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1. Performance on the CASP14 targets

Supplementary Table 1. Performance on the CASP14 refinement targets when the AlphaFold2 models are excluded.
GNNRefine and GNNRefine-plus generate 5 and 50 refined models, respectively, for each starting model. Only the
first-ranked refined models are evaluated in this table. The performance of our methods is highlighted boldly.

Degradation
Type Methods GDT-HA GDT-TS IDDT
0 -1 -2
Starting 50.40 69.6 62.51
FEIG +4.59 +3.48 +3.36 7 5 2
Human
BAKER +2.71 +1.06 +2.34 11 9 8
GNNRefine +1.94 +1.51 +1.26 10 3 3
GNNRefine-plus +1.63 +1.29 +1.35 8 4 2
FEIG-S +3.75 +2.64 +2.86 8 7 5
Server
Seok-server +0.27 -0.09 +0.58 14 8 4
Bhattacharya-Server -0.54 -0.39 +0.27 22 15 4

MUFOLD -12.32 -15.45 -10.75 29 29 26




Supplementary Table 2. Performance on the AlphaFold2 refinement models in CASP14. The performance of our
methods is highlighted boldly.

Degradation
Type Methods GDT-HA GDT-TS IDDT
AGDT-HA< AGDT-TS AIDDT
-5 <-5 <-5
Starting 70.13 85.56 80.84
FEIG -9.04 -7.06 -8.39 4 4 6
Human
BAKER -5.61 -4.69 -5.26 5 3 4
GNNRefine -3.84 -2.14 -2.76 2 1 1
GNNRefine-plus -2.69 -1.49 -2.24 0 (1}
FEIG-S -7.67 -5.73 -6.14 5 3 4
Server
Seok-server -7.16 -6.59 -5.23 5 5 3
Bhattacharya-Server -4.23 -1.96 -3.51 2 0 0
MUFOLD -28.44 -28.47 -24.12 6 5 7
AGDT-HA AGDT-TS AIDDT
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Supplementary Figure 1. Box plot of the distribution of AGDT-HA, AGDT-TS, and AIDDT values on the

AlphaFold2 refinement models.

2. Performance on the AlphaFold2 regular models in CASP14

We tested our method on all the first models submitted by AlphaFold2 for regular targets in CASP14, the result is
shown in Table 3. As shown in the table, since most of the AlphaFold2 models are of high quality, on average our
method GNNRefine degrades the AlphaFold2 models by -2.22, -1.13 and -2.12 in terms of GDT-HA, GDT-TS and
IDDT, respectively. GNNRefine-plus degrades the quality by -2.40, -1.24 and -2.04, respectively. As shown in
Figure 2, our method performs slightly better on initial protein models of lower quality that predicted by



AlphaFold2, while not as good on initial protein models of very high quality. Our methods improve GDT-HA of the
AlphaFold2 first models for T1100-D1, T1055-D1, T1095-D1, T1096-D1, T1094-D2, T1046s2-D1, T1038-D1,
T1030-D2, T1061-D1, T1030-D1, T1100-D2, T1061-D0, T1070-D4, T1047s2-D1, T1053-D1, T1037-D1,
T1092-D1 and T1034-D1. In particular, our method GNNRefine-plus may improve the GDT-HA of T1100-D1 and
T1055-D1 by ~4 units, which have starting GDT-HA 58.70 and 68.00, respectively.

On the AlphaFold2 first models, the correlation coefficient between the GNNQA-predicted quality of the starting
model and the improvement by GNNRefine is 0.31, although we can only improve a smaller percentage of
AlphaFold2 models. As shown in Fig. 2, all the AlphaFold2 models that can be improved by GNNRefine have
IDDT less than 88.

Supplementary Table 3. Performance on the AlphaFold2 regular models' in CASP14

Degradation
Type Num Methods GDT-HA GDT-TS IDDT
AGDT-HA AGDT-TS AIDDT
<-5 <-5 <-5

GNNRefine -2.16 -1.64 -1.75 2 1 0

FM 23
GNNRefine-plus -2.28 -1.80 -1.64 3 1 0
GNNRefine -3.36 -1.84 -2.54 4 1 1

FM/TBM 14
GNNRefine-plus -3.39 -1.90 -2.37 5 1 2
GNNRefine -1.43 -0.50 -1.89 1 0 1

TBM-hard 28
GNNRefine-plus -1.68 -0.64 -1.76 3 0 1
GNNRefine -2.65 -0.99 -2.58 4 1 0

TBM-easy 22
GNNRefine-plus -2.94 -1.07 -2.63 5 1 1
GNNRefine -0.10 -0.30 -1.61 0 0 0

MultiDom 1
GNNRefine-plus +0.60 +0.20 -1.43 0 0 0
-2.22 -1.13 -2.12

GNNRefine ) 5011820 (+2.00/-19.00)  (+0.77/-6.62) 1 3 2

All 88
GNNRefine-plus -2.40 124 204 16 3 4

(+4.30/-16.90)  (+3.80/-21.00)  (+1.75/-6.56)

1. The refinement was conducted on the first models submitted by AlphaFold2 for the whole target, while the evaluation is conducted on
the 88 official domains defined by CASP14.
2. The corresponding maximum and minimum values.
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Supplementary Figure 2. The model quality improvement by GNNRefine with respect to the starting model quality
(of the AlphaFold2 regular models). The data are sorted ascendingly by the IDDT of the starting models.

3. Performance on the CAMEO targets

Supplementary Table 4. Performance of standalone software on the CAMEO targets.Bold values are the best
performance on the corresponding metric.

Degradation

Methods GDT-HA GDT-TS IDDT
0 -1 -2

Starting 45.55 63.44 60.87
GNNRefine +1.91 +1.18 +2.25 42 26 17
GNNRefine-plus +1.99 +1.20 +2.23 39 21 12
GalaxyRefine +0.03 +0.09 +0.96 98 61 37
ModRefiner-100 -0.02 -0.02 +0.44 90 1 3
ModRefiner-50 -0.07 -0.05 +0.44 95 27 7

ModRefiner-0 -0.72 -0.83 +0.25 128 59 25



FastRelax -2.30 -2.28 -0.19 139 121 92

Tested on the CAMEO targets, there is a weak correlation (0.20) between the GNNQA-predicted quality of the
starting model and the improvement by GNNRefine. As shown in Fig 3, most of the CAMEO starting models have
GNNQA-predicted quality (IDDT) from 47 to 80 and GNNRefine may refine most of them. GNNRefine has a
slightly better chance to improve the quality of CAMEO targets when the GNNQA-predicted IDDT score is between
60 and 80.
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Supplementary Figure 3. The model quality improvement by GNNRefine with respect to the GNNQA-predicted
quality of the starting model (of the CAMEO set). The data are sorted ascendingly by the GNNQA-predicted global
IDDT of the starting models.

Supplementary Table 5. The GNNQA-predicted quality of starting models vs. the quality improvements by
GNNRefine on the CAMEO targets.

) . Improvement
GNNQA-predicted IDDT # starting
of starting model models

AGDT-HA AGDT-TS AIDDT
>40 206 +2.00 +1.32 +2.26
>50 186 +2.11 +1.42 +2.24
>60 121 +2.38 +1.66 +2.19
>70 46 +2.48 +1.61 +2.26

>80 8 +1.60 +1.08 +2.00




4. Performance on the in-house CASP13 FM models

Supplementary Table 6. Performance on our in-house decoys for the CASP 13 FM target. For each target, 150 initial
models were generated by our own template-free modeling method and then for each initial model, one refined
model was generated by GNNRefine. Bold values are the improvement of refined models.

GDT-HA GDT-TS IDDT Degradation
Models
Starting Refined Starting Refined Starting Refined 0 -1 -2
Max! 40.46 +3.44 59.27 +2.79 52.02 +6.43 1 0 0
Cluster10? 32.38 +2.13 48.49 +2.01 46.93 +4.20 9 5 1
Mean® 34.85 +1.18 51.81 +0.71 48.24 +3.87 8 1 1

1. The average quality of the best models (ranked by GDT-HA) generated for each target.
2. All models of a target are clustered into 10 groups by SPICKER'. This row shows the average quality of the 10 cluster centroids.
3. The mean quality of all the models for each target.

5. Performance of standalone software and servers on the
CASP13 refinement targets

Supplementary Table 7. Performance of standalone software and servers on the CASP13 refinement targets. Bold
values are the best performance on the corresponding metric.

Degradation
Methods GDT-HA GDT-TS IDDT Running Time'
0 -1 -2
Starting 52.27 71.51 61.74
GNNRefine +3.83 +2.31 +3.19 3 1 0 ~0.16
GalaxyRefine +0.21 +0.05 +1.23 15 8 4 ~2.53
ModRefiner-100 +0.16 +0.05 +0.73 13 3 0 ~0.57
ModRefiner-50 -0.05 +0.04 +0.78 11 6 0 ~0.59
ModRefiner-0 -0.70 -0.58 +0.99 17 12 2 ~0.54
FastRelax -2.00 -1.96 +0.17 18 14 13 ~0.03
3DRefine +0.24 +0.12 +0.30 9 0 0 -2
ReFold -0.45 -0.24 -0.04 17 14 6 -2

1. The average running time (hour) needed to refine a single protein model. All programs were run on one CPU of the same computer
to fairly compare their running time.
2. We could not run these two methods locally and thus, cannot measure their running time accurately.


https://www.zotero.org/google-docs/?T1oUIG

6. Distance prediction by GNN, in-house ResNet and
DeepAccNet

Our in-house 2D ResNet consists of one gate block, 20 ResNet blocks, and one output layer, as shown in Figure 4. It
uses the same input feature as GNNRefine. To fit the input shape of 2D ResNet, we pairwisely concatenate the node
feature with the edge feature. The gate block is used to connect pairwise input features to the 2D ResNet, which is
composed of one 2D convolutional layer, one instance norm layer and one ELU activation layer. Each ResNet block
consists of 2 instance norm layers, 2 convolutional layers, 2 ELU activation layers and 1 dropout layer. In each
ResNet block, there is a shortcut connecting its input to the output of the second convolutional layer. The dilation
ratio is 2 and the kernel size is 5 in each 2D convolutional layer. The inner channel size is 64. The output layer
consists of one fully connected layer and one softmax layer. Similar to GNNRefine, our in-house ResNet predicts
pairwise distance probability distribution.
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Supplementary Figure 4. The detailed architecture of our in-house 2D ResNet for protein model refinement.

Supplementary Table 8. Comparison between predicted distance and the distance calculated from the starting

models. Only one GNNRefine deep model is used here. Bold values are the performance of GNNRefine.

Top L Contact Precision (%) Cﬂ IDDT
Dataset Methods

Medium+Long Long Medium+Long Long

CASP13 Starting 77.33 66.16 67.92 66.38



GNNRefine 84.85 69.65 70.89 69.48

Starting 57.66 49.67 57.77 54.89
CAMEO
GNNRefine 65.34 54.10 60.19 57.38

Supplementary Table 9. Performance of GNN-based and ResNet-based methods on the CASP13 and CASP14
refinement targets. Only 1 instead of 5 GNNRefine deep models is used here.Bold values are the best performance

on the corresponding metric.

Degradation
Dataset Methods GDT-HA GDT-TS IDDT
0 -1 -2
Starting 52.27 71.51 61.74
GNNRefine +3.15 +1.96 +2.88 1 0 0
CASP13
2D ResNet (in-house) +0.49 +0.29 +0.91 8 4 1
DeepAccNet! +0.07 -1.23 +0.51 11 8 6
Starting 54.12 72.65 65.98
GNNRefine +0.61 +0.60 +0.44 16 8 5
CASP14
2D ResNet (in-house) -0.58 -0.51 -0.44 24 14 6
DeepAccNet! -0.60 -0.85 -0.06 19 16 9

1. Without extensive conformational sampling.

Supplementary Table 10. The improvement in distance prediction by GNN and ResNet on the CASP13 and CASP14
refinement models. Bold values are the best performance on the corresponding metric.

Top L Contact Precision C, IDDT
Dataset Methods
Medium+Long Long Medium+Long Long
GNN +6.99 +2.89 +3.26 +3.59
CASP13 2D ResNet (in-house) +4.83 +1.06 -1.07 -1.16
DeepAccNet DistPot' -39.19 -30.14 -5.38 -5.14
GNN +3.41 +1.45 +0.27 +0.96
CASP14 2D ResNet (in-house) +1.03 -1.20 -2.00 -1.72

DeepAccNet DistPot! -28.00 -21.53 -4.89 -4.88




1. The predicted distance by DeepAccNet is derived from its distance potential. For each residue pair, the distance with the lowest potential is
used as its predicted distance.

7. Ablation Study of GNNRefine

7.1 The improvement in contact and distance prediction by GNNRefine
trained with different input features and training data

Supplementary Table 11. The improvement in distance predicted by GNNRefine with different input features and
training data, tested on the CASP13 data.Bold values are the best performance on the corresponding metric.

Top L Contact Precision C,IDDT
Features Training data

Medium+Long Long Medium+Long Long
All features In-house +7.52 +3.48 +2.98 +3.10
All features DeepAccNet data +6.43 +2.59 +3.15 +3.60
All features CASP models only +3.94 +1.09 +0.55 +1.11
no Orientation In-house +7.38 +2.54 +2.15 +2.22
no Dihedral&SS&RSA In-house +6.99 +2.89 +3.26 +3.59
no AtomEmb In-house +7.40 +4.11 +3.14 +3.09
AtomEmb (with local frame)' In-house +7.64 +3.30 +2.98 +3.09

1. Using Ca, N, and C to define the reference frame of atom coordinates for each residue.

7.2 Performance of an ensemble of GNNRefine models

Supplementary Table 12. Iterative refinement on the CASP13 targets using 5 different GNNRefine models trained
on different datasets. Model 1, 2 and 3 are trained by 3 different splits of our in-house data and DAN 1 and 2 are
trained by 2 different splits of the DeepAccNet data.

GDT-HA Degradation IDDT
Methods GDT-HA GDT-TS IDDT .
Degradation
0 -1 -2

Model 1 +3.06 +1.92 +2.63 2 0 0 0
+ Model 2 +3.34 +2.12 +2.91 3 1 0 1
+ Model 3 +3.39 +2.12 +2.95 3 2 0 1

+ DAN 1 +4.03 +2.47 +3.22 1 0 0 2

+DAN 2 +4.21 +2.44 +3.31 3 1 0 2




7.3 GNNRefine’s performance with different inter-atom relationships
predicted

Supplementary Table 13. Model refinement on the CASP13 data using restraints predicted for different atom types.
The same set of input features are used here regardless of atom types.

GDT-HA Degradation
Restraint GDT-HA GDT-TS IDDT

0 -1 -2
CbCb' +3.15 +1.96 +2.88 1 0 0
CbCb? +2.94 +1.73 +2.55 3 3 0
CaCa? +3.09 +1.95 +2.69 3 2 1
NO? +1.17 +0.47 +1.06 7 2 2
CaCa & CbCb? +3.17 +1.99 +2.73 2 2 1
CaCa & CbCb & NO? +2.52 +1.45 +2.02 4 3 0
CbCb? +2.76 +1.56 +2.45 4 3 1
CbCb & Orientation® +2.76 +1.60 +2.28 4 2 1

1. GNN model trained to predict CbCb distance only.
2. GNN model trained to predict CaCa, CbCb, and NO distances simultaneously.
3. GNN model trained to predict CbCb distance and orientation (®, 0 dihedrals and ¢ angle) simultaneously.

7.4 Study of distance cutoff for GNN edge definition

Supplementary Table 14. GNNRefine’s performance on the CASP13 data with respect to distance cutoff for GNN
edge definition'

GDT-HA Degradation
Distance Cutoff GDT-HA GDT-TS IDDT
0 -1 -2
8A +2.99 +1.75 +2.10 4 2 1
10A +3.15 +1.96 +2.88 1 0 0
12A +1.10 +0.45 +1.42 9 7 1
15A +1.44 +0.99 +2.05 8 3 0

1. For each configuration, we trained one GNNRefine model, then generated 10 refined models from each starting model and selected
the lowest-energy model as the final refined model.

Supplementary Table 15. Quality of the graph edges derived from initial protein models (distance cutoff =10A).

Dataset Precision Recall F1




CAMEO 78.96 81.09 79.89

CASP13 81.61 81.65 81.58

CASP14 84.09 83.85 83.90

7.5 Impact of message-passing layers on GNNRefine’'s performance

Supplementary Table 16. GNNRefine’s performance on the CASP13 data with respect to the number of
message-passing layers'

Number of GDT-HA Degradation
umber o GDT-HA  GDT-TS  IDDT
message-passing layers

0 1 2
5 +2.16 +1.42 +1.57 4 2 0
8 +2.58 +1.56 +2.01 3 1 0
10 +2.50 +1.72 +2.15 1 1 0
16 +2.01 +1.33 +1.75 4 1 1

1. The models used in this table are trained on our in-house dataset. In each setting, we trained only one GNNRefine model, generated
10 refined models from each starting model and selected the lowest-energy model as the final refined model.

7.6 Impact on performance by the number of refined models

In this subsection, we study the impact on refinement quality by the number of refined models generated by our
method. Meanwhile, GNNRefine builds 5 refined models (in serial) for one initial model to be refined.
GNNRefine-plus runs GNNRefine 10 times to generate 50 refined models. GNNRefine-250 generates 250 refined
models using the following procedure: 1) generate 50 refined models using the first GNNRefine model and keep
only the 10 lowest-energy models; 2) generate 5 refined models from each lowest-energy model using the second
GNNRefine model to yield 50 new refined models and keep only the 10 lowest-energy models; 3) repeat step 2) until
all 5 GNNRefine models have been used. 4) rank the 50 (10*5) lowest-energy models generated by the 5
GNNRefine models using our GNN-based modeling ranking method.

Supplementary Table 17. GNNRefine’s performance with respect to the number of refined models generated for
each initial model. Bold values are the best performance on the corresponding metric.

Degradation

Dataset Methods #refined models GDT-HA GDT-TS IDDT
0 -1 -2
GNNRefine 5 +3.83 +2.31 +3.19 3 1 0

- + + +

CASP13 GNNRefine-plus 50 3.90 2.31 3.33 4 0 0
GNNRefine-250 250 +4.13 +2.55 +3.33 3 (1} 0
GNNRefine 5 +0.84 +0.82 +0.50 17 9 7

CASP14 GNNRefine-plus 50 +0.80 +0.77 +0.67 14 10 6



GNNRefine-250 250 +1.00 +0.86 +0.79 16 14 7

8. GNN-based model quality assessment and order of refinement

8.1 Performance of GNN-based model selection

Our GNN-based quality assessment method (denoted as GNNQA) has a similar network architecture as GNNRefine.
The only difference is that GNNQA is trained to predict global and local IDDT based on the node feature while the
GNNRefine is trained to predict distance probability distribution based on the edge feature. As shown in Table 18,
GNNQA has comparable performance as two recently developed deep learning-based quality assessment methods
DeepAccNet? and VoroCNN?, and outperforms a statistical potential RWplus®. Table 19 shows that GNNQA can
select decoy models with better quality.

Supplementary Table 18. Model selection for GNNRefine using different QA methods on the CASP13 targets.

QA Method GDT-HA GDT-TS IDDT

Max' 57.04 74.52 65.35

GNNQA 56.10 73.81 64.92

DeepAccNet 56.16 73.87 64.96

VoroCNN 56.13 73.86 64.82

RWplus 55.92 73.76 64.88

Min' 54.75 72.89 64.09

1.  “Max” and “Min” represent the average quality of the best and worst models among all refined models generated by
GNNRefine.

Supplementary Table 19. Model selection for GNNRefine-plus using GNNQA on the CASP13 targets.

QA Method GDT-HA GDT-TS IDDT
Max 56.94 74.38 65.48
GNNQA 56.17 73.82 65.06

Min 54.89 72.98 64.34
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https://www.zotero.org/google-docs/?lHXKGO

8.2 Impact of the order of refinement

To evaluate the effect of refinement orders (i.e. the order of 5 GNNRefine models), we randomly generated 10
different refinement orders to implement the refinement process and did statistical analysis on the final refined
model quality, as shown in Table 20. Possibly because we use GNNQA to rank the refined models, the standard
deviations of the quality improvement are small (<0.2), which means the final refined models are robust to the order

of refinement.

Supplementary Table 20. Statistical analysis of 10 random different refinement orders on the CASP13 targets.

Metric Max Min Mean Std
GDT-HA 4.03 3.33 3.57 +0.20
GDT-TS 2.44 1.75 2.06 +0.18

IDDT 3.60 3.12 3.28 +0.13

9. Structure change after refinement

To measure the structure change by a refinement method, we calculate the average distance deviation (in
Angstroms) between the starting models and the refined models. To evaluate the performance of different methods
on largely deviated regions, we calculate the average change of unreliable local regions (ULRs)® proportion (i.e. the
proportion of residues in ULRs) between the starting models and refined models.

Supplementary Table 21. The distance deviation and ULR proportion change after refinement. For URL
proportion change, a negative and positive value indicates decrease and increase of URL proportion,

respectively. Bold values are the largest changes on the corresponding metric.

CASP13 CASP14

Methods deff)il:::::iz&) propollj‘:_i‘(l){n (%) Methods de]\?il:::::lciA) propollj‘Z(I)(n (%)
Starting 0.00 17.57 Starting 0.00 19.10
FEIGLAB 1.28 -2.19 FEIG 1.62 -0.28
BAKER 2.40 +1.28 BAKER 3.04 +5.87
GNNRefine 1.21 -0.71 GNNRefine 0.98 -0.19
GNNRefine-plus 1.24 -1.14 GNNRefine-plus 1.02 -0.72
Seok-server 1.21 -1.33 FEIG-S 1.45 +0.06
Bhattacharya-Server 0.93 -0.37 Seok-server 1.37 +1.68
YASARA 1.23 +1.57 Bhattacharya-Server 0.53 +0.45



https://www.zotero.org/google-docs/?UFAUvL

MUFold_server 2.62 +5.38 MUFOLD 9.02 +29.65

3DCNN 1.78 +2.67

10. Dataset description

10.1 The number of protein models used for training and test

Supplementary Table 22. The number of protein targets and models of different datasets

Dataset Source #Targets #Decoy or starting models
CASP 7-12 592 115857
In-house training data 29455 500255
CATH 28863 384398
DeepAccNet training data PISCES 7992 1104080
CASP13 28 28
CASP14 37 37
Test
CAMEO 208 208
CASPI3 FM 28 4193

10.2 The distribution of the training protein models

GDT-HA IDDT

300000 300000
250000 250000
200000 200000
150000 150000
100000 100000
|||||| J II|||

, L I . . [

0-10 1020 2030 30-40 40-50 50-60 6070 70-80 80-90 90-100 10 10-20 20-30 30-40 4050 50-60 60-70 70-80 80-90 90-100

M In-house data m DeepAccNet data BIn-house data m DeepAccNet data

Supplementary Figure 5. The decoy quality distribution of the training data.



11. Summary of Input Features

Supplementary Table 23. Summary of input features

Type Dimension
One-hot encoding of residue 21
1
Residue
Dihedral, SS3 and RSA calculated by DSSP 6
One-hot encoding and relative coordinate of heavy atoms 7
Distance (CaCa, CBCB and NO) 3
Residue pair Orientation (o, 8 and @) 3
Sequential separation 9

12. Detailed architectures of the atom embedding module and

message passing blocks for edges and nodes
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Supplementary Figure. 6. Detailed architectures of the atom embedding module and message passing blocks for
edges and nodes. A. The atom embedding module; B. The message block for edges; C. The reduce block for nodes
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