0 1 2 

0 1-ADI ADI ADI 

1 ADO 1-ADO 1-ADOt 

2 ADO2 ADO 1-ADO2 
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Table N6. Discrete emission model matrix FADI,ADO(g,G) 

 

First we determine a channel “noise floor” as the 95th percentile of channel array measurements for SNPS 

where no channel signal should be present, such as SNPS with same homozygous parents, context (AA|AA) 

for channel B and (BB|BB) for channel A. We have effectively fixed the drop in rate at ADI=5%.  

Second, we calculate the channel dropout rate (ADO) as the percent channel measurements less than “noise 

floor” out of all SNPS with guaranteed heterozygous genotype, such as “polar” SNPS with context (AA|BB) 

or (BB|AA). This process is demonstrated for one of ‘case 10’ embryos in Figure N3 (“Discrete Response”). 

 
 

Figure N4. Calculating Emission Probability parameters, continuous and discrete approach for one Day 5 

embryo (Case 10). Microarray measurements are colored by parental context. Noise floor FA and FB are 

used in the discrete emission model. 

 

Continuous Emission Model: In this case, data measurements are modeled using a two-dimensional 

likelihood P(Data|G)=P(Channel A Measurement|G)*P(Channel B Measurement|G), where each channel 

likelihood is parameterized via known, continuous distribution for given G. Distribution parameters are 



12 

fitted in each couple using embryo microarray measurements for parental context resulting in G. The 

process is demonstrated for one of ‘case 10’ embryos in Figure N4. 

Parameter estimates used in HMM 

Genomic Data Emission Model For mother and father microarray data, we adopt discrete emission model 

with fixed parameter values, such as genomic data ADI rate=0.1% and genomic data ADO=0.15%, 

determined from a large training set of genomic samples. 

 

Embryo Data Emission Model For embryo Day 3 or Day 5 microarray data, we use either discrete model 

(simple case), or continuous model (more accurate), with parameters determined on per embryo basis. Mean 

dropout rates, for Day 3 and 5 embryos in our study, are given in Table N7. A boxplot of estimated allele 

dropout rates for 90 Day 5 and 20 Day 3 embryos are given in Figure N5. Of note, only euploid 

chromosomes are displayed. If an embryo contains 23 chromosomes and one is aneuploid, only 22 

chromosomes would be included. For simplicity, the Y chromosome was not considered in this analysis. 

 
Figure N5. Estimated allele dropout rates across Day 5 and Day 3 embryos. Boxplots show median (red 

line), interquartile range(box), range not considered outliers(whiskers), and outliers(red crosses).  

Day 5 rates, from n=90 samples, have a mean=8.7%, median= 6.2%, st. dev=7.5%, interquartile range of 

[5.2-8.3]%, range of [3.2%-39.6]%.  

Day 3 rates, from n=20 samples, have a mean=63.7%, median= 69.8%, st. dev=13.7%, interquartile range 

of [49.8-74.5]%, range of [39.7-80.6]%. 

Parental Support Results 

We next examined the percent of total array sites correctly predicted both without parental support 

(raw genotype) or with parental support (PS embryo genotype). This analysis considered only 

euploid chromosomes. An average of 97% of the array sites are called with Day 5 embryo biopsies 

using parental support (PS embryo genotypes before cleaning with population data) vs. 68 % of 

array sites (n=150,000) without. Similarly, in Day 3 embryos 79% of array sites are called vs. 51% 

without. The accuracy of these calls is 99.5% for Day 5 embryos and 97% for Day 3 embryos, as 

opposed to 97.4% (Day 5) and 53.6% (Day 3) for microarray sites, an increase of 2% and 44% 

respectively. Mean dropout rates, coverage and correct call rates for raw and PS genotypes, along 

with dropout rates are given for all Day 5 (90 embryos) and Day 3 (20 embryos) in Table N7. 

Boxplots of rates for genotype kind and Day 5 vs Day 3 are given in Figure N6A and B. Parental 
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Support consistently increased the accuracy and coverage of predictions. Day 3 embryos had a 

higher drop out rate, lower coverage and lower accuracy compared with Day 5 embryos. PS 

Embryo genotypes are further processed in our approach of whole genome reconstruction (Figure 

N1A) and below, to increase the number of sites predicted in both Day 3 and Day 5 embryos (see 

Extended Data Fig. 1).  

 

 

 

  

Total # 

Allele 

Dropout 

Rate (%) 

Coverage(%) Correct Call Rate(%) 

  REG PS REG PS 

Day 5 90 8.7 68.3 96.7 97.4 99.5 

Day 3 20 64.2 51.2 79.1 53.6 97 

 

Table N7. Rates for regular (raw) array embryo genotypes and PS embryo genotypes for Day 5 and 3 

embryos 
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Figure N6A. Estimated allele dropout rates across Day 5 and Day 3 embryos. Boxplots show 

median (red line), interquartile range(box), range not considered outliers(whiskers), and 

outliers(red crosses).  

Day 5 rates, from n=90 samples, have a mean=8.7%, median=6.2%, st. dev= 7.5%, interquartile 

range of [5.2-8.3]%, range of [3.2%-39.6]%.  

Day 3 rates, from n=20 samples, have a mean=63.7%, median=69.8%, st. dev=13.7%, interquartile 

range of [49.8-74.5]%, range of [39.7-80.6]%.  

N6B. Estimated allele dropout rates across Day 5 and Day 3 embryos. Boxplots show median (red 

line), interquartile range(box), range not considered outliers(whiskers), and outliers(red crosses).  

Day 5 rates, from n=90 samples, have a mean=8.7%, median=6.2%, st. dev=7.5%, interquartile 

range of [5.2-8.3]%, range of [3.2%-39.6]%.  

Day 3 rates, from n=20 samples, have a mean=63.7%, median=69.8%, st. dev=13.7%, interquartile 

range of [49.8-74.5]%, range of [39.7-80.6]%.  

 

Genome Prediction in Embryo 

We used the PS Parental Haplotypes and PS Embryo Genotypes in combination with whole 

genome sequencing of each parent as described in the methods section to enable whole genome 

prediction of each embryo. See example predictions of transmitted segments in Figure N7 below. 

Briefly, we phased WGS-identified variants (~6 million) into “phased parental genomes” using PS 

Parental Haplotypes and a population reference panel. We computed which portion of the parent’s 

chromosomes was transmitted to the embryo by comparing the PS haplotype with the PS embryo 

genotypes and repeated the process across all maternal and paternal chromosomes (see Extended 

Data Fig. 7-8). Results of the reconstruction approach can be found in Extended Data Fig. 1.  

 

 
Figure N7: Here is a plot of transmitted haplotypes on chromosome 3 across 8 sibling embryos derived 

from family 5. Transmitted haplotypes were output from parental support and form the basis of the PS 

Embryo Genotypes at microarray sites. Green and red lines denote parental haplotype 1 and 2 respectively 
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for mother (MH) and father (FH) haplotypes in each embryo. (Regions of some uncertainty are colored 

yellow).  

 

Supplemental Note 2. WGS with synthetic long read sequencing 

Linked read sequencing data was generated for Case IDs 5, 8, 9, and 10 using the TELL-Seq 

library preparation method. After read alignment and variant calling using the same process 

described above with the addition of maintaining molecular barcode information for each read, 

we inferred the molecular phase using HapCut234 with default parameters except 

maxFragments=1000000 and d=40000. We annotated positions with their global allele 

frequency using the gnomad database35.     

Supplemental Note 3: Within-family polygenic risk score effect size 

To examine within family effects of PRS, we applied a random intercept mixed-effects model, 

similar to Selzam et al 2019, on a total of 9,000 sibling pairs within the UK Biobank, including 

two fixed effects to separate within and between family effects: 

 
 

Where 𝛽W is the within family slope, PRSij is the PRS in individual i and family j, 𝑃𝑅𝑆𝑗 is the 

average PRS for family j, 𝛽F is the slope between families, and 𝛾 is a random intercept term. Our 

analysis did not find a significant difference in breast cancer PRS effect sizes for siblings vs. 

unrelated individuals. Although the UK Biobank does not have enough siblings to repeat this 

analysis across all diseases, we anticipate similar findings for most diseases.  

 

Supplemental Note 4: Centering approach for individuals with Ashkenazi Jewish 

Ancestry 

For individuals with AJ ancestry, we found the above method that relies on principal component 

analysis of 1000 Genomes individuals did not sufficiently correct for ancestry, likely due to low 

representation of AJ individuals in the 1000 Genomes project. Thus, for individuals with AJ 

ancestry, we center and standardize using a population of AJ identified in the UK Biobank, 

following the approach detailed in Prive et al 202136. Specifically, we project data from UK Biobank 

participants onto principal components calculated using the Khazar dataset from Behar et al37. 

We then identify the geometric median of the AJ reference individuals and calculate the distance 

to this center for all UKB individuals. We then chose a threshold such that all AJ individuals in the 

reference set are included and all other populations excluded. 470 UKB individuals were assigned 

to this group as AJ. We use the mean and standard deviation of the scores in this group of 

individuals to center and standardize the raw PRS for AJ individuals in the study.

https://paperpile.com/c/lX4Rdr/wrVom
https://paperpile.com/c/lX4Rdr/fBLH5
https://paperpile.com/c/lX4Rdr/solR
https://paperpile.com/c/lX4Rdr/Kr3u
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