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1 Details on Summary Statistics Learning

1.1 Semi Automatic Summary Statistics Learning

In semiautomatic summary statistics learning (SASL) schemes [1, 2], the parameter values are regressed using
some function of the corresponding simulation outputs. Namely, you assume the following model:

θ = E(θ|x) + ε = f(x) + ε, (1)

where ε is a 0-mean noise and f(x) is a function of data. The authors of [2] parametrize f(·) by using a Neural
Network. This regression approach was first introduced in [1] with a linearity assumpton on f , reducing it to
a simple linear regression. We focus here on the neural network formulation as this was shown to outperform
the linear regression by [2].

In practice, we first simulate a ‘pilot’ set of n datasets {x1, . . . , xn} from n parameters {θ1, . . . , θn}
correspondingly and then fit the statistical model given by Eq. (1) to the simulated data. Then we consider
s(·) = fβ(·) as the summary statistics and Euclidean distance on this summary statistics space to define the
distance for the ABC inference algorithm. Following [2], here we use a neural network gw(·) with weights w to
parametrize the function f(·), and that was trained by stochastic gradient descent using the loss corresponding
to the regression in Eq.(1):

1

N

N∑
i=1

||fβ(xi)− θi||22. (2)

In Theorem 3 of [1], the authors provide a rationale for the above procedure; namely, they show that, by
using s(x0) = E(θ|x0) as summary statistics, the posterior mean of the ABC approximate posterior is the
best possible estimator of the true parameter value with respect to the quadratic error loss. Of course, the
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posterior mean with respect to the true posterior E(θ|x0) is not available, and hence the regression approach
was proposed.

1.2 Triplet Loss Summary Statistics Learning

The summary statistics learning approach minimizing triplet loss (TLSL) was first introduced in [3], which
considers the assumption that the geometry induced in data space by the Euclidean distance on the learned
summary statistics (s(x) = gw(x) where gw(·) is a neural network with weights w) should be similar to the
geometry in the corresponding parameter space induced by Euclidean distance (dE). After simulating a set
of n datasets {x1, . . . , xn} from n parameters {θ1, . . . , θn} correspondingly, to learn the weights of the neural
networks, here we consider the triplet [4] loss. The triplet loss works on three samples at a time: an anchor, a
positive, that is deemed similar to the anchor, and a negative, that is on the contrary dissimilar. Essentially,
the loss pushes the network to find an embedding such that the distance between the anchor and the negative
is larger than the one between the anchor and the positive plus a margin, that is defined a priori. By denoting

(x
(i)
a , x

(i)
p , x

(i)
n ) the anchor, positive and negative of the i -th triplet, and by denoting as N the number of all

possible triplets built in this way, we can write the loss in the following way:

L =
1

N

N∑
i

[
||gw(x(i)a )− gw(x(i)p )||22 − ||gw(x(i)a )− gw(x(i)n )||22 + α

]
+
, (3)

where α ∈ R denotes the margin. We optimize this loss with stochastic gradient descent over the parameters
of the network, by drawing random triplets.

1.3 Experimental Details

SASL and TLSL were trained on the same ‘pilot’ simulated dataset containing 255 parameter and simulated
data pairs. For both the SASL and TLSL the neural network is composed of 4 fully connected layers,
with dimension of input neurons and outputs being equal to the dimension of data (9) and parameter (7)
correspondingly, with hidden layers of size 14, 13 and 10, batch size 16 and with ReLU non-linearity. We
trained the neural network for 1000 and 2000 epochs correspondingly for SASL and TLSL. Further the margin
α for TLSL was chosen to be 1.
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