THE LANCET Haematology

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Kiladjian J-J, Zachee P, Hino M, et al. Long-term efficacy and safety of ruxolitinib versus best available therapy in polycythaemia vera (RESPONSE): 5-year follow up of a phase 3 study. *Lancet Haematol* 2020; published online Jan 23. https://doi.org/10.1016/S2352-3026(19)30207-8.

Supplementary Table 1. Summary of reasons of screen failures

Reasons for exclusion	N=120		
Patients meeting the following exclusion criteria			
Active malignancy over the previous 5 years with exception as described in the study protocol and with no evidence for recurrence in the past 3 years	5 (4.2%)		
Alcohol or drug addiction that would interfere with the ability to comply with the study requirements	1 (0.8%)		
Clinically significant bacterial, fungal, parasitic or viral infection which requires therapy or known active hepatitis A, B or C at screening or known HIV positivity			
Clinically significant cardiac disease (NYHA class III or IV)	1 (0.8%)		
Subject of childbearing potential who are unwilling to take appropriate precautions as described in study protocol	2 (1.7%)		
Physician decision	1 (0.8%)		
Subject decision	3 (2.5%)		
Uncontrolled intercurrent illness or any concurrent condition that would jeopardize the safety of the subject or compliance with the protocol			
Patients not meeting the following inclusion criteria			
ANC \geq 1.5 X 10 ⁹ /L and PLT \geq 100 X 10 ⁹ /L at screening	3 (2.5%)		
At least one of the following at screening: A. WBC >15 X 10^{9} /L. B. PLT >600 X 10^{9} /L	14 (11.7%)		
Subject with/without a palpable spleen defined with volume $\geq 450 \text{ cm}^3$	30 (25.0%)		
Two or more phlebotomies within 24 weeks of screening with at least one within 12 weeks	29 (24.2%)		
Palpable spleen ≥ 5 cm	4 (3.3%)		
PEG-IFN-Alpha-2A within 5 weeks of screening or having a prior history of 32P therapy	1 (0.8%)		
Peripheral blood blast count of 0% at screening	10 (8.3%)		
PV diagnosis for at least 6 months prior to screening	4 (3.3%)		
Resistance or intolerance to hydroxyurea	11 (9.2%)		
Stable regimen for at least 2 weeks prior to screening and no less than 4 weeks prior to randomization	2 (1.7%)		

A patient may have several reasons for screening failure;

ANC, absolute neutrophil count; HIV, human immunodeficiency virus; PLT, platelet; PV, polycythemia vera; WBC, white blood corpuscle

Supplementary Table 2. Baseline Patient Characteristics

n (%)	Ruxolitinib n = 110	BAT n = 112	
Median age (range) — years	62.0 (34-90)	60.0 (33-84)	
Men — %	60.0	71.4	
Median time since PV diagnosis (range) — years	8.2 (0.5-36)	9.3 (0.5-23)	
Median duration of prior HU therapy (range) — years	3.1 (<0.1–20.9)	2.8 (<0.1-20.9)	
ECOG performance status — %			
0	69.1	68.8	
1	28.2	30.4	
2	2.7	0.9	
Resistance/intolerance to HU — %			
Intolerance	53.6	54.5	
Resistance	46.4	45.5	
Prior thromboembolic event — %	35.5	29.5	
JAK2 V617F mutation positive — %	94.5	95.5	
Mean allele burden (SD) — %	76.2 (17.8)	75.0 (22.6)	
Median spleen length below costal margin (range) — cm	7.00 (0.0-24.0)	7.00 (0.0-25.0)	
Spleen length < 10 cm — %	64.5	59.8	
Median spleen volume (range) — cm ³	1195 (396-4631)	1322 (254-5147)	
Mean hematocrit (SD) — % ^a	43.6 (2.2)	43.9 (2.2)	
Hematocrit category – %			
40%-45%	71.8	74.1	
> 45%	25.5	22.3	
Mean WBC count (SD), $\times 10^{9}/L$	17.6 (9.6)	19.0 (12.2)	
Mean platelet count (SD), $\times 10^9/L$	484.5 (323.3)	499.4 (318.6)	
Median number phlebotomies in the 24 weeks prior to screening (range)	2.0 (1.0-8.0)	2.0 (0-16.0)	

^a Following HCT control period before randomization. Patients who achieved an HCT between 40% and 45% within 14 days before their day 1 visit could proceed to randomization; however, HCT at baseline may have been higher or lower.

ECOG, Eastern Cooperative Oncology Group; HCT, hematocrit; HU, hydroxyurea; PV, polycythemia vera; SD, standard deviation; WBC, white blood cells.

	Ruxolitinib (n = 110)	BAT ^a (n = 112)	Ruxolitinib after crossover from BA7 (n = 98)
Reasons for discontinuation of treatment, n (%)			
Completed treatment period	72 (65.5)	1 (0.9)	64 (65.3)
Adverse event	16 (14.5)	2 (1.8)	16 (16.3)
Disease progression	12 (10.9)	1 (0.9)	9 (9.2)
Patient decision	6 (5.5)	5 (4.5)	6 (6.1)
Lack of efficacy	0	100 (89.3)	0
Others (protocol deviation and/or lost to follow-up and/or physician decision)	3 (2.7)	2 (1.8)	3 (3.1)
Death ^b	1 (0.9)	0	0
Median (Interquartile range) treatment exposure, weeks	255 (158 – 256)	34 (32 - 36)	220 (135 – 223)

Supplementary Table 3. Patient disposition at completion of the RESPONSE study (5-year final analysis)

^a One patient was randomised to BAT but did not receive study treatment. Initial BAT included hydroxyurea (n = 66), IFN/pegylated IFN (n = 13), anagrelide (n = 8), IMIDs (n = 5), pipobroman (n = 2), and observation (n = 17).

For patients who were randomised to BAT and then crossed over to ruxolitinib, the reasons for end of BAT are reported in the "BAT" column.

^b One patient in the ruxolitinib arm, determined by the investigator to have discontinued the study treatment due to AEs, died afterwards.

Abbreviations: AE, adverse event; BAT, best available therapy; IFN, interferon; IMID, immunomodulator.

Ruxolitinib (N = 10)	BAT (N = 9)		
Pneumonia (n = 1)	Cecal neoplasia with local ganglionic metastasis (n = 1)		
Worsening of colon carcinoma (n=1)	Acute myeloid leukemia (n = 1)		
Unknown (n = 1)	Hepatorenal syndrome (n = 1)		
Multiple comorbidities (n = 1)	Disease progression $(n = 1)$		
Gastric adenocarcinoma (n = 1)	Pulmonary carcinoma (n = 1)		
Sternal tumor invasion (n = 1)	Shock (n = 1)		
Recurrence of breast cancer $(n = 1)$	Adverse events (n = 1)		
Heart failure and atrial fibrillation (n = 1)	Study indication (n = 1)		
Acute myeloid leukemia (n = 1)	CNS hemorrhage (n = 1)		
Multifocal metastatic lesion $(n = 1)$			

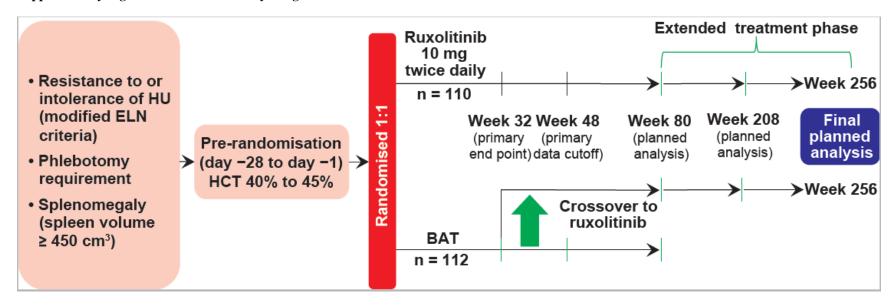
Supplementary Table 4. Principle causes of deaths in the ruxolitinib and BAT arms

Abbreviations: BAT, best available therapy; CNS, central nervous system.

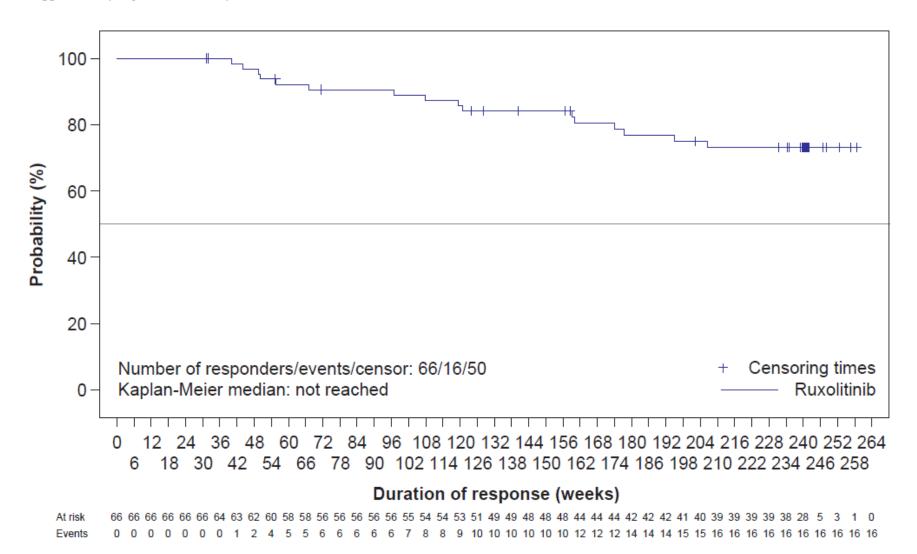
Supplementary Table 5. Exposure-adjusted rates (per 100 patient-year) of second malignancy events

Event	Ruxolitinib rate per 100 patient-year of exposure N = 110 Exposure = 428·4 patient-year	BAT rate per 100 patient-year of exposure N = 111 Exposure = 73·6 patient-year	Crossover rate per 100 patient-year o exposure N = 98 Exposure = 329·9 patient-year
Number of patients (rate ^a)	All grades	All grades	All grades
All second malignancies ^{a,b}	30 (7.0)	3 (4·1)	15 (4.5)
Non-melanoma skin cancer	22 (5.1)	2 (2.7)	9 (2.7)
Squamous cell carcinoma ^c	6 (1.4)	0 (0.0)	4 (1·2)
Malignant melanoma	1 (0.2)	1 (1.4)	0 (0.0)
Prostate cancer	1 (0·2)	0 (0.0)	2 (0.6)
Breast cancer	2 (0.4)	0 (0.0)	0 (0.0)
Lymphoma	0 (0.0)	0 (0.0)	0 (0.0)
Disease progression ^d			
Acute myeloid leukemia	1 (0·2)	0 (0.0)	2 (0.6)
Myelofibrosis	9 (2.1)	1 (1.4)	6 (1.8)

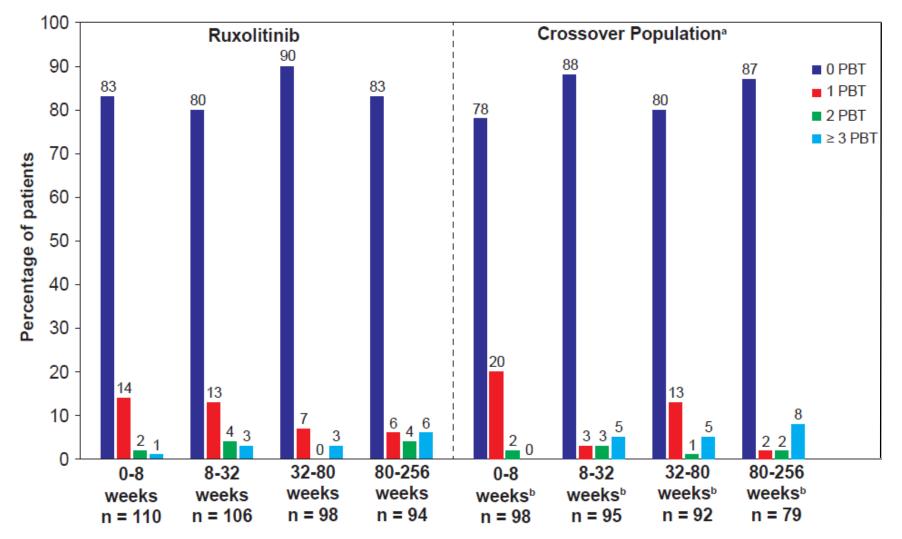
^a Adjusted rates were calculated as the number of events per 100 patient-years of exposure.
^b Events occurring in ≥ 0.5% of patients in any group.
^c All events were squamous cell carcinoma of the skin, including the region of parotid gland. No case of metastatic disease was reported.


^d Events occurring in ≥ 1 patient(s) in any group. Abbreviation: BAT, best available therapy.

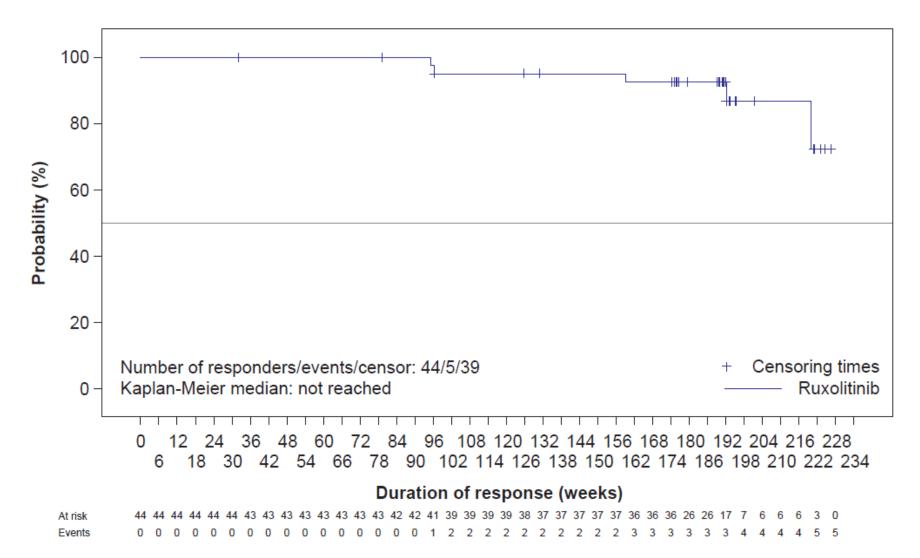
Non-melanoma skin cancer events ^{a,b} Prior history of non- melanoma skin cancer	Ruxolitinib rate per 100 patient-year of exposure N = 110 Exposure = 428·4 patient-year		BAT rate per 100 patient-year of exposure N = 111 Exposure = 73·6 patient-year		N =	100 patient-year of osure = 98 9·9 patient-year
	No (n = 97)	Yes (n = 13)	No (n = 105)	Yes (n = 6)	No (n = 92)	Yes (n = 6)
Patient-year of exposure	385-3	43.0	70.1	3.5	307.5	22.4
Total events	14 (3.6)	8 (18.6)	1 (1•4)	1 (28.5)	6 (2.0)	3 (13·4)
Basal cell carcinoma	10 (2.6)	7 (16.3)	1 (1.4)	0 (0.0)	4 (1.3)	1 (4.5)
Squamous cell carcinoma of skin	5 (1.3)	4 (9.3)	0 (0.0)	0 (0.0)	3 (1.0)	1 (4.5)
Squamous cell carcinoma ^b	3 (0.8)	3 (7.0)	0 (0.0)	0 (0.0)	2 (0.7)	2 (8.9)
Bowen's disease	1 (0.3)	1 (2.3)	0 (0.0)	1 (28.5)	0 (0.0)	0 (0.0)
Carcinoma in situ of skin	0 (0.0)	2 (4.6)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Metastatic squamous cell carcinoma	0 (0.0)	2 (4.6)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Keratoacanthoma	1 (0.3)	0 (0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)

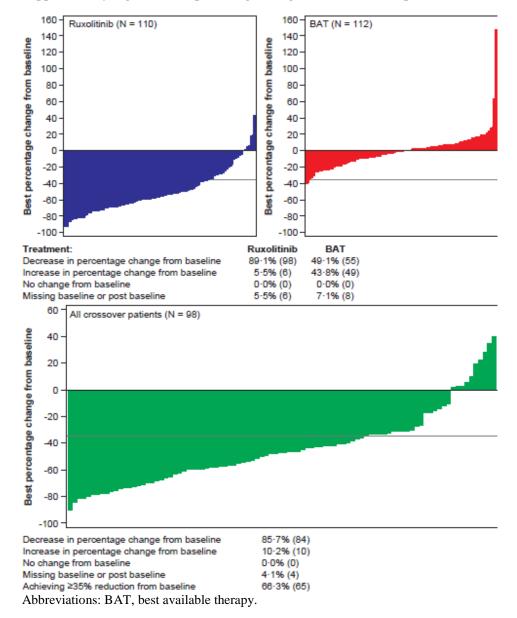

Supplementary Table 6. Exposure-adjusted rates (per 100 patient-year) of non-melanoma skin cancer events by prior history of malignancy status

 ^a Adjusted rates were calculated as the number of events per 100 patient-years of exposure.
^b All events were squamous cell carcinoma of the skin, including the region of parotid gland. No case of metastatic disease was reported. Abbreviation: BAT, best available therapy.

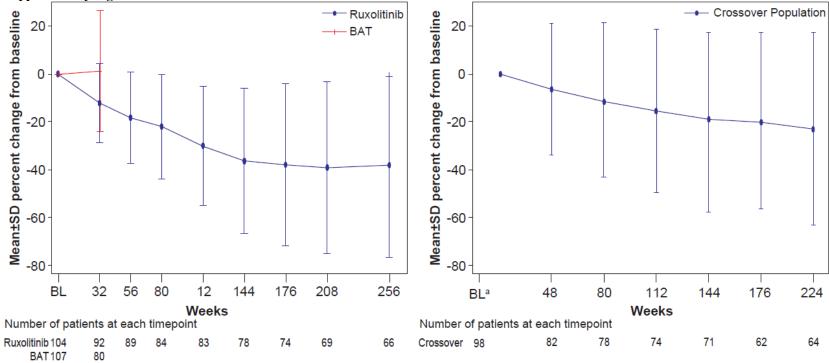

Supplementary Figure 1. RESPONSE study design

Abbreviations: BAT, best available therapy; ELN, European LeukemiaNet; HCT, haematocrit; HU, hydroxyurea.

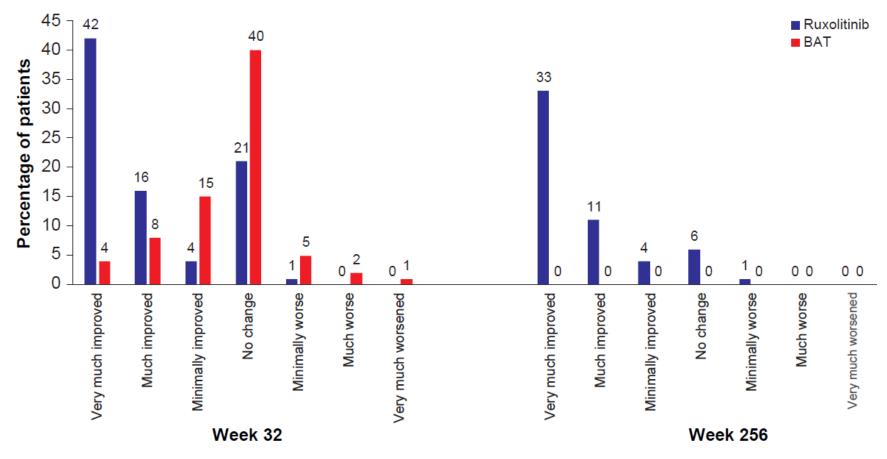

Supplementary Figure 2. Durability of hematocrit control with ruxolitinib


Supplementary Figure 3: Number of phlebotomy procedures over time in ruxolitinib-treated patients

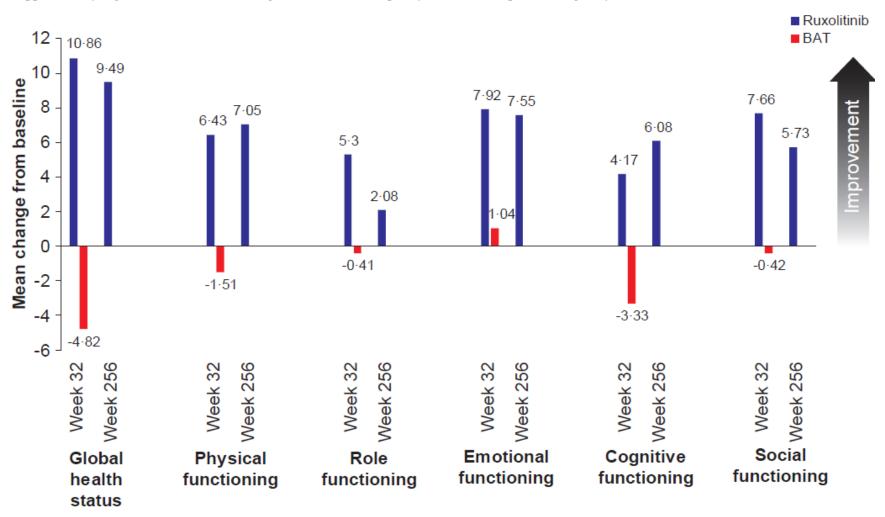
^aAll patients who crossed over from BAT. ^bFrom the time of crossover.


BAT, best available therapy; PBT, phlebotomy.

Supplementary Figure 4. Durability of spleen response with ruxolitinib



Supplementary Figure 6. Reduction in JAK2 V617F allele burden from baseline over time


^aDefined as the last assessment prior to first dose of ruxolitinib crossover treatment

BAT, best available therapy; BL, baseline; SD, standard deviation.

Supplementary Figure 7. Pruritus Symptom Impact Scale over time in patients originally randomized to ruxolitinib

Abbreviations: BAT, best available therapy.

Supplementary Figure 8. EORTC QLQ-C30 global health status-quality of life scale in patients originally randomized to ruxolitinib

Abbreviations: BAT, Best available therapy; EORTC QLQ-C30, the European Organization for the Research and Treatment of Cancer core quality of life questionnaire.

RESPONSE study sites and investigators

Australia: Royal Brisbane Hospital, Brisbane—S. Durrant; Royal Melbourne Hospital, Parkville—A. Bajel; Tweed Hospital, Tweed Heads—E. Abdi; Belgium: Cliniques Universitaires Saint-Luc Bruxelles-L. Knoops; Gasthuisberg University Hospital, Leuven-T. Devos; AZ Sint-Jan, Brugge—J. Van Droogenbroeck; ZNA Stuivenberg Hematology and Oncology, Antwerp—P. Zachee; Canada: Sunnybrook Health Sciences Center, Toronto, ON—J. Callum; Princess Margaret Hospital, Toronto, ON—V. Gupta; Juravinski Cancer Clinic, Hamilton, ON—B. Leber; Jewish General Hospital, Montreal, QC-J. Prchal; France: Hospital Saint Louis, Paris-J.-J. Kiladjian; CHU de Brest-Hopital Morvan Brest Cedex—J.-C. Ianotto; Hospital Saint Vincent Lille Cedex—N. Cambier; Center Hospitalier d'avignon, Avignon—B. Slama; CHU Nancy-Brabois, Vandoeuvre Les Nancy—D. Ranta; Hospital Hotel Dieu, Nantes—V. Dubruille; Centre Hospitalier de la Cote Basque, Bayonne—F. Bauduer; United States: Florida Pulmonary Research Institute, Winter Park, FL—F. Fakih; Gabrail Cancer Center Research, Canton, OH—N. Gabrail; Alabama Oncology, Birmingham, AL—J. Harvey; Palm Beach Institute of Hematology and Oncology, Boynton Beach, FL—E. Meiri; Mayo Clinic Arizona, Scottsdale, AZ—R. Mesa; Saint Agnes Hospital, Baltimore, MD—C. Miller; Fred Hutchinson Cancer Research Center, Seattle, WA—B. Scott; Houston Cancer Institute, Houston, TX-M. Scouros; Sierra Hematology and Oncology, Sacramento, CA-C. Spears; Providence Cancer Institute, Southfield, MI-H. Terebelo; The University of Texas MD Anderson Cancer Center, Houston, TX-S. Verstovsek; Achieve Clinical Research LLC, Birmingham, AL—A. Yeilding; Regional Cancer Care Associated LL Somerset Division, Somerville, NJ—S. Young; Washington University School of Medicine, St Louis, MO-S. Oh; Medical University of South Carolina, Charleston, SC-L. Afrin; New Hope Cancer and Research Institute, Pomona, CA-V. Agarwal; Northwestern University Feinberg School of Medicine, Chicago, IL-B. Stein; Sarah Canon Research Institute, Nashville, TN-J. Berdeja; Hematology-Oncology Associates of Northern New Jersey and Carol G. Simon Cancer Center, Morristown, NJ—M. Scola; University of Nebraska Medical Center, Omaha, NE—M. Akhtari and S. Rajan; Florida Cancer Specialists, Fort

Myers, FL-M.-J. McCleod; Cancer Center of Acadiana at Lafayette General, Lafayette, LA-L. Meza; Capitol Comprehensive Cancer Care Clinic, Jefferson, MO—A. Khojasteh; University of Florida College of Medicine at Jacksonville, Jacksonville, FL—N. Latif; Sharp Clinical Oncology Research, San Diego, CA—A. Saleh; Maine Center for Cancer Medicine and Blood Disorders, Scarborough, ME—H. Ryan; Oncology Associates of Bridgeport, Trumbull, CT-D. Witt; Geisinger Medical Center Cancer Center Hazelton, Hazelton, PA-P. Roda; Maryland Oncology Hematology, P.A., Columbia, MD-E. Lee; Cancer Centers of the Carolinas, Greenville, SC-J. Walls; Saint Alphonsus Regional Medical Center, Boise, ID—K. Pulver; Commonwealth Hematology-Oncology, PC, Lawrence, MA—P. Sanz-Altamira; Germany: Univ-Klinilum Mannheim Theodor-Kutzer Ufer 1, Mannheim—E. Lengfelder; Universitatsklinikum Aachen, Aachen—T. Brümmendorf; Friedrich-Schiller Universitaetsklinicum Jena—A. Hochhaus; Johannes Wesling Klinikum Minden, Minden—M. Griesshammer; Klinikum Rechts der Isar der TU Munchen, Munchen—P. Jost and J. Duyster; Univ-Klinik Magdeburg, Magdeburg—F. Heidel; Universitaatsklinikum Ulm, Ulm—K. Döhner; Universitaetsklinikum Hamburg Eppendorf, Hamburg—P. Schafhausen; Charite Berlin Campus Benjamin Franklin, Berlin—I. Blau; Universitaatsklinik Albert-Ludwigs-Uni-Freiburg, Freiburg—C. Waller; Universitatsklinikum Bonn, Bonn—D. Wolf; Hungary: Markosovszky Egyetemi Oktatokorhaz, Szombathley-L.-J. Ivanyi; Szegedi Tudomanyegyetem, Szeged-Z. Borbenyi; Bacs-kiskun Megyei Onkormanyzat Korhaza, Kecskemet—G. Pajkos; Fov Onk Egyesitett Szent István és Szent Laszlo Korhaz, Budapest—T. Masszi; Italy: Az Osp Universit Careggi—Univ Studi di Firenze, Firenze—A.-M. Vannucchi and P. Guglielmelli; Fondazione IRCC Policlinico S Matteo Univ degli Studi Pavia, Pavia—M. Cazzola; Az Sanit Osp Univ S Luigi Gonzaga di Orbassano Regione Gonzole, Univ degli Studi di Torino, Orbassano—D. Cilloni; AOU Policlinico Umberto I Univers La Spienza, Roma-A. Tafuri and G. Alimena; Presidio Ospedaliero S Bortolo ULSS 6 Vicenza, Vicenza-F. Rodeghiero; Az Osp Univ Consorziale Policlin di Bari Univ degli Studi, Bari-G. Specchia; AO Bianchi Melacrino Morelli-Presidio Ospedali Riuniti, Reggio Calabria—F. Nobile; Fondazione IRCCS Policlinico San Matteo, Pavia—V. Rosti and G. Barosi; Papa Giovanni XXIII

Bergamo—A. Rambaldi; Az Osp di Bologna Policlinico S Orsola–Malpighi Univ degli Studi, Bologna—M. Cavo and M. Baccarani; AO Osp di Circolo e Fond Macchi-Polo Univ Pr Osp di Varese, Varese-F. Passamonti and D.D. Caramazza; A Osped-Universit Policlinico Federico II Univ degli Studi, Napoli—F. Pane; Az Ospedariela Niguarda Ca' Granda, Milano—E. Pungulino; Korea: Severance Hospital, Seoul—Y. Min; Seoul St Mary's Hospital, Seoul—B. Cho; the Netherlands: Erasmus MC/Centrumlocatie, Rotterdam—P.A.W. te Boekhorst; Medische Spectrum Twente Enschede—W.M. Smit; Spain: Hospital del Mar Barcelona, Cataluna—C. Besses Raebel; Hospital Universitario Doctor Negrin Las Palmas de Gran Canaria, Las Palmas de GC-M.-T. Gomez Casares; Hospital Clinico Universitario Sanitiago De Compostela, Valencia, Comunidad Valeniana—J.-C. Hernandez Boluda; Complejo Hospitalario de Navarra, Pamplona, Navarra—E. Olavarria Lopez; Hospital 12 de Octubre, Madrid—J. Martinez Lopez; Hospital Virgen de La Victoria, Malaga, Andalucia—M.-P. Queipo de Llano Temboury and S. Del Castillo; Antes Hospital Juan Canalejo, La Coruna, Galicia-C. Fernandez Lago; Hospital Universitario de Salamanca, Salamanca, Castilla Y Leon—J.-M. Hernandez Rivas; Turkey: Ege University Medical Faculty Hospital, Izmir—G. Saydam; Hacettepe University Medical Faculty, Ankara—I. Haznedaroglu; Istanbul University, Istanbul Medical Faculty, Istanbul—A. Yavuz; United Kingdom: Guy's Hospital, London—C. Harrison; Cardiff University Hospital, Cardiff, Wales-S. Knapper; Royal Bournemouth Hospital, Bournemouth-J. Chacko; Russia: Research Institute of Hematology and Transfusionology of Federal Agency of High-Technology Medical Care, St Petersburg—K. Abdoulkadyrov; Institute of Cardiology and Endocrinology, St Petersburg—A. Zaritsky; Hematological Scientific Center of RAMS, Moscow—M. Sokolova and N. Khoroshko; Japan: University of Yamanashi Hospital, Chuo-city, Yamanashi—K. Kirito; Japanese Red Cross Medical Center, Shibuya, Tokyo— K. Suzuki; Osaka City University Hospital, Osaka-City, Osaka-M. Hino; Chiba University Hospital, Chiba-city, Chiba-M. Takeuchi; Japanese Red Cross Nagoya Daiichi Hospital, Ngoya, Aichi-K. Miyamura; Gunma University Hospital, Maebashi-City, Gunma-H. Handa; Keio University Hospital, Shinjuku-ku, Tokyo-S. Okamoto; Thailand: Siriraj hospital, Bangkok-S. Issaragrisil; Argentina: Hospital Ramos Mejia

CABA, Buenos Aires—B. Moiraghi; China: Jiangsu Province Hospital, Nanjing, Jiang Su—J. Li; Peking Union Medical College Hospital, Beijing, Beijing—D. Zhou; First Affiliated Hospital Zhejiang Medical University, Hangzhou, Zhejiang—J. Jin