Science Immunology

Supplementary Materials for

SARS-CoV-2 Omicron-neutralizing memory B-cells are elicited by two doses of BNT162b2 mRNA vaccine

Ryutaro Kotaki et al.

Corresponding author: Yoshimasa Takahashi, ytakahas@niid.go.jp

DOI: 10.1126/sciimmunol.abn8590

The PDF file includes:

Figs. S1 to S5

Other Supplementary Material for this manuscript includes the following:

Table S1

SARS-CoV-2 Omicron-neutralizing memory B-cells are elicited by two doses of BNT162b2 mRNA vaccine

Authors: Ryutaro Kotaki^{1†}, Yu Adachi^{1†}, Saya Moriyama^{1†}, Taishi Onodera^{1†}, Shuetsu Fukushi², Takaki Nagakura¹, Keisuke Tonouchi¹, Kazutaka Terahara¹, Lin Sun¹, Tomohiro Takano¹, Ayae Nishiyama¹, Masaharu Shinkai³, Kunihiro Oba⁴, Fukumi Nakamura-Uchiyama⁵, Hidefumi Shimizu⁶, Tadaki Suzuki⁷, Takayuki Matsumura¹, Masanori Isogawa¹, Yoshimasa Takahashi^{1*}

Affiliations:

¹Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Tokyo 162-8640, Japan.

²Department of Virology I, National Institute of Infectious Diseases; Tokyo 162-8640, Japan.
³Tokyo Shinagawa Hospital; Tokyo, 140-8522, Japan.

⁴Department of Pediatrics, Showa General Hospital; Tokyo, Japan

⁵Department of Infectious Diseases, Tokyo Metropolitan Bokutoh Hospital; Tokyo, Japan ⁶Department of Respiratory Medicine, JCHO Tokyo Shinjuku Medical Center; Tokyo, Japan ⁷Department of Pathology, National Institute of Infectious Diseases; Tokyo 162-8640, Japan.

*Corresponding authors.

Yoshimasa Takahashi

Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases

Email: <u>ytakahas@niid.go.jp</u>

[†]These authors contributed equally to this work.

SUPPLEMENTARY MATERIALS

- Fig. S1. Participant demographics.
- Fig. S2. RBD-binding antibody titers and correlation to neutralizing activities.
- Fig. S3. Flow cytometry gating strategy for RBD-binding B_{mem} cells.
- Fig. S4. Additional analyses on the vaccine-induced B_{mem} cell subsets.
- Fig. S5. S309 antibody binding to Omicron RBD
- Supplemental Table S1: Raw data file (excel)

Fig. S1. Participant demographics.

(A) Anti-nucleocapside antibody titers of plasma collected prior to the first vaccination and at the early and late time points were measured. The dotted line on the y-axis indicates a detection limit (1.0) for the assay provided from the manufacturer. Samples with values above the detection limit at the pre-vac. time point were excluded from subsequent analyses. (B) Age distribution of the subjects was analyzed using the Mann-Whitney U-test (ns, not significant: $P \ge 0.05$).

Fig. S2. RBD-binding antibody titers and correlation to neutralizing activities.

(A) Longitudinal RBD-binding IgG and IgA titers were measured using ECLIA. (B) Correlations between RBD-binding IgG or IgA and neutralizing titers were analyzed.

Statistical analyses were performed using the Friedman test (A) and Spearman's correlation analysis (B). ****P < 0.0001. Data were pooled from more than two independent experiments.

FcRL5

CD11c

Fig. S3. Flow cytometry gating strategy for RBD-binding B_{mem} cells.

RBD-binding IgM/IgA/IgG B_{mem} cells were initially selected as Dump⁻CD19⁺CD20⁺ cells and then divided into IgM⁺, IgA⁺, or IgG⁺ cells. After gating on spike/RBD-binding cells, IgG⁺ fractions were further delineated into B_{mem} subsets based on CD21, CD27, CD11c, and FcRL5 expression as indicated in the plot. activated (CD21⁻CD27⁺), resting (CD21⁺CD27⁺), CD27^{low} (CD21⁺CD27^{low}), and atypical (CD21⁻CD27^{low}CD11c⁺FcRL5⁺) subsets. Representative plots from four independent experiments are shown.

Fig. S4. Additional analyses on the vaccine-induced B_{mem} cell subsets.

(A) Longitudinal frequencies of RBD-binding CD21⁺CD27⁺ IgM B_{mem} cells among CD19⁺CD20⁺ B cells were analyzed (n = 23). Values on the plots indicate fold decrease of median from the early to the late time points. (**B**) B_{mem} cell subsets were analyzed using samples with >20 RBD-binding IgG B_{mem} cells. In the pie charts, median frequency of B_{mem} subsets among RBD-binding IgG⁺ B cells were plotted (Early, n = 7; Late, n = 14). (**C**) B_{mem} cell subsets were analyzed on Spike-binding, non-RBD-biding IgG⁺ B_{mem} cells (n = 23). In the pie charts, median frequency of B_{mem} subsets among RBD-binding IgG⁺ B cells were plotted. Statistical analyses were performed with the Wilcoxon test (A), and the Friedman test (B, C) (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001). Data were pooled from two independent experiments.

Fig. S5. S309 antibody binding to Omicron RBD

Binding of S309 IgG1 antibody to Wuhan-RBD (left) and Omicron-RBD (right) were quantitated with BLI. Biotinylated RBDs were captured on streptavidin-coated biosensors, and subsequently kinetics of S309 binding was analyzed. Signals were fitted to 1:1 binding model and apparent K_D values were calculated. Representative data from two independent experiments are shown.