
IEEE OJEMB TECHNOLOGY

A. Data harmonization module

1) Reference model construction

The reference model is the most common way to describe the

domain knowledge of the disease of interest. It is usually

defined by the clinical experts as a set of parameters which are

able to describe the domain knowledge, in a sufficient way, and

thus serves as a gold standard model to enable data

harmonization [1-4]. The reference model is a template which

consists of medical-related parameters including demographics

(e.g., age, gender, ethnicity), laboratory tests (e.g., ocular tests,

oral tests, blood tests), conditions (e.g., rheumatoid factor,

lymphadenopathy), symptoms (e.g., fever, weight loss), biopsy

tests, and interventions (therapies), among many others.

2) Ontology construction

The parameters in the reference model are then organized

into a semantic, hierarchical way using classes, subclasses and

object properties and thus can then be expressed in the form of

an ontology to enable semantic matching [1-4]. An ontology is

a high-level hierarchical data model, where the parameters in

the dataset are organized in a hierarchical manner through

classes and sub-classes and the relationship between them is

defined by object properties (e.g., a “Patient” “has” “laboratory

tests”). The reference ontology can then be expressed in a .XML

(eXtensible Markup Language) format [5], which serves as a

semantic data model.

3) Terminology extraction

The terms from the reference ontology were extracted to

define a medical corpus. Semantic information is also extracted

including information regarding the class hierarchy and the

object properties between the parameters of the ontology.

4) Medical corpus definition

The extracted terms are used to define a medical corpus for

the medical domain of interest. The medical corpus is enriched

with homonymous and synonymous terminologies from the

Natural Language Processing Toolkit (NLTK) [6] along with

the definition of acronyms for popular laboratory tests (e.g., the

acronym “HGB” for the blood test-related parameter

“hemoglobin”). In addition, pre-defined range values are also

defined for each term to enable data standardization (e.g., “1”

for the presence of a condition and “0” otherwise).

5) Lexical matching

String similarity scores are computed to detect lexically

similar terms between those from the medical corpus and those

in the heterogeneous dataset. For a given term, say 𝑥, in the

heterogeneous dataset, the string similarity is computed

between 𝑥 and every term in the corpus. Here, we use three

string similarity metrics, namely the Jaro [7], the Jaro-Winkler

[8], and the Levenhstein [9] distance scores.

For two given strings, say 𝑎 and 𝑏, the Jaro string similarity

measure [7], 𝐽𝑎,𝑏, is equal to:

𝐽𝑎,𝑏 = {

 0 , 𝑐 = 0

1

3
∙ (
𝑥

|𝑎|
+
𝑥

|𝑏|
+
𝑥 − 𝑡

𝑥
) , 𝑜/𝑤

, (1)

where 𝑥 is the number of matching (coincident) characters, and

𝑡 is half the number of transpositions.

The Jaro-Winkler distance measure [8] is a modification of

the Jaro distance measure that uses an additional prefix scale 𝑐

to give more weight to strings with common prefix of a specific

length. For two given strings, say 𝑎 and 𝑏, the Jaro-Winkler

string similarity measure [8], 𝐽𝑊𝑎,𝑏, is defined as in:

𝐽𝑊𝑎,𝑏 = 𝐽𝑎,𝑏 + (𝑙𝑥(1 − 𝐽𝑎,𝑏)) , (2)

where 𝐽𝑎,𝑏 is the Jaro distance, 𝑙 is the length of common prefix

at the start of the string up to a maximum of four characters.

The prefix weight is the inverse of the 𝑙 that is needed to

consider both strings as identical.

The Levenhstein distance [9] measures the similarity

between two strings, say 𝑎 and 𝑏, in terms of the number of

deletions, insertions, or substitutions needed to transform one

string to another:

𝐿𝑎,𝑏(𝑖, 𝑗) =

{

 𝑚𝑎𝑥

(𝑖, 𝑗) , 𝑚𝑖𝑛(𝑖, 𝑗) = 0

𝑚𝑖𝑛 {

𝐿𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝐿𝑎,𝑏(𝑖, , 𝑗 − 1) + 1

𝐿𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

 , 𝑜. 𝑤.
∙ (3)

Here, we use an empirical combination of these three string

similarity scores to take advantage of each method’s individual

properties towards the robust detection of lexically identical or

similar terms having: (i) Jaro distance larger than (or equal to)

0.8 and Levenhstein distance less than 2 or (ii) Jaro distance

larger than 0.9 or (iii) Jaro-Winkler distance 1 and Jaro distance

larger than 0.85. Of course, in the case where the terms have a

Jaro distance 1 they are considered as exactly matched. The

Supplementary Materials

Overcoming the barriers that obscure the interlinking and analysis

of clinical data through harmonization and incremental learning

Vasileios C. Pezoulas, Student Member IEEE, Konstantina D. Kourou, Fanis Kalatzis, Themis P.

Exarchos, Member IEEE, Evi Zampeli, Saviana Gandolfo, Andreas Goules, Chiara Baldini, Fotini

Skopouli, Salvatore De Vita, Athanasios G. Tzioufas, and Dimitrios I. Fotiadis, Fellow, IEEE

IEEE OJEMB TECHNOLOGY

thresholds have been derived after numerous experimentations

towards the identification of the maximum number of lexically

identical terms. Since the Jaro-Winkler distance score is more

strict due to the fact that it gives more weight to the terms with

common continuous characters we used a smaller threshold

than the one in the Jaro distance score.

6) Semantic matching

Semantic matching is the process of matching terms which

share a common conceptual basis. Each term in the reference

model is followed by a class ID which describes the term’s

concept through a “consist of” property whereas an “includes”

property denotes the interlinked class. For example, a

“Laboratory Test” “consists of” a “Blood test” which

“includes” the variable “hemoglobin”. A pseudocode for

harmonization is presented in Algorithm 1. The pseudocode

requires as input the terms and values of the heterogeneous

dataset along with the reference ontology. The object properties

and classes are first extracted from the ontologies and the

variables are extracted by the object property “includes” and

“consists of”, respectively. The variables are enriched with

synonymous terms from the NLTK database along with

acronyms from the clinical experts. Lexical matching is then

applied to seek for lexical similarities between the medical

corpus and the variables from the given dataset. Once a match

is found, the common terms are stored into a list along with the

indices and standardization is applied to compute the new

values. The harmonized data are finally written into a new file

given the matched variables, the matched indices and the new

values.

Supplementary Algorithm 1. A pseudocode for lexical and

semantic matching.

1 def harmonization(terms, values, onto):

2 prop = onto.object_properties;

3 vars = [x[i] for i, x in prop if x == “includes”];

4 class = [x[i] for i, x in prop if x == “consists of”];

5 syns = [nltk.synsets[vars[i]] for i, x in vars];

6 med_corpus = {vars U syns};

7 for i in len(vars):

8 for j in len(med_corpus):

9 if (lexical_match(vars[i], med_corpus[j])):

10 m_vars[k] = list([vars[i], med_corpus[j]]);

11 m_classes[k] = list([vars[i], class[j]]);

12
stand_values[k] = standardize(vars[i],

med_corpus[j], values[j]);

13 write_data(m_vars, m_classes, stand_values);

14 end

B. Distributed data analytics module

1) Definition of the training and testing cohorts

According to the definition of incremental learning, its

mathematical basis can be extended towards the development

of machine learning models across data that are stored in

different locations. Given a set of 𝑀-databases, say

𝑫𝟏, 𝑫𝟐, … , 𝑫𝑴, with datasets, say 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴, a machine

learning model, say 𝜧𝟏, is initially trained on the dataset 𝒙𝟏 in

database 𝑳𝟏 and then update the model through the update

function:

𝑓(𝑗) = 𝑓(𝑗 − 1) + 𝑎ℎ(𝑗), (4)

where 𝑓(𝑗) corresponds to the weighted cost function on the

dataset in site 𝑳𝒋, 𝑓(𝑗 − 1) corresponds to the estimated

weighted cost function which was trained on the dataset in the

previous site 𝑳𝒋−𝟏 and ℎ(𝑗) is the learner function on the dataset

in database 𝑳𝒋. The majority of the supervised learning

algorithms use the stochastic gradient descent to minimize a

loss function by solving the following weight update process:

𝑤(𝑗) = 𝑤(𝑗 − 1) − 𝛼(∇𝑤𝐿(𝑓(𝑥𝑖), 𝑦𝑖) + 𝛽∇𝑤𝑟(𝑤)), (5)

where 𝐿(𝑓(𝑥𝑖), 𝑦𝑖) is a loss function given a score function

𝑓(𝑥𝑖) and a target 𝑦𝑖 , ∇𝑤𝐿(𝑓(𝑥𝑖), 𝑦𝑖) is the gradient of the loss

function with respect to 𝑤, 𝑟(𝑤) is a regularization function,

∇𝑤𝑟(𝑤) is the gradient of the regularization function with

respect to 𝑤, 𝛽 is a hyperparameter, and 𝛼 is a learning rate

parameter.

A pseudocode that summarizes the overall methodology is

presented in Algorithm 2. A machine learning algorithm in the

form of an object, M_0, is initialized and trained on the dataset

X_1 in PS #1. Then, the machine learning model is updated on

each site according to (4) and (5) and the final model is stored

to each PS that participated in the incremental learning process.
Supplementary Algorithm 2. A pseudocode for the

incremental learning process.

1 initialize an ML algorithm object, say 𝑴𝟎;

2 train 𝑴𝟎 on dataset 𝑿𝟏 in PS #1 yielding the model 𝑴𝟏;

3 for 𝑖 = 1, 2, …, M-1:

4 establish a secure connection with the 𝑖-th PS;

5 compute the updated weights according to (4);

6
update 𝑴𝒊 on dataset 𝑿𝒊+𝟏 in the 𝑖 + 1-th PS yielding

model 𝑴𝒊+𝟏 using (5);

7 store the model 𝑴𝒊+𝟏 for updating on the 𝑖 + 1-th PS;

8 return 𝑴𝑴−𝟏;

According to the optimal schema, each machine learning

algorithm was initially trained on the harmonized data from the

AOUD cohort (with hyper parameter optimization) yielding the

ML model #1. The latter model was updated on the harmonized

data from the UoA cohort yielding the ML model #2 which was

finally updated on the harmonized data from the UNIPI cohort

yielding the ML model #3. The final model was applied on the

harmonized cohort data from the HUA cohort for performance

evaluation,

2) Hyper parameter optimization

Hyper parameter optimization was applied on the first

training cohort dataset to fine tune the incremental learning

algorithms. More specifically, the randomized search on hyper

parameters method [10] was applied, where the number of

parameter settings was set to 100. A 10-fold cross-validation

strategy was then applied to evaluate the parameter settings on

the harmonized data. For example, in the logistic regression and

the Support Vector Machines classifiers, the elastic net, l1 and

l2 penalties were evaluated along with the maximum iteration

number towards convergence, the alpha values, the learning

IEEE OJEMB TECHNOLOGY

rates and the tolerance of each classifier, as described in [11].

For the Multi-layer Perceptron classifier the additional

parameters that were evaluated include the activation function

and the solver function [11].

3) Incremental learning algorithms

a) Stochastic gradient descent

Given a set of training observations, {(𝒙𝟏,𝑦1), (𝒙𝟐,𝑦2), …,

(𝒙𝑴,𝑦𝑀)}, where 𝒙𝒊 ∈ 𝑹
𝑴, and an outcome 𝑦𝑗, where 𝑦𝑗 ∈

{−1,+1}, the goal of the stochastic gradient descent (SGD)

approach is to seek for a linear loss function, say 𝜑(𝑓(𝒙𝒋), 𝑦𝑗),

that minimizes the equation [12]:

𝛷(𝒘) = 𝑎𝑟𝑔𝑚𝑖𝑛(
1

𝑀
∑𝜑(𝑓(𝒙𝒋), 𝑦𝑗) + 𝑎𝑟(𝒘)

𝑀

𝑗=1

), (6)

where 𝒘 is a weight vector, 𝜑(.) is a loss function, 𝑎 is a non-

negative hyperparameter, 𝑟(𝒘) is a regularizer, and 𝑓(𝒙𝒋) is a

linear score function in the form 𝒘𝑇𝒙𝒋.

Solving (6) for the weight vector we get the SGD weight update

rule [12]:

𝒘̃𝒊 = 𝒘̃𝒊−𝟏 − 𝜂𝑡 (
𝜕𝜑(𝑓(𝒙𝒋), 𝑦𝑗)

𝜕𝒘
+ 𝑎

𝜕𝑟(𝒘)

𝜕𝒘
), (7)

where 𝑖 is the time step, 𝑤̃𝑖−1 is the weight estimation at step

𝑖 − 1, 𝜂𝑖 is a non-negative learning rate parameter, and 𝜑′(.) is

the gradient of the loss function 𝜑(.). The cost function,

𝜑(𝑓(𝒙𝒋), 𝑦𝑗), in (7) can be replaced by various cost functions

to obtain a specific classifier. For example, if we set:

• 𝜑(𝑓(𝒙𝒋), 𝑦𝑗) = 𝑙𝑛 (1 + 𝑒𝑥𝑝 (−𝑦𝑗𝑓(𝒙𝒋))), we can obtain the

logistic regression classifier.

• 𝜑(𝑓(𝒙𝒋), 𝑦𝑗) = 𝑚𝑎𝑥 (0, 1 − 𝑦𝑗𝑓(𝒙𝒋)), we can obtain the

Support Vector Machines classifier.

• 𝜑(𝑓(𝒙𝒋), 𝑦𝑗) = 𝑚𝑎𝑥 (0,−𝑦𝑗𝑓(𝒙𝒋)), we can obtain the

Perceptron classifier.

b) Multinomial Naïve Bayes

Given an 𝑁-dimensional input vector, assume 𝒇 =
(𝑓1, 𝑓2, … , 𝑓𝑁), where each 𝑓𝑗 is the frequency of an event 𝒙𝒋,

and the probability that 𝒇 belongs to the class, assume 𝑐𝑘, is the

multinomial distribution, 𝑃(𝑐𝑘|𝒇), we can calculate the class

with the highest probability or the maximum 𝑎-posterior (MAP)

class, as in [13]:

𝑐𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑘 [𝑙𝑜𝑔(𝑃(𝑐𝑘)) +∑𝑙𝑜𝑔 (𝑃(𝒙𝒋|𝑐𝑘))

𝑁

𝑗=1

], (8)

where 𝑃(𝒙𝒋|𝑐𝑘) is the conditional probability of 𝑥𝑗 occurring in

class 𝑐𝑘. It is obvious that (8) can be solved as a linear equation

[13].

c) Gradient Boosting Trees

The Gradient Boosting algorithm [14, 15] is an ensemble

classifier which combines a set of weak learners into a stronger

classifier where on each boosting round the algorithm

minimizes the gradient of a loss function to minimize the

prediction errors and thus optimize the overall performance of

the classifier. Gradient Boosting adopts a regularized approach

to further reduce the over-fitting on the gradient and thus

enhance the overall performance of the classifier. The gradient

boosting classifier seeks for a weak learner, at step 𝑖, say 𝑓𝑖(𝑥),
so that:

𝐹𝑖(𝑥) = 𝐹𝑖−1(𝑥) + 𝑎𝑟𝑔𝑚𝑖𝑛𝑓 (∑𝐿(𝑦̃𝑗 , 𝐹𝑖−1(𝑥𝑗) + 𝑓𝑖(𝑥𝑗))

𝑛

𝑗=1

), (9)

where 𝐿(𝑦, 𝐹(𝑥)) is the error loss function and 𝑛 is the number

of samples and 𝑦̃𝑗 is the estimated target value for the 𝑗-th

sample. Εq. (9) can be re-written as:

𝐹𝑖(𝑥) = 𝐹𝑖−1(𝑥) + 𝛾𝑖𝑓𝑖(𝑥), (10)

where 𝐹𝑖−1(𝑥) is the weak learner at step 𝑖 − 1 and 𝛾𝑖 is

calculated by minimizing the gradient descent:

𝛾𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 (∑𝐿(𝑦𝑗 , 𝐹𝑖−1(𝑥𝑗) − 𝛾∇𝐹𝑖−1𝐿(𝑦𝑗 , 𝐹𝑖−1(𝑥𝑗))

𝑛

𝑗=1

). (11)

Substituting (11) into (10) yields the following learner:

𝐹𝑖(𝑥) = 𝐹𝑖−1(𝑥) − 𝛾𝑖∑∇𝐹𝑖−1𝐿(𝑦𝑗 , 𝐹𝑖−1(𝑥𝑗)

𝑛

𝑗=1

). (12)

The Gradient Boosting algorithm is often appeared using a

classification tree as a weak learner [39, 40]:

𝐹𝑖(𝒙) = 𝐹𝑖−1(𝒙) + 𝛾𝑖∑𝑏𝑙𝑖𝟏(𝒙 ∈ 𝑅𝑙𝑖)

𝐿

𝑙=1

, (13)

where at step 𝑖, a regression tree partitions the original space

into 𝐿-disjoint regions {𝑅𝑙𝑚}1
𝐿, where 𝑅𝑙𝑚 is the 𝐿-terminal

node, 𝑏𝑙𝑖 is the value predicted in each region 𝑅𝑙𝑚, and 𝟏(.) is

an indicator function (1:true, 0:otherwise). In this work, the

XGBoost library [15] was used to incrementally train a gradient

boosting tree across the harmonized data along with Python’s

scikit library [16] which was used for the incremental

application of the rest of the algorithms. The incremental

application of the XGBoost algorithm offers a robust ensemble

approach that iteratively builds decision trees over the

harmonized data with reduced prediction errors based on the

gradient direction (gradient boosting).

C. Supplementary tables

Supplementary Table I. Demographic information.

 UoA HUA UNIPI AOUD

Age at

diagnosis
53.5±13.5 47.5±12.3 51.4±14 52.4±13.9

Gender ratio

(females/

males)

415/25 96/3 693/25 274/23

Lymphoma/

Non-

lymphoma

(%)

76/364
(20.87%)

6/93
(6.45%)

31/687
(4.51%)

26/271
(9.59%)

Total

number of

patients

440 99 718 297

Supplementary Table II. Extracted cohort metadata.

 UoA HUA UNIPI AOUD

Number of

features
167 204 102 82

IEEE OJEMB TECHNOLOGY

Number of

instances (cases)
440 100 718 297

Categorical

features
76 146 85 75

Numeric features 60 52 17 6

Good features 27 62 37 51

Fair features 59 74 50 17

Bad features* 81 68 15 14

Features with

outliers
0 0 0 0

Features with

inconsistencies
31 6 0 1

Total % of missing

values
44.8% 33.61% 21.98% 17.15%

*these features were discarded from further analysis.

Supplementary Table III. Cohort data harmonization results.

 Cohorts

 UoA HUA UNIPI AOUD

Number of terms * 82 136 87 67

Number of relevant

terms with the pSS

reference model **

39 42 54 46

Number of lexically

similar terms with

those from the

ontology

36 38 48 41

Percentage of

harmonized terms
92.3% 90.47% 88.88% 89.13%

Number of terms

requiring data

standardization

2 3 1 14

Common number

of terms ****
19

* after the removal of terms having more than 50% missing values
(through data curation).

** the number of pSS-relevant terms for each cohort was identified by

the clinical experts (after evaluation).
*** the number of terms that require data transformation according to

the range values in the ontology.

**** the number of common harmonized terms (not individual terms)
across the cohorts.

Supplementary Table IV. Overall population characteristics for

distributed lymphoma prediction.

 Cohorts

Set of training cohorts

Testing

cohort

 AOUD UoA UNIPI HUA

Number of

lymphoma cases
26 76 31 6

Number of

controls *
52 152 62 93

Total population 78 228 93 99

* the number of controls was randomly selected 5 times to “cover”

each cohort’s population during training.

Supplementary Table V. Performance evaluation scores per incremental learning

algorithm and testing cohort combination.

Algorithm
Testing

cohort
Accuracy Sensitivity Specificity AUC

XGBoost

AOUD 0.835 0.692 0.849 0.849

UoA 0.834 0.526 0.898 0.898

UNIPI 0.872 0.484 0.889 0.889

HUA 0.859 0.833 0.86 0.871

Logistic

regression

AOUD 0.926 0.462 0.97 0.97

UoA 0.805 0.184 0.934 0.934

UNIPI 0.85 0.29 0.875 0.875

HUA 0.899 0.167 0.946 0.556

AOUD 0.902 0.692 0.923 0.923

UoA 0.714 0.684 0.72 0.72

Support

Vector

Machines

UNIPI 0.948 0.032 0.99 0.99

HUA 0.768 0.667 0.774 0.72

Multinomial

Naïve Bayes

AOUD 0.869 0.846 0.871 0.871

UoA 0.823 0.5 0.89 0.89

UNIPI 0.799 0.484 0.814 0.814

HUA 0.828 0.833 0.828 0.831

Multilayer

Perceptron

AOUD 0.875 0.808 0.882 0.882

UoA 0.839 0.263 0.959 0.959

UNIPI 0.879 0.387 0.901 0.901

HUA 0.747 0.833 0.742 0.788

REFERENCES

[1] K. D. Kourou, V. C. Pezoulas, E. I. Georga, T. P. Exarchos, P. Tsanakas,
M. Tsiknakis, T. Varvarigou, S. De Vita, A. Tzioufas, and D. I. Fotiadis,

“Cohort harmonization and integrative analysis from a biomedical

engineering perspective,” IEEE reviews in biomedical engineering, vol.
12, pp. 303-318, 2018.

[2] V. C. Pezoulas, T. P. Exarchos, V. Andronikou, T. Varvarigou, A. G.

Tzioufas, S. De Vita, and D. I. Fotiadis, “Towards the establishment of a

biomedical ontology for the primary Sjögren’s Syndrome,” In 40th

Annual International Conference of the IEEE Engineering in Medicine

and Biology Society, pp. 4089-4092, 2018.
[3] I. Fortier, P. Raina, E. R. van den Heuvel, L. E. Griffith, C. Craig, and M.

Saliba, “Maelstrom research guidelines for rigorous retrospective data

harmonization,” International Journal of Epidemiology, vol. 46, pp. 103-
105, 2017.

[4] M. Zhao, S. Zhang, W. Li, G. Chen, “Matching biomedical ontologies

based on formal concept analysis,” Journal of biomedical semantics, vol.
9, no. 1, pp. 11, 2018.

[5] J. Paoli, C. M. Sperberg-McQueen, F. Yergeau, E. Maler, and T. Bray,

“Extensible markup language (xml) 1.0,” W3C recommendation, 2004.
[6] E. Loper, and S. Bird, “NLTK: the natural language toolkit,” 2002. arXiv

preprint cs/0205028.

[7] S. J. Gandhi, M. M. Thakor, J. Sheth, H. I. Pandit, and H. S. Patel,
“Comparison of String Similarity Algorithms to Measure Lexical

Similarity,” NJSIT, vol. 10, no. 2, pp. 139, 2017.

[8] M. Cheatham, and P. Hitzler, “String similarity metrics for ontology

alignment,” In International semantic web conference, pp. 294-309,

Springer, Berlin, Heidelberg, 2013.

[9] G. A. Rao, G. Srinivas, K. V. Rao, and P. P. Reddy, “Characteristic
Mining of Mathematical Formulas from Document-A Comparative Study

on Sequence Matcher and Levenshtein Distance Procedure,” International

Journal of Computer Sciences and Engineering, vol. 6, no. 4, pp. 400-403,
2018.

[10] J. Bergstra, and Y. Bengio, “Random search for hyper-parameter

optimization,” Journal of Machine Learning Research, pp. 281-305, 2012.
[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, and J. Vanderplas, “Scikit-learn: Machine learning in Python,”
Journal of machine learning research, pp. 2825-2830, 2011.

[12] L. Bottou, “Large-scale machine learning with stochastic gradient

descent,” In COMPSTAT’2010 Proceedings, Physica-Verlag HD, pp.
177-186, 2010.

[13] C. D. Manning, P. Raghavan, and H. Schütze, “Introduction to

information retrieval,” Cambridge University Press, Cambridge, 2008.
[14] J. H. Friedman, “Greedy function approximation: a gradient boosting

machine,” Annals of statistics, vol. 29, pp. 1189-1232, 2001.

[15] T. Chen, T. He, M. Benesty, V. Khotilovich, and Y. Tang, “Xgboost:
extreme gradient boosting,” R package version 0.4-2, pp. 1-4, 2015.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.

Grisel, and J. Vanderplas, “Scikit-learn: Machine learning in Python,”
Journal of machine learning research, pp. 2825-2830, 2011.

