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1.   Performance   on   the   CASP14   targets   
Supplementary   Table   1.   Performance   on   the   CASP14   refinement   targets   when   the   AlphaFold2   models   are   excluded.   
GNNRefine   and   GNNRefine-plus   generate   5   and   50   refined   models,   respectively,   for   each   starting   model.   Only   the   

first-ranked   refined   models   are   evaluated   in   this   table.   The   performance   of   our   methods   is   highlighted   boldly.   

 

Type   Methods   GDT-HA   GDT-TS   lDDT   
Degradation   

0   -1   -2   

  Starting   50.40   69.6   62.51               

Human   
FEIG   +4.59   +3.48   +3.36   7   5   2   

BAKER   +2.71   +1.06   +2.34   11   9   8   

Server   

GNNRefine   +1.94   +1.51   +1.26   10   3   3   

GNNRefine-plus   +1.63   +1.29   +1.35   8   4   2   

FEIG-S   +3.75   +2.64   +2.86   8   7   5   

Seok-server   +0.27   -0.09   +0.58   14   8   4   

Bhattacharya-Server   -0.54   -0.39   +0.27   22   15   4   

MUFOLD   -12.32   -15.45   -10.75   29   29   26   



Supplementary   Table   2.   Performance   on   the   AlphaFold2   refinement   models   in   CASP14.   The   performance   of   our   
methods   is   highlighted   boldly.   

  

  

Supplementary   Figure   1.   Box   plot   of   the   distribution   of   ΔGDT-HA,   ΔGDT-TS,   and   ΔlDDT   values   on   the   
AlphaFold2   refinement   models.   

2.   Performance   on   the   AlphaFold2   regular   models   in   CASP14   
We  tested  our  method  on  all  the  first  models  submitted  by  AlphaFold2  for  regular  targets  in  CASP14,  the  result  is                      
shown  in  Table  3.  As  shown  in  the  table,  since  most  of  the  AlphaFold2  models  are  of  high  quality,  on  average  our                        
method  GNNRefine  degrades  the  AlphaFold2  models  by  -2.22,  -1.13  and  -2.12  in  terms  of  GDT-HA,  GDT-TS  and                   
lDDT,  respectively.  GNNRefine-plus  degrades  the  quality  by  -2.40,  -1.24  and  -2.04,  respectively.  As  shown  in                 
Figure  2,  our  method  performs  slightly  better  on  initial  protein  models  of  lower  quality  that  predicted  by                   

Type   Methods   GDT-HA   GDT-TS   lDDT   

Degradation   

ΔGDT-HA<   
-5   

ΔGDT-TS   
<   -5   

ΔlDDT   
<   -5   

  Starting   70.13   85.56   80.84         

Human   
FEIG   -9.04   -7.06   -8.39   4   4   6   

BAKER   -5.61   -4.69   -5.26   5   3   4   

Server   

GNNRefine   -3.84   -2.14   -2.76   2   1   1   

GNNRefine-plus   -2.69   -1.49   -2.24   1   0   0   

FEIG-S   -7.67   -5.73   -6.14   5   3   4   

Seok-server   -7.16   -6.59   -5.23   5   5   3   

Bhattacharya-Server   -4.23   -1.96   -3.51   2   0   0   

MUFOLD   -28.44   -28.47   -24.12   6   5   7   



AlphaFold2,  while  not  as  good  on  initial  protein  models  of  very  high  quality.  Our  methods  improve  GDT-HA  of  the                     
AlphaFold2  first  models  for  T1100-D1,  T1055-D1,  T1095-D1,  T1096-D1,  T1094-D2,  T1046s2-D1,  T1038-D1,             
T1030-D2,  T1061-D1,  T1030-D1,  T1100-D2,  T1061-D0,  T1070-D4,  T1047s2-D1,  T1053-D1,  T1037-D1,           
T1092-D1  and  T1034-D1.  In  particular,  our  method  GNNRefine-plus  may  improve  the  GDT-HA  of  T1100-D1  and                 
T1055-D1   by   ~4   units,   which   have   starting   GDT-HA   58.70   and   68.00,   respectively.     
  

On  the  AlphaFold2  first  models,  the  correlation  coefficient  between  the  GNNQA-predicted  quality  of  the  starting                 
model  and  the  improvement  by  GNNRefine  is  0.31,  although  we  can  only  improve  a  smaller  percentage  of                   
AlphaFold2  models.  As  shown  in  Fig.  2,  all  the  AlphaFold2  models  that  can  be  improved  by  GNNRefine  have                    
lDDT   less   than   88.   

Supplementary   Table   3.   Performance   on   the   AlphaFold2   regular   models 1    in   CASP14   

1. The  refinement  was  conducted  on  the  first  models  submitted  by  AlphaFold2  for  the  whole  target,  while  the  evaluation  is  conducted  on                       
the   88   official   domains   defined   by   CASP14.     

2. The   corresponding   maximum   and   minimum   values.   

Type   Num   Methods   GDT-HA   GDT-TS   lDDT   

Degradation   

ΔGDT-HA   
<   -5   

ΔGDT-TS   
<   -5   

ΔlDDT   
<   -5   

FM   23   
GNNRefine   -2.16   -1.64   -1.75   2   1   0   

GNNRefine-plus   -2.28   -1.80   -1.64   3   1   0   

FM/TBM   14   
GNNRefine   -3.36     -1.84   -2.54   4   1   1   

GNNRefine-plus   -3.39   -1.90   -2.37   5   1   2   

TBM-hard   28   
GNNRefine   -1.43   -0.50   -1.89   1   0   1   

GNNRefine-plus   -1.68   -0.64   -1.76   3   0   1   

TBM-easy   22   
GNNRefine   -2.65   -0.99   -2.58   4   1   0   

GNNRefine-plus   -2.94   -1.07   -2.63   5   1   1   

MultiDom   1   
GNNRefine   -0.10   -0.30   -1.61   0   0   0   

GNNRefine-plus   +0.60   +0.20   -1.43   0   0   0   

All   88   

GNNRefine   -2.22   
(+2.50/-18.20) 2   

-1.13   
(+2.00/-19.00)   

-2.12   
(+0.77/-6.62)   11   3   2   

GNNRefine-plus   -2.40   
(+4.30/-16.90)   

-1.24   
(+3.80/-21.00)   

-2.04   
(+1.75/   -6.56)   16   3   4   



  

  
Supplementary   Figure   2.   The   model   quality   improvement   by   GNNRefine   with   respect   to   the   starting   model   quality   

(of   the   AlphaFold2   regular   models).   The   data   are   sorted   ascendingly   by   the   lDDT   of   the   starting   models.   
  

3.   Performance   on   the   CAMEO   targets   
Supplementary   Table   4.   Performance   of   standalone   software   on   the   CAMEO   targets.Bold   values   are   the   best   

performance   on   the   corresponding   metric.   

Methods   GDT-HA   GDT-TS   lDDT   
Degradation   

0   -1   -2   

Starting   45.55   63.44   60.87               

GNNRefine   +1.91   +1.18   +2.25   42   26   17   

GNNRefine-plus   +1.99   +1.20   +2.23   39   21   12   

GalaxyRefine   +0.03   +0.09   +0.96   98   61   37   

ModRefiner-100   -0.02   -0.02   +0.44   90   11   3   

ModRefiner-50   -0.07   -0.05   +0.44   95   27   7   

ModRefiner-0   -0.72   -0.83   +0.25   128   59   25   



    

Tested  on  the  CAMEO  targets,  there  is  a  weak  correlation  (0.20)  between  the  GNNQA-predicted  quality  of  the                   
starting  model  and  the  improvement  by  GNNRefine.  As  shown  in  Fig  3,  most  of  the  CAMEO  starting  models  have                     
GNNQA-predicted  quality  (lDDT)  from  47  to  80  and  GNNRefine  may  refine  most  of  them.  GNNRefine  has  a                   
slightly  better  chance  to  improve  the  quality  of  CAMEO  targets  when  the  GNNQA-predicted  lDDT  score  is  between                   
60   and   80.     

  
Supplementary   Figure   3.   The   model   quality   improvement   by   GNNRefine   with   respect   to   the   GNNQA-predicted   

quality   of   the   starting   model   (of   the   CAMEO   set).   The   data   are   sorted   ascendingly   by   the   GNNQA-predicted   global   
lDDT   of   the   starting   models.   

  
  

Supplementary   Table   5.   The   GNNQA-predicted   quality   of   starting   models   vs.   the   quality   improvements   by   
GNNRefine   on   the   CAMEO   targets.   

FastRelax   -2.30   -2.28   -0.19   139   121   92   

GNNQA-predicted   lDDT   
of   starting   model   

#   starting   
models   

Improvement   

ΔGDT-HA   ΔGDT-TS   ΔlDDT   

>40   206   +2.00   +1.32   +2.26   

>50   186   +2.11   +1.42   +2.24   

>60   121   +2.38   +1.66   +2.19   

>70   46   +2.48   +1.61   +2.26   

>80   8   +1.60   +1.08   +2.00   



  

4.   Performance   on   the   in-house   CASP13   FM   models   
Supplementary   Table   6.   Performance   on   our   in-house   decoys   for   the   CASP   13   FM   target.   For   each   target,   150   initial   

models   were   generated      by   our   own   template-free   modeling   method   and   then   for   each   initial   model,   one   refined   
model   was   generated   by   GNNRefine.   Bold   values   are   the   improvement   of   refined   models.   

1.   The   average   quality   of   the   best   models   (ranked   by   GDT-HA)   generated   for   each   target.   
2.   All   models   of   a   target   are   clustered   into   10   groups   by   SPICKER 1 .   This   row   shows   the   average   quality   of   the   10   cluster   centroids.   
3.   The   mean   quality   of   all   the   models   for   each   target.   
  

5.  Performance  of  standalone  software  and  servers  on  the           
CASP13   refinement   targets   

Supplementary   Table   7.   Performance   of   standalone   software   and   servers   on   the   CASP13   refinement   targets.   Bold   
values   are   the   best   performance   on   the   corresponding   metric.   

1.   The  average  running  time  (hour)  needed  to  refine  a  single  protein  model.  All  programs  were  run  on  one  CPU  of  the  same  computer                          
to   fairly   compare   their   running   time.   
2.   We   could   not   run   these   two   methods   locally   and   thus,   cannot   measure   their   running   time   accurately.   

  

Models   
GDT-HA   GDT-TS   lDDT   Degradation   

Starting   Refined   Starting   Refined   Starting   Refined   0   -1   -2   

Max 1   40.46   +3.44   59.27   +2.79   52.02   +6.43   1   0   0   

Cluster10 2   32.38   +2.13   48.49   +2.01   46.93   +4.20   9   5   1   

Mean 3   34.85   +1.18   51.81   +0.71   48.24   +3.87   8   1   1   

Methods   GDT-HA   GDT-TS   lDDT   
Degradation   

Running   Time 1   

0   -1   -2   

Starting   52.27   71.51   61.74                   

GNNRefine   +3.83   +2.31   +3.19   3   1   0   ~0.16   

GalaxyRefine   +0.21   +0.05   +1.23   15   8   4   ~2.53   

ModRefiner-100   +0.16   +0.05   +0.73   13   3   0   ~0.57   

ModRefiner-50   -0.05   +0.04   +0.78   11   6   0   ~0.59   

ModRefiner-0   -0.70   -0.58   +0.99   17   12   2   ~0.54   

FastRelax   -2.00   -1.96   +0.17   18   14   13   ~ 0.03  

3DRefine   +0.24   +0.12   +0.30   9   0   0   -- 2   

ReFold   -0.45   -0.24   -0.04   17   14   6   -- 2   

https://www.zotero.org/google-docs/?T1oUIG


6.   Distance   prediction   by   GNN,   in-house   ResNet   and   
DeepAccNet   
Our  in-house  2D  ResNet  consists  of  one  gate  block,  20  ResNet  blocks,  and  one  output  layer,  as  shown  in  Figure  4.  It                        
uses  the  same  input  feature  as  GNNRefine.  To  fit  the  input  shape  of  2D  ResNet,  we  pairwisely  concatenate  the  node                      
feature  with  the  edge  feature.  The  gate  block  is  used  to  connect  pairwise  input  features  to  the  2D  ResNet,  which  is                       
composed  of  one  2D  convolutional  layer,  one  instance  norm  layer  and  one  ELU  activation  layer.  Each  ResNet  block                    
consists  of  2  instance  norm  layers,  2  convolutional  layers,  2  ELU  activation  layers  and  1  dropout  layer.  In  each                     
ResNet  block,  there  is  a  shortcut  connecting  its  input  to  the  output  of  the  second  convolutional  layer.  The  dilation                     
ratio  is  2  and  the  kernel  size  is  5  in  each  2D  convolutional  layer.  The  inner  channel  size  is  64.  The  output  layer                         
consists  of  one  fully  connected  layer  and  one  softmax  layer.  Similar  to  GNNRefine,  our  in-house  ResNet  predicts                   
pairwise   distance   probability   distribution.   

  

Supplementary   Figure   4.   The   detailed   architecture   of   our   in-house   2D   ResNet   for   protein   model   refinement.  

  
Supplementary   Table   8.   Comparison   between   predicted   distance   and   the   distance   calculated   from   the   starting  

models.   Only   one   GNNRefine   deep   model   is   used   here.   Bold   values   are   the   performance   of   GNNRefine.   

Dataset   Methods   
Top   L   Contact   Precision   (%)   C β    lDDT   

Medium+Long   Long   Medium+Long  Long   

CASP13   Starting   77.33   66.16   67.92   66.38   



  

Supplementary   Table   9.   Performance   of   GNN-based   and   ResNet-based   methods   on   the   CASP13   and   CASP14   

refinement   targets.    Only   1   instead   of   5   GNNRefine   deep   models   is   used   here.Bold   values   are   the   best   performance   

on   the   corresponding   metric.   

1.   Without   extensive   conformational   sampling.   

  

Supplementary   Table   10.   The   improvement   in   distance   prediction   by   GNN   and   ResNet   on   the   CASP13   and   CASP14   
refinement   models.   Bold   values   are   the   best   performance   on   the   corresponding   metric.   

GNNRefine   84.85   69.65   70.89   69.48   

CAMEO   
Starting   57.66   49.67   57.77   54.89   

GNNRefine   65.34   54.10   60.19   57.38   

Dataset   Methods   GDT-HA   GDT-TS   lDDT   
Degradation   

0   -1   -2   

CASP13   

Starting   52.27   71.51   61.74               

GNNRefine   +3.15   +1.96   +2.88   1   0   0   

2D   ResNet   (in-house)   +0.49   +0.29   +0.91   8   4   1   

DeepAccNet 1   +0.07   -1.23   +0.51   11   8   6   

CASP14   

Starting   54.12   72.65   65.98               

GNNRefine   +0.61   +0.60   +0.44   16   8   5   

2D   ResNet   (in-house)   -0.58   -0.51   -0.44   24   14   6   

DeepAccNet 1   -0.60   -0.85   -0.06   19   16   9   

Dataset   Methods   
Top   L   Contact   Precision   C β     lDDT   

Medium+Long  Long   Medium+Long  Long   

CASP13   

GNN   +6.99   +2.89   +3.26   +3.59   

2D   ResNet   (in-house)   +4.83   +1.06   -1.07   -1.16   

DeepAccNet   DistPot 1   -39.19   -30.14   -5.38   -5.14   

CASP14   

GNN   +3.41   +1.45   +0.27   +0.96   

2D   ResNet   (in-house)   +1.03   -1.20   -2.00   -1.72   

DeepAccNet   DistPot 1   -28.00   -21.53   -4.89   -4.88   



1.  The  predicted  distance  by  DeepAccNet  is  derived  from  its  distance  potential.  For  each  residue  pair,  the  distance  with  the  lowest  potential  is                        
used   as   its   predicted   distance.   

7.   Ablation   Study   of   GNNRefine   

7.1   The   improvement   in   contact   and   distance   prediction   by   GNNRefine   
trained   with   different   input   features   and   training   data   

Supplementary   Table   11.   The   improvement   in   distance   predicted   by   GNNRefine   with   different   input   features   and   
training   data,   tested   on   the   CASP13   data.Bold   values   are   the   best   performance   on   the   corresponding   metric.   

1.   Using   Cα,   N,   and   C   to   define   the   reference   frame   of   atom   coordinates   for   each   residue.   

7.2   Performance   of   an   ensemble   of   GNNRefine   models   
Supplementary   Table   12.   Iterative   refinement   on   the   CASP13   targets   using   5   different   GNNRefine   models   trained   
on   different   datasets.   Model   1,   2   and   3   are   trained   by   3   different   splits   of   our   in-house   data   and   DAN   1   and   2   are   

trained   by   2   different   splits   of   the   DeepAccNet   data.   

  

Features   Training   data   
Top   L   Contact   Precision   C β    lDDT   

Medium+Long  Long   Medium+Long  Long   

All   features   In-house   +7.52   +3.48   +2.98   +3.10   

All   features   DeepAccNet   data   +6.43   +2.59   +3.15   +3.60   

All   features   CASP   models   only   +3.94   +1.09   +0.55   +1.11   

no   Orientation   In-house   +7.38   +2.54   +2.15   +2.22   

no   Dihedral&SS&RSA   In-house   +6.99   +2.89   +3.26   +3.59   

no   AtomEmb   In-house   +7.40   +4.11   +3.14   +3.09   

AtomEmb   (with   local   frame) 1   In-house   +7.64   +3.30   +2.98   +3.09   

Methods   GDT-HA   GDT-TS   lDDT   
GDT-HA   Degradation   

lDDT   
Degradation   

0   -1   -2   

Model   1   +3.06   +1.92   +2.63   2   0   0   0   

+   Model   2   +3.34   +2.12   +2.91   3   1   0   1   

+   Model   3   +3.39   +2.12   +2.95   3   2   0   1   

+   DAN   1   +4.03   +2.47   +3.22   1   0   0   2   

+   DAN   2   +4.21   +2.44   +3.31   3   1   0   2   



7.3  GNNRefine’s  performance  with  different  inter-atom  relationships         
predicted   
Supplementary   Table   13.   Model   refinement   on   the   CASP13   data   using   restraints   predicted   for   different   atom   types.   

The   same   set   of   input   features   are   used   here   regardless   of   atom   types.     

1.   GNN   model   trained   to   predict   CbCb   distance   only.   
2.   GNN   model   trained   to   predict   CaCa,   CbCb,   and   NO   distances   simultaneously.   
3.   GNN   model   trained   to   predict   CbCb   distance   and   orientation   (ω,   θ   dihedrals   and   φ   angle)   simultaneously.   

7.4   Study   of   distance   cutoff   for   GNN   edge   definition   
Supplementary   Table   14.   GNNRefine’s   performance   on   the   CASP13   data   with   respect   to   distance   cutoff   for   GNN   

edge   definition 1   

1.   For   each   configuration,   we   trained   one   GNNRefine   model,   then   generated   10   refined   models   from   each   starting   model   and   selected   
the   lowest-energy   model   as   the   final   refined   model.   

  
Supplementary   Table   15.   Quality   of   the   graph   edges   derived   from   initial   protein   models   (distance   cutoff   =10 Å ).     

Restraint     GDT-HA   GDT-TS   lDDT   
GDT-HA   Degradation   

0   -1   -2   

CbCb 1   +3.15   +1.96   +2.88   1   0   0   

CbCb 2   +2.94   +1.73   +2.55   3   3   0   

CaCa 2   +3.09   +1.95   +2.69   3   2   1   

NO 2   +1.17   +0.47   +1.06   7   2   2   

CaCa   &   CbCb 2   +3.17   +1.99   +2.73   2   2   1   

CaCa   &   CbCb   &   NO 2   +2.52   +1.45   +2.02   4   3   0   

CbCb 3   +2.76   +1.56   +2.45   4   3   1   

CbCb   &   Orientation 3   +2.76   +1.60   +2.28   4   2   1   

Distance   Cutoff     GDT-HA   GDT-TS   lDDT   
GDT-HA   Degradation   

0   -1   -2   

8Å   +2.99   +1.75   +2.10   4   2   1   

10Å   +3.15   +1.96   +2.88   1   0   0   

12Å   +1.10   +0.45   +1.42   9   7   1   

15Å   +1.44   +0.99   +2.05   8   3   0   

Dataset   Precision   Recall   F1   



7.5   Impact   of   message-passing   layers   on   GNNRefine’s   performance   
Supplementary   Table   16.   GNNRefine’s   performance   on   the   CASP13   data   with   respect   to   the   number   of   

message-passing   layers 1   

1.  The  models  used  in  this  table  are  trained  on  our  in-house  dataset .   In  each  setting,  we  trained  only  one  GNNRefine  model,  generated                         
10   refined   models   from   each   starting   model   and   selected   the   lowest-energy   model   as   the   final   refined   model.   

7.6   Impact   on   performance   by   the   number   of   refined   models   
In  this  subsection,  we  study  the  impact  on  refinement  quality  by  the  number  of  refined  models  generated  by  our                                       
method.  Meanwhile,  GNNRefine  builds  5  refined  models  (in  serial)  for  one  initial  model  to  be  refined.                                 

GNNRefine-plus  runs  GNNRefine  10  times  to  generate  50  refined  models.  GNNRefine-250  generates  250  refined                             
models  using  the  following  procedure:  1)  generate  50  refined  models  using  the  first  GNNRefine  model  and  keep                                   
only  the  10  lowest-energy  models;  2)  generate  5  refined  models  from  each  lowest-energy  model  using  the  second                                   

GNNRefine  model  to  yield  50  new  refined  models  and  keep  only  the  10  lowest-energy  models;  3)  repeat  step  2)  until                                         
all  5  GNNRefine  models  have  been  used.  4)  rank  the  50  (10*5)  lowest-energy  models  generated  by  the  5                                     

GNNRefine   models   using   our   GNN-based   modeling   ranking   method.   

  
Supplementary   Table   17.   GNNRefine’s   performance   with   respect   to   the   number   of   refined   models   generated   for   
each   initial   model.   Bold   values   are   the   best   performance   on   the   corresponding   metric.   

CAMEO   78.96   81.09   79.89   

CASP13   81.61   81.65   81.58   

CASP14   84.09   83.85   83.90   

Number   of   
message-passing   layers   GDT-HA   GDT-TS   lDDT   

GDT-HA   Degradation   

0   -1   -2   

5   +2.16   +1.42   +1.57   4   2   0   

8   +2.58   +1.56   +2.01   3   1   0   

10   +2.50   +1.72   +2.15   1   1   0   

16   +2.01   +1.33   +1.75   4   1   1   

Dataset   Methods   #refined   models   GDT-HA   GDT-TS   lDDT   
Degradation   

0   -1   -2   

  
CASP13   

GNNRefine   5   +3.83   +2.31   +3.19   3   1   0   

GNNRefine-plus   50   +3.90   +2.31   +3.33   4   0   0   

GNNRefine-250   250   +4.13   +2.55   +3.33   3   0   0   

CASP14   

GNNRefine   5   +0.84   +0.82   +0.50   17   9   7   

GNNRefine-plus   50   +0.80   +0.77   +0.67   14   10   6   



  

8.   GNN-based   model   quality   assessment   and   order   of   refinement   

8.1   Performance   of   GNN-based   model   selection   
Our  GNN-based  quality  assessment  method  (denoted  as  GNNQA)  has  a  similar  network  architecture  as  GNNRefine.                 
The  only  difference  is  that  GNNQA  is  trained  to  predict  global  and  local  lDDT  based  on  the  node  feature  while  the                       
GNNRefine  is  trained  to  predict  distance  probability  distribution  based  on  the  edge  feature.  As  shown  in  Table  18,                    
GNNQA  has  comparable  performance  as  two  recently  developed  deep  learning-based  quality  assessment  methods               
DeepAccNet 2  and  VoroCNN 3 ,  and  outperforms  a  statistical  potential  RWplus 4 .  Table  19  shows  that  GNNQA  can                 
select   decoy   models   with   better   quality.     

  
Supplementary   Table   18.   Model   selection   for   GNNRefine   using   different   QA   methods   on   the   CASP13   targets.   

1. “Max”  and  “Min”  represent  the  average  quality  of  the  best  and  worst  models  among  all  refined  models  generated  by                     
GNNRefine.  

  
Supplementary   Table   19.   Model   selection   for   GNNRefine-plus   using   GNNQA   on   the   CASP13   targets.   

  

GNNRefine-250   250   +1.00   +0.86   +0.79   16   14   7   

QA   Method     GDT-HA   GDT-TS   lDDT   

Max 1   57.04   74.52   65.35   

GNNQA   56.10   73.81   64.92   

DeepAccNet   56.16   73.87   64.96   

VoroCNN   56.13   73.86   64.82   

RWplus   55.92   73.76   64.88   

Min 1   54.75   72.89   64.09   

QA   Method     GDT-HA   GDT-TS   lDDT   

Max   56.94   74.38   65.48   

GNNQA   56.17   73.82   65.06   

Min   54.89   72.98   64.34   

https://www.zotero.org/google-docs/?ih0Vd1
https://www.zotero.org/google-docs/?zksK6f
https://www.zotero.org/google-docs/?lHXKGO


8.2   Impact   of   the   order   of   refinement   
To  evaluate  the  effect  of  refinement  orders  (i.e.  the  order  of  5  GNNRefine  models),  we  randomly  generated  10                    
different  refinement  orders  to  implement  the  refinement  process  and  did  statistical  analysis  on  the  final  refined                  
model  quality,  as  shown  in  Table  20.  Possibly  because  we  use  GNNQA  to  rank  the  refined  models,  the  standard                     
deviations  of  the  quality  improvement  are  small  (<0.2),  which  means  the  final  refined  models  are  robust  to  the  order                     
of   refinement.   

  
Supplementary   Table   20.   Statistical   analysis   of   10   random   different   refinement   orders   on   the   CASP13   targets.   

  

9.   Structure   change   after   refinement   
To  measure  the  structure  change  by  a  refinement  method,  we  calculate  the  average  distance  deviation  (in                  
Angstroms)  between  the  starting  models  and  the  refined  models.  To  evaluate  the  performance  of  different  methods                  
on  largely  deviated  regions,  we  calculate  the  average  change  of  unreliable  local  regions  (ULRs) 5   proportion  (i.e.  the                   
proportion   of   residues   in   ULRs)   between   the   starting   models   and   refined   models.   

Supplementary   Table   21.   The   distance   deviation   and   ULR   proportion   change   after   refinement.   For   URL  
proportion   change,   a   negative   and   positive   value   indicates   decrease   and   increase   of   URL   proportion,   

respectively.   Bold   values   are   the   largest   changes   on   the   corresponding   metric.   

Metric   Max   Min   Mean   Std   

GDT-HA   4.03   3.33   3.57   ±0.20   

GDT-TS     2.44   1.75   2.06   ±0.18   

lDDT   3.60   3.12   3.28   ±0.13   

CASP13   CASP14   

Methods   Distance     
deviation   (Å)   

ULR     
proportion   (%)   

Methods   Distance     
deviation   (Å)   

ULR   
proportion   (%)   

Starting   0.00   17.57   Starting   0.00   19.10   

FEIGLAB   1.28   -2.19   FEIG   1.62   -0.28   

BAKER   2.40   +1.28   BAKER   3.04   +5.87   

GNNRefine   1.21   -0.71   GNNRefine   0.98   -0.19   

GNNRefine-plus   1.24   -1.14   GNNRefine-plus   1.02   -0.72   

Seok-server   1.21   -1.33   FEIG-S   1.45   +0.06   

Bhattacharya-Server     0.93   -0.37   Seok-server   1.37   +1.68   

YASARA   1.23   +1.57   Bhattacharya-Server   0.53   +0.45   

https://www.zotero.org/google-docs/?UFAUvL


  

10.   Dataset   description   

10.1   The   number   of   protein   models   used   for   training   and   test   

Supplementary   Table   22.   The   number   of   protein   targets   and   models   of   different   datasets   

  

10.2   The   distribution   of   the   training   protein   models   

  
Supplementary   Figure   5.   The   decoy   quality   distribution   of   the   training   data.   

MUFold_server   2.62   +5.38   MUFOLD   9.02   +29.65   

3DCNN   1.78   +2.67         

Dataset   Source   #Targets   #Decoy   or   starting   models   

In-house   training   data   
CASP   7-12   592   

29455   
115857   

500255   
CATH   28863   384398   

DeepAccNet   training   data   PISCES   7992   1104080   

Test   

CASP13   28   28   

CASP14   37   37   

CAMEO   208   208   

CASP13   FM   28   4193   



11.   Summary   of   Input   Features   

Supplementary   Table   23.   Summary   of   input   features   

  

12.   Detailed   architectures   of   the   atom   embedding   module   and   

message   passing   blocks   for   edges   and   nodes   

  

Type   Feature   Dimension   

Residue   

One-hot   encoding   of   residue   21   

rPosition   1   

Dihedral,   SS3   and   RSA   calculated   by   DSSP   6   

One-hot   encoding   and   relative   coordinate   of   heavy   atoms   7   

Residue   pair   

Distance   ( CαCα ,    C β C β    and   NO)   3   

Orientation   (ω,   θ   and   φ)   3   

Sequential   separation   9   



Supplementary   Figure.   6.   Detailed   architectures   of   the   atom   embedding   module   and   message   passing   blocks   for   
edges   and   nodes.   A.   The   atom   embedding   module;   B.   The   message   block   for   edges;   C.   The   reduce   block   for   nodes   
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