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S1. COHERENCE IN ELECTRON MICROSCOPY

The term coherence is employed to denote different
things depending on the physical processes under con-
sideration. We thus provide a brief discussion on several
possible uses of this concept in the context of electron
microscopy.

Coherence in the sampled excitations. Plas-
mons and other types of polaritons excited by electron
beams (e-beams) can be out-coupled to radiation at dif-
ferent regions of the specimen, and eventually produce
far-field CL interference. In this sense, the coherence of
these excitations is a property of the specimen, indepen-
dent of whether we excite them with fast electrons or
with localized point emitters (e.g., quantum dots). Even
Smith-Purcell radiation fits into this general description:
there is a continuum of degenerate light modes for each
emission frequency (i.e., different directions of emission
and two polarizations) and the electron just provides a
practical way of accessing a particular superposition of
them (i.e., the electron velocity and beam orientation
relative to the grating select which modes are excited,
corresponding to the emission of radiation along specific
frequency-dependent directions).

Coherence in this context then refers to the inter-
ference between different excited modes (polaritons and
photons) when the quantum mechanical state of the spec-
imen remains unchanged after interaction with the elec-
tron [1]. An example of incoherent excitations according
to this definition is provided by those associated with
the luminescence resulting from the decay of interband
electronic transitions in a semiconductor that are ini-
tially created by the e-beam and subsequently undergo
de-excitation to an intermediate state that introduces a
random phase (e.g., via an Auger process): the sample
is not left in the same quantum-mechanical state after
interaction with the electron, so the emission intensity
builds up from the (incoherent) sum of intensities associ-
ated with different excitations triggered by the electron
at different locations.

Coherence of the electron as a source of opti-
cal excitations. Coherence in this sense depends on the

electron wave function (or in general the electron density
matrix if it is prepared in a mixed state). It manifests
during the interaction of the sample with several synchro-
nized electrons (see point iii below) and also by means of
interference of CL with external light (points iv-v). To
complement this discussion, several additional elements
related to coherence can be demonstrated from first prin-
ciples [2] (i.e., with independence of the type of specimen
and the mechanism of interaction with the electron) un-
der the assumption of nonrecoil:

i. For interaction with an individual electron, the excita-
tion probability for both EELS and CL reduces to the
average of the probability P (x, y) obtained for a clas-
sical point particle passing by (x, y) over the e-beam
transverse density profile [3] (i.e., the resulting prob-
ability is

∫∫
dxdy |ψ⊥(x, y) |2P (x, y), where ψ⊥(x, y)

is the lateral component of the wave function and the
electron velocity is taken along z). This result was first
obtained by Ritchie and Howie [3].

ii. The individual-electron probability P (x, y) is actually
independent of the longitudinal wave function ψ‖(z).

iii. For interaction with more than one electron during
the lifetime of the sampled excitation, the probability
can depend on the electron wave functions if they
are mutually synchronized. This dependence comes
through factors given byMω/v (eq 9 in the main text).

Additionally, we might wonder whether the excitations
produced by the electron maintain some degree of coher-
ence with respect to any external illumination. In the
main text, we show that, in the limit of a point-particle
electron, the CL emission is completely coherent with re-
spect to external light if this is synchronized to a high
precision relative to the optical cycle of the sampled ex-
citation: the electron acts as a classical source that is
phase-locked to the external light, so the generated far-
field amplitude is the sum of contributions coming from
each of them (i.e., the solution of Maxwell’s equations
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for the combined electron and light sources). Now, the
question arises, is this also true when the electron is not
a point particle? We find the following answers from
first-principles theory:

iv. The CL emission can partially interfere with exter-
nal light if the electron and the light are mutually
phase-locked. Interference comes through a term pro-
portional to the so-called degree of coherence |Mω/v|2
[4], where Mω/v is the same quantity that rules the
interference between the excitations produced by mul-
tiple synchronized electrons [2]). Maximum coherence
corresponds to |Mω/v|2 = 1, which can be achieved if
the electron probability density consists of a series of
δ-function peaks separated by a distance 2πv/ω [2].

v. As we show in the main text, the CL emission can even

be partially suppressed if it is mixed with mutually
coherent light. The maximum fraction of emission that
can be suppressed is given by |Mω/v|2.

For electrons prepared in Gaussian wavepackets, the fac-
tor |Mω/v|2 = e−ω2σ2

t depends on their duration σt rela-
tive to the optical cycle of the sampled excitation 2π/ω
(e.g., 2π/ω ≈ 4.1 fs for ~ω = 1 eV). A practical way to
achieve a significant value of |Mω/v|2 consists in using
PINEM-modulated electrons, and then the PINEM laser
is automatically synchronized with the electron modu-
lation. However, under cw illumination, this leads to
|Mω/v|2 < 0.34, unless the electron is already prepared
as a short pulse (Figure S1). The quest for achieving
the maximum possible value of |Mω/v|2 = 1 defines an
exciting avenue of research.

S2. ALTERNATIVE DESCRIPTION FOR A DIPOLAR SCATTERER:
ANALYSIS OF ENERGY PATHWAYS

We present an alternative treatment of a dipolar scat-
terer that hosts a single optical mode. This approach
does not require photon quantization and it can be ap-
plied to any two-level system that can be characterized
by a transition dipole. As a starting point, we write the
Hamiltonian

Ĥ =~ω0 â
†â+ ~

∑
q

εq ĉ
†
q ĉq

+ g(t)
(
â† + â

)
+
∑
qq′

gqq′ ĉ†q ĉq′
(
â† + â

)
,

(S1)

where ω0 is the mode frequency, â† and â represent
the corresponding creation and annihilation operators, ĉ†q
and ĉq create and annihilate an electron of wave vector
q and kinetic energy ~εq along the e-beam direction, the
real coefficient g(t) describes the mode coupling to classi-
cal external light, and gqq′ are electron-scatterer coupling
coefficients.

In what follows, we ignore transverse coordinates under
the nonrecoil approximation, together with the assump-
tion that the e-beam is focused around a lateral position
R0 = (x0, y0) relative to the scatterer, with a small focal
spot compared to both c/ω0 and R0. A basis set of longi-
tudinal wave vector states 〈z|q〉 = eiqz/

√
L is then used to

describe the electron, where L is the quantization length
along the e-beam direction. In addition, the scatterer is
considered to be prepared in its ground state before in-
teraction with the external light and the electron. We
further assume typical conditions in electron microscopy,
characterized by a weak electron-scatterer interaction, so
that we can work to the lowest possible order of pertur-
bation theory. The external light is taken to be dimmed,
such that its interaction strength becomes commensurate
with that of the electron. Under these conditions, the
density matrix of the combined electron-scatterer system
can be written as

ρ̂ =
∑

nn′,qq′

αnn′,qq′(t) ei(n′−n)ω0t+iεq′qt |nq〉〈n′q′|, (S2)

where |nq〉 ≡ (â†)nĉ†q|0〉/
√
n! and we adopt the notation

εq′q = εq′ − εq. A finite lifetime τ0 of the optical mode is
now introduced through the equation of motion

dρ̂

dt
= i

~

[
ρ̂, Ĥ

]
+ 1

2τ0
(
2âρ̂â† − â†âρ̂− ρ̂â†â

)
. (S3)

Before interaction, the coefficients of the density matrix
are αnn′,qq′(−∞) = δn0δn′0α

0
qα

0∗
q′ , where α0

q defines the
incident longitudinal electron wave function

ψ‖(z) =
∑
q

α0
q〈z|q〉 =

√
L

∫ ∞
−∞

dq

2π α
0
q eiqz. (S4)

Here, we have used the prescription
∑
q →

(L/2π)
∫∞
−∞ dq to transform the sum over the elec-

tron wave vector q into an integral.
We consider external light characterized by an electric

field Eext(r, t) at the position of the scatterer, so we have

g(t) = −p0 ·Eext(0, t), (S5)

where p0 is the transition dipole, which is taken to be
real. Additionally, the electron-scatterer coupling coeffi-
cients are given by [5]

gqq′ = g∗q′q = − v
L

p0 · gq′−q, (S6)

where

gq = 2e
vγ

[
|q|K1 (|q|R0/γ) R̂0 + iq

γ
K0 (|q|R0/γ) ẑ

]
,

v is the average electron velocity, and γ = 1/
√

1− v2/c2.
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The excitation probabilities here investigated are determined by the diagonal elements αnn,qq(t), which we calculate
to the lowest order of perturbation theory by plugging eqs S1 and S2 into eq S3. Identifying the coefficient of each
|nq〉〈n′q′| term in both sides of the resulting equation, iteratively evaluating the correction to αnn′,qq′ at perturbation
order l + 1 by inserting the order-l correction into the [ρ̂, Ĥ] term of eq S3, and starting with αnn′,qq′(−∞) for l = 0
(see above), we find

dα01,qq′(t)
dt

= i
~
g(t)α0

q α
0∗
q′ e−iω0t + i

~
∑
q′′

gq′′q′ α0
q α

0∗
q′′ e−i(ω0+εq′q′′ )t − 1

2τ0
α01,qq′(t),

dα11,qq(t)
dt

= 2
~
g(t) Im

{
α01,qq(t) eiω0t

}
+ 2

~
∑
q′

Im
{
gqq′ α01,q′q(t) ei(ω0+εqq′ )t

}
− 1
τ0
α11,qq(t),

dα00,qq(t)
dt

= −2
~
g(t) Im

{
α01,qq(t) eiω0t

}
− 2

~
∑
q′

Im
{
gq′q α01,qq′(t) ei(ω0+εq′q)t

}
+ 1
τ0
α11,qq(t),

(S7a)

(S7b)

(S7c)

where we have used the Hermiticity of ρ̂ and Ĥ. The integral of eq S7a can be readily written as

α01,qq′(t) = i
~
α0
q α

0∗
q′

∫ t

−∞
dt′ g(t′) e−iω0t

′−(t−t′)/2τ0 − 1
~
∑
q′′

gq′′q′ α0
q α

0∗
q′′

e−i(ω0+εq′q′′ )t

ω0 + εq′q′′ + i/2τ0
.

At this point, we express the coupling coefficients in terms of the scatterer mode dipole p0 through eqs S5 and S6,
use the nonrecoil approximation to write εq′q′′ ≈ (q′ − q′′)v, and convert the q′′ sum into an integral by means of the
prescription noted above. Following this procedure, we find

α01,qq′(t) =
∫ ∞
−∞

dω

2π e−iωt α̃01,qq′(ω),

where

α̃01,qq′(ω) = 1
~

1
ω + i/2τ0

p0 ·
[
Eext(0, ω − ω0)α0

q α
0∗
q′ + g(ω−ω0)/v α

0
q α

0∗
q′−(ω−ω0)/v

]
(S8)

and Eext(r, ω) =
∫∞
−∞ dt eiωt Eext(r, t).

We are interested in the time-integrated quantity

Tq =
∫ ∞
−∞

dt α11,qq(t)

(see below). From eq S7b, we find Tq =
∫∞
−∞ dt e−t/τ0

∫ t
−∞ dt′ et′/τ0 F (t′) = τ0

∫∞
−∞ dt F (t), where F (t) is given by the

first two terms in the right-hand side of that equation. This leads to

Tq = 2τ0
~

∫ ∞
−∞

dt Im
{
g(t)α01,qq(t) eiω0t +

∑
q′

gqq′ α01,q′q(t) ei(ω0+εqq′ )t
}
. (S9)

As a first result, eq S9 can help us evaluate the change in electron kinetic energy ∆Eel, starting from the variation in
the population of the sample ground state due to the interaction, α00,qq(∞)− |α0

q |2. Multiplying this quantity by the
plane wave energy ~εq, summing over q, calculating α00,qq(∞) from the integral of eq S7c, and using eq S9, we obtain

∆Eel =
∑
q

~εq
[
α00,qq(∞)− |α0

q |2
]

= 2
∑
qq′

εqq′

∫ ∞
−∞

dt Im
{
gqq′ α01,q′q(t) ei(ω0+εqq′ )t}.

We now convert the sum over q′ into an integral, change the variable of integration to ω = εqq′ , adopt the nonrecoil
approximation εqq′ ≈ (q − q′)v, identify the time integral as the Fourier transform α̃01,q′q(ω0 + ω) (see eq S8), and
substitute the coupling coefficients from eqs S5 and S6 to find

∆Eel = − 1
π~

∫ ∞
−∞

ωdω Im
{

1
ω0 + ω + i/2τ0

[(
p0 ·Eext(0, ω)

) (
p0 · g∗ω/v

)
Mω/v +

∣∣p0 · gω/v
∣∣2]}, (S10)
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where we have used the normalization condition
∑
q

∣∣α0
q

∣∣2 = 1 and defined

Mω/v =
∑
q

α0
q−ω/v α

0∗
q =

∫ ∞
−∞

dz eiωz/v |ψ‖(z)|2 (S11)

(eq 9 in the main text). In the derivation of the integral in eq S11, we have exploited the relation between α0
q and

ψ‖(z) given in eq S4. We now consider an isotropic particle characterized by three degenerate modes of real transition
dipoles p0x̂, p0ŷ, and p0ẑ, each of them contributing to ∆Eel with a term given by eq S10, in which p0 is substituted
by the corresponding mode dipole. The sum of these contributions yields

∆Eel = − 1
π~

∫ ∞
−∞

ωdω Im
{

|p0|2

ω0 + ω + i/2τ0

[
Eext(0, ω) · g∗ω/vMω/v +

∣∣gω/v∣∣2]}.
Finally, separating the integral in positive and negative frequency parts, and changing ω → −ω in the latter, we can
write ∆Eel =

∫∞
0 ~ω dω dΓel/dω, where

dΓel

dω
= − 1

π~
Im
{
α(ω) Eext(0, ω) ·Eel∗(R0, ω)Mω/v

}
− 1
π~

∣∣Eel(R0, ω)
∣∣2 Im {α(ω)} (S12)

acts as an electron energy-change probability, in which we identify

α(ω) = |p0|2

~

(
1

ω0 − ω − i/2τ0
+ 1
ω0 + ω + i/2τ0

)
(S13)

as the particle polarizability [6] and we have renamed gω/v = Eel(R0, ω) (see eq 8 in the main text). The opposite
of the rightmost term in eq S12 coincides with the well-known expression of the EELS probability for a dipolar
particle [1], (4e2ω2/π~v4γ2)

[
K2

1 (ωR0/vγ) +K2
0 (ωR0/vγ)/γ2] Im{α(ω)}, whereas the first term arises as a result of

the particle-assisted interaction between the electron and the external light field. Although we assign the latter to an
ω > 0 component in the integral of ∆Eel, it should actually be interpreted as the net balance between energy losses
and gains of energies ±~ω.
Assuming a radiative decay rate γrad of the excited particle state, the number of photons emitted into the far field

accumulates over time to yield

Γrad = γrad
∑
q

Tq.

We can work out this expression from eq S9 by expressing α01,qq′(t) in terms of its Fourier transform (eq S8), following
similar steps as in the derivation of eq S10, and eventually summing over three orthogonal transition dipoles to describe
an isotropic particle. This results in

Γrad = γrad

2π~2

∫ ∞
−∞

dω
|p0|2

(ω0 − ω)2 + 1/4τ2
0

[
|Eext(0, ω)|2 + |Eel(R0, ω)|2 + 2 Re

{
Eext(0, ω) ·Eel∗(R0, ω)Mω/v

}]
,

where we have performed the q sum by using
∑
q

∣∣α0
q

∣∣2 = 1 and eq S11. Neglecting for now the interference between
scattered and externally incident photons (i.e., we ignore the change in the probability of some of the decay channels
stimulated by the photon population of such channels), we have [7] γrad = 4|p0|2ω3

0/3~c3, so we can write Γrad =∫∞
0 dω (dΓrad/dω), where

dΓrad

dω
≈ 1
π~

2ω3 |α(ω)|2

3c3

[
|Eext(0, ω)|2 + |Eel(R0, ω)|2 + 2 Re

{
Eext(0, ω) ·Eel∗(R0, ω)Mω/v

}]
(S14)

represents the spectrally resolved photon emission probability, in which we have assumed ω0τ0 � 1 and taken ω ≈ ω0
in the multiplicative factors. After minor rearrangements, eq S14 becomes eq 7 in the main text.

We also note that the accumulated probability of decay from the excited state of the particle is given by Γdecay =
(1/τ0)

∑
q Tq, which, following the same procedure as above and neglecting the nonresonant term in eq S13, is found

to lead to

dΓdecay

dω
≈ 1
π~

Im{α(ω)}
[
|Eext(0, ω)|2 + |Eel(R0, ω)|2 + 2 Re

{
Eext(0, ω) ·Eel∗(R0, ω)Mω/v

}]
. (S15)
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Importantly, in the final energy balance of the entire electron-particle-radiation system, a term

dΓforward

dω
= − 1

π~
Im
{
α(ω)

}
|Eext(0, ω)|2 + 1

π~
Im
{
α∗(ω) Eext(0, ω) ·Eel∗(R0, ω)Mω/v

}
= − 1

π~
Im
{
α(ω) Eext∗(0, ω) · [Eext(0, ω) + Eel(R0, ω)M∗ω/v]

} (S16)

is missing in order to conserve energy for each ω component according to the condition

dΓel

dω
+ dΓdecay

dω
+ dΓforward

dω
= 0. (S17)

We interpret Γforward as the change in photon forward emission (i.e., toward the direction of propagation of the incident
light beam) associated with interference between emitted and externally incident photons (i.e., the type of stimulated
process that we neglected in γrad above). The first term in the right-hand side of eq S16 corresponds to the depletion
of the incident light, as described by the optical theorem [8] (i.e., (1/π~)Im{α(ω)} |Eext(0, ω)|2 = σext(ω)I(ω)/~ω,
where σext(ω) = (4πω/c)Im{α(ω)} is the extinction cross section and I(ω) = (c/4π2)|Eext(0, ω)|2 is the light intensity
per unit frequency), whereas the remaining term originates in electron-light interference.

Finally, part of the energy is absorbed by the particle due to internal inelastic transitions, so the total decay of the
particle excited state can be separated as

dΓdecay

dω
= dΓrad

dω
+ dΓabs

dω
,

where

dΓabs

dω
≈ 1
π~

[
Im{α(ω)} − 2ω3 |α(ω)|2

3c3

][
|Eext(0, ω)|2 + |Eel(R0, ω)|2 + 2 Re

{
Eext(0, ω) ·Eel∗(R0, ω)Mω/v

}]
. (S18)

is the spectrally resolved absorption probability. This completes our analysis of energy pathways during the interaction
of the particle with external light and an incident electron. The contributions to the energy balance in eq S17 are thus
given by eqs S12, S15, and S16, while the decay in S15 can in turn be expressed as the sum of two terms corresponding
to radiative and absorptive channels, as given by eqs S14 and S18, respectively.

We remark that the boxed equations derived above apply to isotropic dipolar particles. Repeating the same
analysis without summing over three orthogonal transition dipole orientations, we obtain similar expressions for a
particle characterized by a polarizability tensor α(ω) û ⊗ û (i.e., with a single transition dipole p0 along a direction
û), for which the partial probabilities are given by eqs S12, S14, S15, S16, and S18 after substituting Eext and Eel by
û ·Eext and û ·Eel, respectively.

A. Energy pathways from the quantum-electrodynamics formalism

The above results can be corroborated using the quantum-electrodynamics formalism developed in the Methods
section of the main text. In particular, an extension of eq S16 is readily obtained by evaluating the Poynting vector
along the forward direction with respect to the incident laser, assuming illumination with a well-defined incident
wave vector kinc. Using the notation 2Re

{
Eext(0, ω)eikinc·r−iωt} for the time-dependent external light electric field,

the frequency-space light electric far-field (kr � 1) takes the form Elight(r, ω) ≈ Eext(0, ω) eikinc·r + f scat
r̂ (ω) eikr/r,

where k = |kinc| = ω/c. When inserting this expression in eq 33 of the main text, we can separate dΓff/Ωr̂dω =
(dΓrad/Ωr̂dω) + (dΓforward/Ωr̂dω) into the contributions coming from the 1/r part (i.e., dΓrad/Ωr̂dω, which is ex-
tensively discussed in the main text) and the remaining interference between Eext(0, ω)eikinc·r and fCL/scat

r̂ terms
(see also eqs 4 in the main text). The latter generates dΓforward/Ωr̂dω, which can be integrated over angles Ωr̂
following a similar asymptotic analysis as used in the derivation of the optical theorem [8], based on the integral∫
d2Ωr̂ ei(k+i0+)r−ikinc·r = 2πi/kr (valid in the kr →∞ limit), where k is supplemented by an infinitesimal imaginary

part i0+, in accordance with the retarded formalism here adopted. This leads to

dΓforward

dω
= − 1

π~k2 Im
{

Eext∗(0, ω) ·
[
f scat
k̂inc

(ω) +M∗ω/vfCL
k̂inc

(ω)
]}

,
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which, using eqs 37 and 38 in the main text, reduces to eq S16 for a dipolar particle.
Likewise, we can obtain eq S12 starting from the electron mean energy after interaction at t→∞:

∆Eel = 〈Ŝ†(∞,−∞)ĤelŜ(∞,−∞)〉 − 〈Ĥel〉,

where the average 〈·〉 is defined as in the main text. Noticing that the interaction Hamiltonian (eq 25) is linear in the
total current ĵ, we use the evolution operator (eq 26) and retain terms just up to quadratic order in ĵ to find

∆Eel ≈
1
~2

∫ ∞
−∞

dt

∫ ∞
−∞

dt′
〈[
Ĥint(t)ĤelĤint(t′)−

1
2

{
Ĥint(t)Ĥint(t′), Ĥel

}]〉
− i
〈[
χ̂(∞,−∞), Ĥel

]〉
. (S19)

Following the same approach as in the main text, we consider the total current to be the sum of the classical laser source
jext and the electron current operator ĵel (eq 29). An important technical point refers to the operator χ̂(∞,−∞) =
(i/2~2)

∫∞
−∞ dt′

∫ t′
−∞ dt′′

[
Ĥint(t), Ĥint(t′)

]
, in which only the terms that are linear in ĵel are not commuting with Ĥel.

In the absence of external illumination, such linear terms disappear and the remaining part of χ̂ gives rise to an
image-potential interaction with the sample, which produces elastic diffraction of the electron, but does not change
its energy [9]. However, in the present scenario of combined electron and light interactions with the sample, χ̂ gives
rise to changes in the electron energy, so it needs to be retained in the calculation. We now use eqs 18 and 20-22,
together with the Onsager reciprocity relation Gi,i′(r, r′, ω) = Gi′,i(r′, r, ω), to rewrite eq S19 as

∆Eel ≈
4i
~
∑
i,i′

∫ ∞
0

dω

∫
d3r

∫
d3r′

{
i Im

{
Gi,i′(r, r′, ω)

}〈
ĵ†i (r, ω)Ĥelĵi′(r′, ω)− 1

2

{
ĵi(r, ω)ĵi′(r′, ω), Ĥel

}〉

+ 1
2Re

{
Gi,i′(r, r′, ω)

}〈[
ĵel†
i (r, ω), Ĥel

]
jext
i′ (r′, ω) + jext∗

i (r, ω)
[
ĵel
i′ (r′, ω), Ĥel

]〉}
.

Finally, we evaluate the averages 〈·〉 using eq 33 and the definition of Ĥel. After some algebra, this leads to ∆Eel =∫∞
0 dω ~ω dΓel/dω with

dΓel

dω
≈ −4e

~

∫
d3r

∫
d3r′Im

{
e−iωz/vMω/v(R) ẑ ·G(r, r′, ω) · jext(r′, ω)

}
−
∫
d2RM0(R) ΓEELS(R, ω), (S20)

whereMω/v(R) is the same as in eq 3 and ΓEELS(R, ω) is the classical EELS probability for an electron beam focused
at R [1]. Equation S20 represents a generalization of eq S12 to arbitrary samples and incident electron wave functions.
Indeed, this result reduces to eq S12 if the electron wave function can be factorized as ψ0(r) = ψ⊥(R)ψ‖(z) with
|ψ⊥(R)|2 ≈ δ(R−R0) (i.e., the tightly focused beam limit) and the sample can be described by a dipolar polarizability
α(ω). Under such conditions, taking the particle at the origin, we can write the scattered part of the Green tensor as
Gscat(r, r′, ω) = −4πω2α(ω)Gfree(r, ω)·Gfree(r′, ω), in terms of the free-space component Gfree(r, ω) = (−1/4πω2)(k2+
∇ ⊗∇)

(
eikr/r

)
, and then, combining all of these elements, using the integral

∫∞
−∞ dz eiω(z/v+r/c)/r = 2K0 (ωR/vγ)

(see eq 3.914-4 in ref 10), and identifying Eext(0, ω) = −4πiω
∫
d3rGfree(r, ω) · jext(r, ω), we obtain eq S12.
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SUPPLEMENTARY FIGURES
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FIG. S1: Dependence of the coherence factor on Gaussian wavepacket duration. We show |Mω/v| for a PINEM-
modulated electron with three different combinations of parameters |β| and d (see legend) along the blue line of maxima in
Figure 3a in the main text as a function of the duration σt of a superimposed Gaussian wavepacket envelope. The excitation
energy is ~ω0 = 1.3 eV.
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FIG. S2: Coherence factor at harmonic frequencies of the PINEM laser frequency ωP . We show plots similar to that
of Figure 4a in the main text, but for excitation frequencies ω = mωP at different harmonics m of the PINEM laser frequency.
Panel (a) is reproduced from Figure 4a in the main text for comparison. Panel (b) is extracted from panel (a) by plotting
only the region corresponding to |Mω/v| > 0.580865. The maximum values of |Mω/v| are 0.581865, 0.486499, and 0.434394 for
m = 1, 2, and 3, respectively.


