
calibr8	Review	Response
Comment	to	the	Editor	and	Reviewers
Thank	you	very	much	for	sending	the	reviewers´	comments.	We	would	like	to	thank	the
reviewers	for	their	positive	feedback	and	constructive	suggestions,	which	led	to	changes	in	the
manuscript.	The	changed	sections	in	the	revised	manuscript	are	highlighted	in	green	color.	We
hope	that	we	could	increase	the	quality	of	the	manuscript	and	that	it	is	now	acceptable	for
publication.

Reviewer	1

Helleckes	et	al	describe	a	computational	framework	for	the	Bayesian	analysis
of	calibration	and	process	models.	The	framework	is	implemented	in	python,
open-source,	extensively	documented	implements	code	in	a	object-oriented
manner.	The	software	is	tested	using	continues	integration	and	coverage
analysis.	Overall	I	want	to	commend	the	authors	for	the	quality	of	the
presented	software.	The	manuscript	is	well	written	and	easy	to	understand,	but
may	benefit	from	some	restructuring	that	I	will	describe	below.	The	authors
evaluate	the	framework	on	multiple	examples	of	biotechnological	processes,
including	experimental	data,	where	they	analysis	calibration	models
individually,	as	well	as	combinations	of	calibration	and	process	models.

Major	Comments

1.	 While	most	of	the	text	is	well	written	and	easy	to	follow,	there	are
some	instances	where	it	is	difficult	or	impossible	to	understand	the
text	without	looking	at	the	code	or	figures.	Examples:

(i)	Figure	3:	Description	of	what	was	done	is	only	available	in	figure	legends,
this	also	needs	to	be	described	in	the	text.

Response:	We	added	more	descriptions	of	what	is	shown	in	the	figure	to	the	text.

(ii)	4.1.1:	It	would	helpful	to	have	a	mathematical	description	of	the	calibration
model	(provide	formulas)

Response:	We	have	added	mathematical	notations	in	the	appendix.

(iii)	Figure	10:	It	is	hard	to	understand	what	was	actually	done	and	the	reader
has	to	guess	based	on	the	figure.	Describe	what	was	done	first,	then	the
results.



Response:	We	added	further	explanations	in	the	text	and	added	a	reference	to	the	respective
methods	chapter,	in	which	a	detailed	explanation	of	the	infer_independent	method	can	be
found.

2.	 The	(unpublished)	python	implementation	of	PESTO,	pyPESTO
https://github.com/ICB-DCM/pyPESTO),	implements	a	similar	feature
set	as	the	murefi/calibr8	including	providing	an	interface	to	pyMC3	for
Bayesian	analysis.	Still	pyPESTO	implements	less	modularity	between
process	model	and	calibration	model	to	enable	use	of	adjoint
sensitivity	analysis.

Response:

pyPesto	is	working	with	AMICI	models	(interface	for	two	different	SUNDIALS	solvers)
and	recently	started	featuring	Aesara	objectives
Direct	import	of	ODEs	is	not	supported	in	AMICI,	so	users	need	to	go	the	route	via	SBML
or	PETab	and	implement	the	Hessian	and	derivative
If	users	install	SUNDIALS,	they	get	the	gradients	in	calibr8	/	murefi	as	well
Greater	modularity	is	achieved	in	calibr8	and	murefi	since	new	ODEs	can	be	easily
implemented	in	murefi	without	the	need	to	implement	further	functions	and
independently	of	other	frameworks
calibr8	allows	for	more	customization	in	the	noise	models	and	to	independently	look	at
the	calibration	process	rather	than	binding	it	to	the	overall	process	model
For	compatibility	to	pyPESTO,	a	murefi	objective	could	be	inserted	as	an	Aesara
objective	if	desired.
pyPESTO	was	entered	in	the	comparative	table	and	included	in	the	discussion

Similarly,	the	recently	proposed	PEtab	format
(https://journals.plos.org/ploscompbiol/article?
id=10.1371/journal.pcbi.1008646)	permits	a	similarly	flexible	specification	of
calibration	models	and	multi-experiment	process	models	(templating)	in
COPASI/data2dynamics/pyPESTO.	Accordingly,	I	think	it	would	be	important	to
(i)	explicitely	describe	differences	to	what	is	possible	with	PEtab
(ii)	demonstrate	the	greater	flexibility	by	the	modularity	between	calibr8	and
murefi.

Response:	Regarding	PETab	in	general:

Development	of	murefi	and	calibr8	was	mainly	done	when	PETab	did	not	exist.
However,	we	recognize	the	potential	of	the	new	data	format.
Currently,	the	biggest	limitations	of	PETab	in	comparison	to	our	framework	are	the
restriction	to	Laplace	or	Normal	distribution	as	noise	models	(PETab	Docs
(https://petab.readthedocs.io/en/latest/documentation_data_format.html#overview)).
As	shown	by	the	examples	in	our	documentation,	calibr8	is	not	limited	to	any
particular	univariate	or	multivariate	noise	distribution.
Moreover,	PETab	so	far	does	not	support	hierarchical	calibration	models	using
hyperpriors	shared	between	different	calibration	model	instances.	With	calibr8	or
murefi	this	can	be	easily	achieved	because	they	are	compatible	with	the
Theano/Aesara/PyMC	modeling	framework.
We	thus	think	that	calibr8	allows	greater	modularity	and	a	broader	application

https://petab.readthedocs.io/en/latest/documentation_data_format.html#overview


spectrum,	also	by	providing	functions	like	saving,	loading	and	combining	various
calibration	models	for	analysis.
Exporting	calibr8	as	PETab	noise	models	could	be	useful	if	further	modeling	efforts	are
constrained	to	take	PETab	inputs.	However,	calibr8	models	may	contain	rather
involved	"noise	formulas",	take	multivariate	inputs,	or	use	noise	distributions	not
implemented	by	PETab.	We	think	this	is	a	general	limitation	of	text-based	model
specification	formats	including	PETab	and	SBML,	which	is	one	reason	why	model
implementations	in	calibr8	and	murefi	are	kept	as	source	code.
These	points	are	now	also	adressed	in	section	4.3	(Comparison	to	existing	software)	of
the	article.

Regarding	(i),	I	would	also	encourage	the	authors	to	implement	support	for	the
PEtab	format	and	potentially	propose	an	extension	of	the	format	based	on	the
identified	differences	(I	don't	think	these	points	are	necessary	for	the	scope	of
this	review	though)

Response:	See	previous	response	and	text	modifications.	As	suggested	by	the	reviewer,
implementation	of	PETab	support	is	out-of-scope	for	this	article	though.

Regarding	(ii)	I	think	the	use	of	a	hyperprior	in	Section	4.2.3	is	an	interesting
example,	but	I	think	it	would	be	more	convincing	if	the	nesting	would	be	in	the
calibration	model	component	and	if	the	authors	could	demonstrate	that	joint
analysis	of	process+calibration	model	is	important	to	obtain	accurate
credibility	intervals	for	parameters	(by	comparing	stepwise	sequential	analysis,
using	synthetic	data	if	necessary)
Am	I	correct	in	my	understanding	that	the	toolbox	cannot	be	applied	to	mixed
effect	modeling?	If	I	am	mistaken,	this	would	be	quite	convincing	and	a
demonstration	could	replace	point	(ii).

Response:	Thank	you	for	these	comments.	The	classification	"mixed	effect	model"	is	rather
diffuse,	but	to	our	understanding,	both	the	ODE	model	in	the	manuscript	($X_0$	hyperprior)
and	the	example	we	added	to	the	calibr8	documentation
(https://calibr8.readthedocs.io/en/latest/Advanced_Hierarchical_Calibration.html)	(nested
intercept,	$\sigma$	parameters)	fall	into	the	category	of	nonlinear	mixed	effect	models.
The	example	in	the	documentation	also	jointly	estimates	calibration	and	process	model
parameters,	which	we	did	not	do	in	the	analysis	for	this	manuscript	since	the	biomass
calibration	model	was	well	informed	by	the	data.
While	the	example	was	written	with	a	NormalNoise	model	to	make	it	more	accessible,	more
complex	noise	models	with	LogNormal,	Laplace,	or	even	discrete	distributions	such	as	Poisson
are	perfectly	compatible.

https://calibr8.readthedocs.io/en/latest/Advanced_Hierarchical_Calibration.html


A	third	way	of	addressing	(ii)	would	be	to	demonstrate	that	the	combination	of
calibr8/murefi/sunode	enables	the	use	of	adjoint	sensitivities	(see
https://journals.plos.org/ploscompbiol/article?
id=10.1371/journal.pcbi.1005331)	with	complex	noise	models,	but	I	expect
that	this	would	be	a	lot	of	work

3.	 The	description	in	3.2.6	seems	to	imply	that	murefi	supports	sensitivity
analysis	which	would	be	necessary	for	the	computation	of	the	posterior
gradient.	Looking	at	the	code,	this	does	not	seem	to	be	supported
though,	but	theoretically	possible	with	sunode.	It	would	be	helpful	if
the	authors	could	more	extensively	describe	the	support	of	gradient
computation	in	calibr8/murefi.

Response:	Yes,	in	general	gradients	can	be	obtained	via	the	Theano/Aesara	backends.	The
IntegrationOp	in	murefi	does	not	implement	a	.grad()	itself,	since	sunode	already	provides
an	excellent	implementation	of	Theano/Aesara	compatible	ODE	differentiation	methods.	Under
https://murefi.readthedocs.io/en/latest/Example_04_MichaelisMenten_sunode.html	the	murefi
documentation	includes	an	example	of	gradients	with	sunode.	Gradients	of	simpler	non-ODE
models	can	be	obtained	the	same	way	without	sunode.
Our	call	to	sunode's	solve_ivp
(https://github.com/JuBiotech/murefi/blob/v5.0.1/murefi/symbolic.py#L160)	specifies	the	use	of
forward	sensitivities,	because	it's	more	efficient	for	small	systems,	but	since	sunode	also
provides	adjoint	sensitivities,	we	will	consider	to	forward	user-specified	kwargs	to	make	the
derivatives	strategy	user-configurable.

Minor	Comments

a)	I	believe	that	the	abstract	should	mention	that	the	authors	apply	their
methods	to	ODE	models.

Response:	Adressed	in	lines	21-25.

b)	l244,	the	text	just	mentions	calibr8,	which	is	only	introduced	later	in	the	text

Response:	calibr8	and	murefi	are	now	both	mentioned	in	aim	of	the	study

c)	I	have	a	hard	time	understanding	the	issue	that	is	supposed	to	be	illustrated
by	figure	3C,	could	the	authors	describe	the	issue	in	more	detail,	is	there	some
statistical	test	to	show	the	issue	(and	is	such	an	analysis	implemented	in
calibr8)?

Response:	The	lack-of-fit	of	the	noise	model	is	indeed	hard	to	spot.	We	have	added	additional
explanations	in	the	text,	alongside	a	reference	to	Kolmogorov-Smirnov	tests,	and	recent	work
on	obtaining	ECDF	confidence	intervals	specifically	for	such	diagnostic	visualizations.

https://github.com/JuBiotech/murefi/blob/v5.0.1/murefi/symbolic.py#L160


d)	I	find	it	hard	to	believe	that	gradient	based	optimizers	did	not	perform	well
for	section	3.2.5.	Did	the	authors	try	using	the	least	squares	algorithm	and
used	a	logarithmic	transformation	of	process	parameters?

Response:	We	revised	the	paragraph	since	gradient-based	optimizers	are	possible	in	general.
We	currently	have	an	open	issue	(https://github.com/JuBiotech/calibr8/issues/13)	regarding
robustness	of	the	implementation	and	will	see	how	we	can	further	improve	it.

e)	the	authors	may	want	to	cite	https://doi.org/10.1093/bioinformatics/btw703
in	section	2.4

Response:	Thank	you	for	pointing	out	this	source.	We	included	it	in	the	respective	section.
Laplace	distributions	are	also	available	now	in	calibr8	as	one	default	option.

f)	I	think	"Frequentist"	is	more	commonly	used	than	"likelihoodist"	(assuming
that's	what	the	authors	wanted	to	say).

Response:	We	agree	that	frequentist	is	the	more	commonly	used	term.	However,	we	explicitly
wanted	to	make	the	differentiation	between	likelihoodist	and	frequentist.

Reviewer	2

This	proposal	is	focused	on	the	description	of	a	Python	package	for	the	use	of
Bayesian	theory	for	the	quantification	of	uncertainty	from	high-throughput
cultivation	experiments.	The	paper	is	technically	sound,	well	written	and	all	the
codes	are	available	on	a	Git	server.	Instructions	about	the	installation	on	a
Python	idle	are	clearly	given.This	proposal	has	been	submitted	as	a	“software”
article.	As	such,	the	software	must	be	either	widely	used	within	the	scientific
community	or	have	the	promise	of	wide	adoption	by	a	broad	community	of
users.	However,	as	it	is	actually	written,	the	target	audience	is	quite	limited.
Specific	comments	are	appended	below.

Major

Response:	We	appreciate	the	reviewer´s	advise,	since	we	aim	to	address	a	broad	community.
The	presented	software	is	not	limited	to	microbioreactor	data	or	any	specific	measurement
technique.	However,	our	examples	come	from	the	microbial	bioprocess	area,	since	it	is	a	main
interest	for	our	research	group.	To	open	the	text	to	a	wider	community,	we	revised	the
manuscript	and	tried	to	avoid	specific	technical	terms	that	might	limit	the	accessibility.
Although	applications	even	beyond	biotechnology	are	possible,	we	addressed	this	area	in	the
title	to	set	a	clear	scope	for	this	article.

https://github.com/JuBiotech/calibr8/issues/13


The	background	needs	to	be	more	precisely	defined.	The	field	of
expertise	of	the	authors	are	“bioprocess	engineering”.	However,	as
stated	in	the	introduction,	the	software	could	be	used	by	any
researchers	handling	large	set	of	microbial	(or	even	cell	culture)
kinetics	data,	extending	the	target	audience	to	the	broad	community	if
researchers	involved	in	fields	like	systems	and	synthetic	biology.	Some
part	of	the	text	should	then	be	reformulated	according	to	this
comment.

Response:	We	revised	the	text	to	simplify	the	terminology	where	possible	to	target	a	broad
community.	Together	with	the	new	examples	added	to	the	manuscript	and	the	documentation,
we	aimed	at	visibly	broadening	the	target	audience.

The	term	“microbioreactor”	is	used	at	several	stages	of	the
manuscript.	This	term	is	actually	misleading,	because	the	authors	are
used	a	commercial	minibioreactor	platform	based	on	the	use	of
deepwell.	For	the	readers	that	are	not	familiar	with	the	technology,	the
use	of	the	term	“micro”	could	give	the	feeling	that	the	authors	are
using	microfluidic	cultivation	device.	This	comment	is	also	related	to
the	above-mentioned	in	the	sense	that	the	technical	terms	in	the	text
should	be	reformulated	to	target	a	broader	audience	of	potential	users
(other	example:	I	can	imagine	that	only	a	limited	number	of	specialists
know	what	is	a	flowerplate).

Response:	The	term	microbioreactor	(MBR)	is	commonly	used	for	cultivation	devices,	such	as
the	BioLector.	Moreover,	a	review	on	MBR	systems	by	Hemmerich	et.	al	2018
(https://doi.org/10.1002/biot.201700141)	compares	different	systems	and	lists	the	mentioned
device	as	a	typical	microbioreactor.
To	the	best	of	our	knowledge,	the	term	mini	bioreactor	usually	refers	to	small	stirred	reaction
systems	with	volumes	in	the	range	of	several	milliliter	(e.g.	the	2mag,	ambr	or	DASbox
systems).	However,	all	publications	we	found	using	the	BioLector	use	the	term	microbioreactor.
To	keep	to	the	commonly	used	nomenclature,	we	kept	the	term	microbioreactor.
However,	we	tried	to	revise	the	text	concerning	bioprocess-engineering-specific	jargon	to	keep
the	accessibility	for	users	who	are	not	familiar	with	the	technology.

At	this	stage,	the	applicability	of	the	software	is	limited	to	a	cultivation
device	commercialized	under	the	name	of	“Biolector”	and	involving	the
use	of	48-well	deepwell	plates.	Additionally,	the	Biolector	can	be
coupled	to	a	robotic	liquid	handling	platform	for	off-line	sampling.	The
authors	have	to	discuss	the	potential	extension	of	their	software	to
other	microplate-based	devices.

Response:	While	our	application	example	in	this	study	used	a	microcultivation	device,	our
software	is	completely	agnostic	to	the	field	of	application.	Especially	the	calibr8	package	is
purely	concerned	with	the	statistical	properties	of	calibration	models.
Our	murefi	package	is	specifically	designed	around	multi-replicate	(multi-level)	experiments
that	are	to	be	modeled	with	ordinary	differential	equations,	but	again	is	agnostic	to	the	field	of
application.

https://doi.org/10.1002/biot.201700141


Both	packages	are	designed	to	take	standard	data	structures	from	the	scientific	Python
ecosystem	(NumPy	arrays,	pandas	DataFrames)	as	inputs,	thereby	enabling	users	to	apply
them	to	any	kind	of	experimental	dataset.
We	also	pointed	this	out	in	the	manuscript	after	the	implementation	of	the	first	two	calibration
models	(end	of	section	4.1.2).
Further	application	examples	such	as	ODE	modeling	of	catalytic	reactions	can	be	found	in	the
documentation.

Bayes	theory	is	typically	easy	to	explain,	but	it	is	not	the	case	of	this
paper.	Section	2.1	should	be	expanded	by	considering	an	example.

Response:	After	moving	the	Normal/Student-t	comparison	to	the	appendix,	Section	2.1	now
includes	a	visual	explanation	of	Bayes'	rule	for	continuous	variables.	Furthermore,	we	refined
the	equations	with	subscripts	and	colors	to	help	beginners	to	connect	the	mathematical
notation	with	the	visual	representation.	We	also	changed	the	order	of	equations	to	start	with
Bayes'	theorem,	which	might	be	more	familiar	to	the	reader.

About	the	applications,	only	two	are	given	in	the	manuscript.	Another,
very	important,	application	is	the	measurement	of	the	activity	of	gene
circuits	based	on	fluorescent	reporters.	For	this	application,	it	is	also
important	to	relate	to	biomass	in	order	to	obtain	specific	values.	How
could	this	application	integrated	in	the	package	?

Response:	Assuming	a	photometric	measurement	system:	First	we	recommend	to	scan
absorbance	spectra	of	individual	sample	components	to	determine	a	wavelength	at	which
biomass	may	be	observed	with	the	least	interference.	Second,	a	dilution	series	of	biomass
should	be	measured	at	the	selected	wavelength	to	construct	a	biomass/absorbance	calibration
model.	After	measuring	these	wavelengths	together	with	the	fluorescences,	one	may	apply	the
calibration	model	to	infer	sample-wise	biomass	concentrations.	If	you	also	have	a	process
model	to	describe	progression	of	fluorescences,	the	calibration	model	may	be	included	as	the
"observation	function"	for	the	corresponding	biomass	concentration.
While	we	don't	want	to	cover	this	specific	application	in	the	manuscript,	we'd	be	happy	to
discuss	this	application	in	a	GitHub	issue.

ODE	models	can	be	integrated	in	the	calibration	procedure.	Is	there
any	limit	about	the	number	of	equations/parameters	that	can	be
handled	?

Response:	We	are	currently	not	aware	of	technical	limitations	from	murefi	or	sunode.	In
practice	a	limitation	may	depend	on	the	number	of	equations	&	parameters	in	the	model,	as
well	as	the	CPU	&	memory	resources	available.	Tens	of	equations	or	replicates	are	absolutely
fine.
While	we	think	that	benchmarking	and	improvement	of	the	computational	performance	would
be	a	valuable	contribution	to	the	sunode	and	murefi	projects,	we	believe	that	it	is	out-of-scope
for	this	article.

Reviewer	3



In	the	manuscript	"Bayesian	calibration,	process	modeling	and	uncertainty
quantification	in	biotechnology",	Laura	Marie	Helleckes,	Michael	Osthege,	and
coworkers	present	two	Python	software	packages,	calibr8	and	murefi,	for
enabling	more	reproducible	and	automated	calibration	of	mathematical	models
in	biotechnology.	The	authors	show	the	capabilities	of	these	packages	on
several	examples	with	real	datasets	collected	by	themselves.

The	topic	of	parameter	inference	for	mathematical	models	of	biological
systems	have	become	a	very	relevant	topic	in	the	recent	years.	This	can	be
achieved	by	a	frequentist	perspective,	finding	the	maximum	likelihood
estimate	using	various	optimization	techniques,	or	by	a	Bayesian	approach,
which	relies	on	the	Bayes	theorem	and	often	carried	through	Markov	chain
Monte	Carlo	sampling.

One	of	the	key	problems	is	that	frequently	“handmade”	computational
pipelines	are	built	for	each	specific	problem	which	compromises	their
reproducibility	and	reusability.	Efforts	in	the	community	to	build	automated
pipelines	exist,	however	these	can	be	complex	and	require	high	expertise.	In
this	manuscript,	the	authors	tackle	this	problem	by	introducing	two	new
software	tools	for	model	construction	and	calibration,	which	substantially	ease
the	process	and	facilitate	the	usage	to	non-experts,	in	particular,	focusing	-	but
not	limited	to	-	biotechnology	applications.	Likewise,	the	key	contributions	is
the	development	of	two	reusable	open-source	toolboxes/libraries.	Overall,	the
manuscript	is	well	written.	I	appreciate	that	the	authors	provide	exemplary
notebooks/code	in	the	respective	toolboxes,	but	I	have	to	admit	that	I	did	not
have	the	time	to	test	them.

Major

As	far	as	I	can	see,	the	only	available	loglikelihood	implemented	in	calibr8
assumes	a	Student’s	t	distribution.	This	is	a	bit	contradictory	with	the
statement	the	authors	make	in	L.67-69	regarding	the	need	of	having	more
flexible	frameworks.	Maybe	the	authors	could	include	in	their	toolbox
additional	distribution	assumptions	such	as	Laplace,	Gaussian	and/or	log-
normal,	to	facilitate	the	users	this	flexibility.
Moreover,	I	do	not	see	how	the	user	could	easily	implement	a	different	custom
noise	model,	in	case	this	is	possible	it	would	be	great	to	add	a	tutorial.

Response:	Inspired	by	your	concern,	we	have	refactored	the	class	inheritance	in	calibr8
v6.2.0	such	that	now	the	loglikelihood	implementation	is	completely	agnostic	to	the	noise
model.
An	example	for	how	to	implement	custom	noise	models	was	added	to	the	documentation
(https://calibr8.readthedocs.io/en/latest/Advanced_Custom_Noise_Models.html).

https://calibr8.readthedocs.io/en/latest/Advanced_Custom_Noise_Models.html


A	very	well-known	standard	format	to	encode	ODE	models	is	the	SBML	format
(https://doi.org/10.1093/bioinformatics/btg015)	which	is	supported	by	many
existing	toolboxes	for	modeling	and	parameter	estimation.	Including	support	to
this	in	the	toolboxes	here	presented	would	substantially	increase	the	public
and	potential	new	users	to	the	tool.	I	deeply	encourage	the	authors	to	add
support	to	SBML	models	although	not	only	ODE	models	are	used	within	these
toolboxes.

Response:	The	murefi.BaseODEModel	requires	primarily	the	vector	of	independent	variable
names,	and	a	dydt(y,	t,	ode_parameters)	function	implementing	the	differential	equations.
This	information	could	originate	from	a	variety	of	sources,	including	SBML,	PETab	or	similar
formats.	We	considered	the	option	to	implement	a	murefi.contrib.sbml_import	module,	but
given	the	apparent	complexity	(the	AMICI	sbml_import.py	module,	for	example,	has	2x	more
lines	than	all	of	murefi)	we	decided	against	maintaining	a	SBML	import	module.	If	the	reviewer
can	point	us	to	a	concise	code	example	on	how	species	names	and	a	dydt()	function	can	be
imported,	optionally	using	a	lightweight	3rd	party	dependency,	we	are	happy	to	add	an
example	to	our	documentation.

Following	on	the	line	of	my	previous	comment:	Is	there	a	model	validator?
What	I	mean	is	whether	is	there	some	sort	of	sanity	checks	for	user	defined
models	in	calibr8	and	murefi.,	e.g.	positivity	of	the	modeled	species.	This
would	make	even	better	the	user	experience,	since	then,	even	the	level	of
expertise	required	could	be	lowered.	I	am	wondering	if	the	authors	thought	of
this	option,	and	whether	it	would	be	possible	to	include	it	(or	at	least	comment
on	this).

Response:	This	kind	of	model	validation	would	also	require	the	user	to	input	such	constraints,
rendering	the	API	much	more	verbose.	Instead	we	recommend	to	use	the	predict_replicate
method	during	model	development	and	visualize	model	predictions	from	realistic	parameter
vectors	such	as	the	initial	guess	of	the	parameter	estimation,	or	to	draw	prior	predictive
samples	when	working	inside	a	PyMC	model.	For	calibr8,	diagnostics	are	also	detailed	in
Section	2.5.

L.88:	“examples	are	Data2Dynamics	[14]	or	PESTO	[15],	...	However,	both
tools	are	implemented	in	MATLAB	and	are	thus	incompatible	with	data	analysis
workflows	that	leverage	the	rich	ecosystem	of	scientific	Python	libraries.”	I
would	like	to	make	the	authors	aware	that	I	could	find	that	the	toolbox	PESTO
has	been	translated	into	Python,	going	under	the	name	of	pyPESTO
(https://github.com/ICB-DCM/pyPESTO).	I	would	encourage	the	authors	to
include	it	into	their	manuscript	since	it	has	been	released	since	January	2019
and,	therefore,	adapt	the	comparison	within	toolboxes.

Response:
Has	been	addressed	in	Table	1	as	well	as	the	respective	text	(also	see	comments	for	reviewer	1
for	detailed	changes).



L.177:	The	statement	is	correct.	However,	parameter	uncertainties	can	also	be
quantified	from	a	frequentist	perspective	using	optimization	by	the	so-called
method	profile	likelihoods	(see	https://doi.org/10.1093/bioinformatics/btp358).	I
am	not	aware	whether	this	is	known	in	the	field	of	biotechnology,	but	definitely
something	to	mention	in	a	manuscript	regarding	parameter	estimation	and
uncertainty	quantification.	In	case	this	is	not	frequently	used	in	this	field,	it
could	be	also	a	novelty	to	add	in	the	study	(although	not	necessary).

Response:	We	are	aware	of	profile	likelihoods,	but	for	the	kinds	of	models	we	are	working
with,	MCMC	sampling	the	joint	posterior	works	just	fine.	Furthermore	we	are	generally	hesitant
about	the	added	implementation	complexity	of	iterating	over	the	free	parameters	individually
and	running	that	many	optimizations.	In	contrast,	the	application	of	MCMC	works	off	the	shelf
and	a	wide	variety	of	diagnostics	&	visualizations	are	available	through	community	packages
such	as	ArviZ.

L.205:	Could	some	citation	be	added	to	this	statement?

Response:	Citation	was	added.

L.226-227:	Could	some	citation	be	added	to	this	statement?

Response:	Thank	you	for	bringing	this	statement	to	our	attention.	We	clarified	that	it	is	a
recommendation	based	on	this	work	and	gave	two	reasons	for	it.	Since	one	sentence	cannot
adequately	summarise	the	current	research	on	model	selection	for	biotechnology	and	since	it	is
not	the	focus	of	the	presented	software,	we	decided	to	leave	out	a	respective	statement.

L.244:	Please	reformulate	the	sentence,	I	could	not	understand	which
restriction	is	meant	here.

Response:	We	reformulated	the	sentence,	pointing	towards	the	calibr8	documentation
example	where	calibration	model	parameters	are	not	fixed,	but	estimated	jointly	with	a	process
model.

Minor

L.112:	Without	losing	generality,	the	authors	could	list	some	specific	examples
of	other	research	fields.

Response:	We	have	added	a	sentence	mentioning	examples	from	our	documentation	and	how
they	can	be	transferred	to	other	domains.

Figure	1:	I	suggest	to	use	the	same	label	and	line	style	in	the	two	subplots	for
the	Normal	case.



Response:	The	figure	was	adapted,	but	moved	to	the	supporting	information	due	to	other
review	comments	on	the	chapter.

L.142:	“From	a	known	list	of	parameters	…”	The	word	“known”	here	could	lead
to	misunderstanding	since	the	parameters	may	be	actually	unknown	and	need
to	be	estimated.	But	I	understand	that	when	simulating	they	are	actually
“known”.	Maybe	this	sentence	could	be	rephrased	(in	case	of	finding	a	better
formulation).

Response:	Reformulated	to	given	list	of	parameters.

L.158:	Please	clarify	that	each	individual	pair	y_{obs}	and	y_{pred}	are	the
same	length.

Response:	Paragraph	was	changed	accordingly.

Figure	3:	Please	indicate	in	the	figure	as	legend	what	the	blue	dots	and	green
lines	are.	Having	this	on	top	of	the	caption	description	will	facilitate	the
understanding	of	what	is	depicted.	Same	for	the	black	dashed	line.

Response:	Figure	was	revised	accordingly.

Figure	7:	Change	the	color	scheme	→	colorblind	proof

Response:	One	of	the	authors	has	a	color	vision	deficiency	but	no	problems	with	this	figure.
We	changed	red→blue	anyway.

L.540:	To	the	list	of	known	samplers,	please	add	“emcee”	which	is	also	a	very
popular	python	sampler	(https://doi.org/10.1086/670067).

Response:	Added	as	requested.

Figure	12:	Please	increase	the	separation	between	A	and	B.	This	helps	to
identify	the	right	Y	axis	in	A.

Response:	Modified	as	suggested.

General:	Revise	the	text	for	typos.

Response:	We	thoroughly	read	through	the	text	again	and	corrected	typos.

General:	Please	use	consistent	font	sizes	in	the	figures,	for	some,	they	are
really	small.



Response:	We	have	increased	font	sizes	where	possible.	We	anticipate	that	further	fine	tuning
will	be	done	by	the	journal	based	on	the	vector	graphic	files	we	provide.


