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A. Data harmonization module 

1) Reference model construction 

The reference model is the most common way to describe the 

domain knowledge of the disease of interest. It is usually 

defined by the clinical experts as a set of parameters which are 

able to describe the domain knowledge, in a sufficient way, and 

thus serves as a gold standard model to enable data 

harmonization [1-4]. The reference model is a template which 

consists of medical-related parameters including demographics 

(e.g., age, gender, ethnicity), laboratory tests (e.g., ocular tests, 

oral tests, blood tests), conditions (e.g., rheumatoid factor, 

lymphadenopathy), symptoms (e.g., fever, weight loss), biopsy 

tests, and interventions (therapies), among many others. 

2) Ontology construction 

The parameters in the reference model are then organized 

into a semantic, hierarchical way using classes, subclasses and 

object properties and thus can then be expressed in the form of 

an ontology to enable semantic matching [1-4]. An ontology is 

a high-level hierarchical data model, where the parameters in 

the dataset are organized in a hierarchical manner through 

classes and sub-classes and the relationship between them is 

defined by object properties (e.g., a “Patient” “has” “laboratory 

tests”). The reference ontology can then be expressed in a .XML 

(eXtensible Markup Language) format [5], which serves as a 

semantic data model. 

3) Terminology extraction 

The terms from the reference ontology were extracted to 

define a medical corpus. Semantic information is also extracted 

including information regarding the class hierarchy and the 

object properties between the parameters of the ontology. 

4) Medical corpus definition 

The extracted terms are used to define a medical corpus for 

the medical domain of interest. The medical corpus is enriched 

with homonymous and synonymous terminologies from the 

Natural Language Processing Toolkit (NLTK) [6] along with 

the definition of acronyms for popular laboratory tests (e.g., the 

acronym “HGB” for the blood test-related parameter 

“hemoglobin”). In addition, pre-defined range values are also 

defined for each term to enable data standardization (e.g., “1” 

for the presence of a condition and “0” otherwise). 

5) Lexical matching 

String similarity scores are computed to detect lexically 

similar terms between those from the medical corpus and those 

in the heterogeneous dataset. For a given term, say 𝑥, in the 

heterogeneous dataset, the string similarity is computed 

between 𝑥 and every term in the corpus. Here, we use three 

string similarity metrics, namely the Jaro [7], the Jaro-Winkler 

[8], and the Levenhstein [9] distance scores.  

For two given strings, say 𝑎 and 𝑏, the Jaro string similarity 

measure [7], 𝐽𝑎,𝑏, is equal to: 

𝐽𝑎,𝑏 = {

                    0                   ,         𝑐 = 0   

1

3
∙ (
𝑥

|𝑎|
+
𝑥

|𝑏|
+
𝑥 − 𝑡

𝑥
) , 𝑜/𝑤     

, (1) 

where 𝑥 is the number of matching (coincident) characters, and 

𝑡 is half the number of transpositions.  

The Jaro-Winkler distance measure [8] is a modification of 

the Jaro distance measure that uses an additional prefix scale 𝑐 

to give more weight to strings with common prefix of a specific 

length. For two given strings, say 𝑎 and 𝑏, the Jaro-Winkler 

string similarity measure [8], 𝐽𝑊𝑎,𝑏, is defined as in: 

𝐽𝑊𝑎,𝑏 = 𝐽𝑎,𝑏 + (𝑙𝑥(1 − 𝐽𝑎,𝑏)) , (2) 

where 𝐽𝑎,𝑏 is the Jaro distance, 𝑙 is the length of common prefix 

at the start of the string up to a maximum of four characters. 

The prefix weight is the inverse of the 𝑙 that is needed to 

consider both strings as identical. 

The Levenhstein distance [9] measures the similarity 

between two strings, say 𝑎 and 𝑏, in terms of the number of 

deletions, insertions, or substitutions needed to transform one 

string to another: 

𝐿𝑎,𝑏(𝑖, 𝑗) =

{
 
 

 
                             𝑚𝑎𝑥

(𝑖, 𝑗)                         ,     𝑚𝑖𝑛(𝑖, 𝑗) = 0 

𝑚𝑖𝑛 {

𝐿𝑎,𝑏(𝑖 − 1, 𝑗) + 1

𝐿𝑎,𝑏(𝑖, , 𝑗 − 1) + 1

𝐿𝑎,𝑏(𝑖 − 1, 𝑗 − 1) + 1(𝑎𝑖≠𝑏𝑗)

   ,      𝑜. 𝑤.                
∙ (3) 

Here, we use an empirical combination of these three string 

similarity scores to take advantage of each method’s individual 

properties towards the robust detection of lexically identical or 

similar terms having: (i) Jaro distance larger than (or equal to) 

0.8 and Levenhstein distance less than 2 or (ii) Jaro distance 

larger than 0.9 or (iii) Jaro-Winkler distance 1 and Jaro distance 

larger than 0.85. Of course, in the case where the terms have a 

Jaro distance 1 they are considered as exactly matched. The 
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thresholds have been derived after numerous experimentations 

towards the identification of the maximum number of lexically 

identical terms. Since the Jaro-Winkler distance score is more 

strict due to the fact that it gives more weight to the terms with 

common continuous characters we used a smaller threshold 

than the one in the Jaro distance score. 

6) Semantic matching 

Semantic matching is the process of matching terms which 

share a common conceptual basis. Each term in the reference 

model is followed by a class ID which describes the term’s 

concept through a “consist of” property whereas an “includes” 

property denotes the interlinked class. For example, a 

“Laboratory Test” “consists of” a “Blood test” which 

“includes” the variable “hemoglobin”. A pseudocode for 

harmonization is presented in Algorithm 1. The pseudocode 

requires as input the terms and values of the heterogeneous 

dataset along with the reference ontology. The object properties 

and classes are first extracted from the ontologies and the 

variables are extracted by the object property “includes” and 

“consists of”, respectively. The variables are enriched with 

synonymous terms from the NLTK database along with 

acronyms from the clinical experts. Lexical matching is then 

applied to seek for lexical similarities between the medical 

corpus and the variables from the given dataset. Once a match 

is found, the common terms are stored into a list along with the 

indices and standardization is applied to compute the new 

values. The harmonized data are finally written into a new file 

given the matched variables, the matched indices and the new 

values. 

 
Supplementary Algorithm 1. A pseudocode for lexical and 

semantic matching. 

1 def harmonization(terms, values, onto): 

2 prop = onto.object_properties; 

3 vars = [x[i] for i, x in prop if x == “includes”]; 

4 class = [x[i] for i, x in prop if x == “consists of”]; 

5 syns = [nltk.synsets[vars[i]] for i, x in vars]; 

6 med_corpus = {vars U syns}; 

7 for i in len(vars): 

8 for j in len(med_corpus): 

9 if (lexical_match(vars[i], med_corpus[j])): 

10 m_vars[k] = list([vars[i], med_corpus[j]]); 

11 m_classes[k] = list([vars[i], class[j]]); 

12 
stand_values[k] = standardize(vars[i], 

med_corpus[j], values[j]); 

13 write_data(m_vars, m_classes, stand_values); 

14 end 

B. Distributed data analytics module 

1) Definition of the training and testing cohorts 

According to the definition of incremental learning, its 

mathematical basis can be extended towards the development 

of machine learning models across data that are stored in 

different locations. Given a set of 𝑀-databases, say 

𝑫𝟏, 𝑫𝟐, … , 𝑫𝑴, with datasets, say 𝒙𝟏, 𝒙𝟐, … , 𝒙𝑴, a machine 

learning model, say 𝜧𝟏, is initially trained on the dataset 𝒙𝟏 in 

database 𝑳𝟏 and then update the model through the update 

function: 

𝑓(𝑗) = 𝑓(𝑗 − 1) + 𝑎ℎ(𝑗), (4) 

where 𝑓(𝑗) corresponds to the weighted cost function on the 

dataset in site 𝑳𝒋, 𝑓(𝑗 − 1) corresponds to the estimated 

weighted cost function which was trained on the dataset in the 

previous site 𝑳𝒋−𝟏 and ℎ(𝑗) is the learner function on the dataset 

in database 𝑳𝒋. The majority of the supervised learning 

algorithms use the stochastic gradient descent to minimize a 

loss function by solving the following weight update process: 

𝑤(𝑗) = 𝑤(𝑗 − 1) − 𝛼(∇𝑤𝐿(𝑓(𝑥𝑖), 𝑦𝑖) + 𝛽∇𝑤𝑟(𝑤)), (5) 

where 𝐿(𝑓(𝑥𝑖), 𝑦𝑖) is a loss function given a score function 

𝑓(𝑥𝑖) and a target 𝑦𝑖 , ∇𝑤𝐿(𝑓(𝑥𝑖), 𝑦𝑖) is the gradient of the loss 

function with respect to 𝑤, 𝑟(𝑤) is a regularization function, 

∇𝑤𝑟(𝑤) is the gradient of the regularization function with 

respect to 𝑤, 𝛽 is a hyperparameter, and 𝛼 is a learning rate 

parameter. 

A pseudocode that summarizes the overall methodology is 

presented in Algorithm 2. A machine learning algorithm in the 

form of an object, M_0, is initialized and trained on the dataset 

X_1 in PS #1. Then, the machine learning model is updated on 

each site according to (4) and (5) and the final model is stored 

to each PS that participated in the incremental learning process. 
Supplementary Algorithm 2. A pseudocode for the 

incremental learning process. 

1 initialize an ML algorithm object, say 𝑴𝟎; 

2 train 𝑴𝟎 on dataset 𝑿𝟏 in PS #1 yielding the model 𝑴𝟏; 

3 for 𝑖 = 1, 2, …, M-1: 

4 establish a secure connection with the 𝑖-th PS; 

5 compute the updated weights according to (4); 

6 
update 𝑴𝒊 on dataset 𝑿𝒊+𝟏 in the 𝑖 + 1-th PS yielding 

model 𝑴𝒊+𝟏 using (5); 

7 store the model 𝑴𝒊+𝟏 for updating on the 𝑖 + 1-th PS; 

8 return 𝑴𝑴−𝟏; 

 

According to the optimal schema, each machine learning 

algorithm was initially trained on the harmonized data from the 

AOUD cohort (with hyper parameter optimization) yielding the 

ML model #1. The latter model was updated on the harmonized 

data from the UoA cohort yielding the ML model #2 which was 

finally updated on the harmonized data from the UNIPI cohort 

yielding the ML model #3. The final model was applied on the 

harmonized cohort data from the HUA cohort for performance 

evaluation, 

2) Hyper parameter optimization 

Hyper parameter optimization was applied on the first 

training cohort dataset to fine tune the incremental learning 

algorithms. More specifically, the randomized search on hyper 

parameters method [10] was applied, where the number of 

parameter settings was set to 100. A 10-fold cross-validation 

strategy was then applied to evaluate the parameter settings on 

the harmonized data. For example, in the logistic regression and 

the Support Vector Machines classifiers, the elastic net, l1 and 

l2 penalties were evaluated along with the maximum iteration 

number towards convergence, the alpha values, the learning 
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rates and the tolerance of each classifier, as described in [11]. 

For the Multi-layer Perceptron classifier the additional 

parameters that were evaluated include the activation function 

and the solver function [11]. 

3) Incremental learning algorithms 

a) Stochastic gradient descent 

Given a set of training observations, {(𝒙𝟏,𝑦1), (𝒙𝟐,𝑦2), …, 

(𝒙𝑴,𝑦𝑀)}, where 𝒙𝒊 ∈ 𝑹
𝑴, and an outcome 𝑦𝑗, where 𝑦𝑗 ∈

{−1,+1}, the goal of the stochastic gradient descent (SGD) 

approach is to seek for a linear loss function, say 𝜑(𝑓(𝒙𝒋), 𝑦𝑗), 

that minimizes the equation [12]: 

𝛷(𝒘) = 𝑎𝑟𝑔𝑚𝑖𝑛(
1

𝑀
∑𝜑(𝑓(𝒙𝒋), 𝑦𝑗) + 𝑎𝑟(𝒘)

𝑀

𝑗=1

), (6) 

where 𝒘 is a weight vector, 𝜑(. ) is a loss function, 𝑎 is a non-

negative hyperparameter, 𝑟(𝒘) is a regularizer, and 𝑓(𝒙𝒋) is a 

linear score function in the form 𝒘𝑇𝒙𝒋. 

Solving (6) for the weight vector we get the SGD weight update 

rule [12]: 

𝒘̃𝒊 = 𝒘̃𝒊−𝟏 − 𝜂𝑡 (
𝜕𝜑(𝑓(𝒙𝒋), 𝑦𝑗)

𝜕𝒘
+ 𝑎

𝜕𝑟(𝒘)

𝜕𝒘
), (7) 

where 𝑖 is the time step, 𝑤̃𝑖−1 is the weight estimation at step 

𝑖 − 1, 𝜂𝑖 is a non-negative learning rate parameter, and 𝜑′(. ) is 

the gradient of the loss function 𝜑(. ). The cost function, 

𝜑(𝑓(𝒙𝒋), 𝑦𝑗), in (7) can be replaced by various cost functions 

to obtain a specific classifier. For example, if we set: 

• 𝜑(𝑓(𝒙𝒋), 𝑦𝑗) = 𝑙𝑛 (1 + 𝑒𝑥𝑝 (−𝑦𝑗𝑓(𝒙𝒋))), we can obtain the 

logistic regression classifier. 

• 𝜑(𝑓(𝒙𝒋), 𝑦𝑗) = 𝑚𝑎𝑥 (0, 1 − 𝑦𝑗𝑓(𝒙𝒋)), we can obtain the 

Support Vector Machines classifier. 

• 𝜑(𝑓(𝒙𝒋), 𝑦𝑗) = 𝑚𝑎𝑥 (0,−𝑦𝑗𝑓(𝒙𝒋)), we can obtain the 

Perceptron classifier. 

b) Multinomial Naïve Bayes 

Given an 𝑁-dimensional input vector, assume 𝒇 =
(𝑓1, 𝑓2, … , 𝑓𝑁), where each 𝑓𝑗 is the frequency of an event 𝒙𝒋, 

and the probability that 𝒇 belongs to the class, assume 𝑐𝑘, is the 

multinomial distribution, 𝑃(𝑐𝑘|𝒇), we can calculate the class 

with the highest probability or the maximum 𝑎-posterior (MAP) 

class, as in [13]: 

𝑐𝑀𝐴𝑃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑘 [𝑙𝑜𝑔(𝑃(𝑐𝑘)) +∑𝑙𝑜𝑔 (𝑃(𝒙𝒋|𝑐𝑘))

𝑁

𝑗=1

], (8) 

where 𝑃(𝒙𝒋|𝑐𝑘) is the conditional probability of 𝑥𝑗 occurring in 

class 𝑐𝑘. It is obvious that (8) can be solved as a linear equation 

[13]. 

c) Gradient Boosting Trees 

The Gradient Boosting algorithm [14, 15] is an ensemble 

classifier which combines a set of weak learners into a stronger 

classifier where on each boosting round the algorithm 

minimizes the gradient of a loss function to minimize the 

prediction errors and thus optimize the overall performance of 

the classifier. Gradient Boosting adopts a regularized approach 

to further reduce the over-fitting on the gradient and thus 

enhance the overall performance of the classifier. The gradient 

boosting classifier seeks for a weak learner, at step 𝑖, say 𝑓𝑖(𝑥), 
so that: 

𝐹𝑖(𝑥) = 𝐹𝑖−1(𝑥) + 𝑎𝑟𝑔𝑚𝑖𝑛𝑓 (∑𝐿(𝑦̃𝑗 , 𝐹𝑖−1(𝑥𝑗) + 𝑓𝑖(𝑥𝑗))

𝑛

𝑗=1

), (9) 

where 𝐿(𝑦, 𝐹(𝑥)) is the error loss function and 𝑛 is the number 

of samples and 𝑦̃𝑗 is the estimated target value for the 𝑗-th 

sample. Εq. (9) can be re-written as: 

𝐹𝑖(𝑥) = 𝐹𝑖−1(𝑥) + 𝛾𝑖𝑓𝑖(𝑥), (10) 

where 𝐹𝑖−1(𝑥) is the weak learner at step 𝑖 − 1 and 𝛾𝑖 is 

calculated by minimizing the gradient descent: 

𝛾𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 (∑𝐿(𝑦𝑗 , 𝐹𝑖−1(𝑥𝑗) − 𝛾∇𝐹𝑖−1𝐿(𝑦𝑗 , 𝐹𝑖−1(𝑥𝑗))

𝑛

𝑗=1

). (11) 

Substituting (11) into (10) yields the following learner: 

𝐹𝑖(𝑥) = 𝐹𝑖−1(𝑥) − 𝛾𝑖∑∇𝐹𝑖−1𝐿(𝑦𝑗 , 𝐹𝑖−1(𝑥𝑗)

𝑛

𝑗=1

). (12) 

The Gradient Boosting algorithm is often appeared using a 

classification tree as a weak learner [39, 40]: 

𝐹𝑖(𝒙) = 𝐹𝑖−1(𝒙) + 𝛾𝑖∑𝑏𝑙𝑖𝟏(𝒙 ∈ 𝑅𝑙𝑖)

𝐿

𝑙=1

, (13) 

where at step 𝑖, a regression tree partitions the original space 

into 𝐿-disjoint regions {𝑅𝑙𝑚}1
𝐿, where 𝑅𝑙𝑚 is the 𝐿-terminal 

node, 𝑏𝑙𝑖  is the value predicted in each region 𝑅𝑙𝑚, and 𝟏(. ) is 

an indicator function (1:true, 0:otherwise). In this work, the 

XGBoost library [15] was used to incrementally train a gradient 

boosting tree across the harmonized data along with Python’s 

scikit library [16] which was used for the incremental 

application of the rest of the algorithms. The incremental 

application of the XGBoost algorithm offers a robust ensemble 

approach that iteratively builds decision trees over the 

harmonized data with reduced prediction errors based on the 

gradient direction (gradient boosting). 

C. Supplementary tables 

Supplementary Table I. Demographic information. 

 UoA HUA UNIPI AOUD 

Age at 

diagnosis 
53.5±13.5 47.5±12.3 51.4±14 52.4±13.9 

Gender ratio 

(females/ 

males) 

415/25 96/3 693/25 274/23 

Lymphoma/

Non-

lymphoma 

(%) 

76/364 
(20.87%) 

6/93 
(6.45%) 

31/687 
(4.51%) 

26/271 
(9.59%) 

Total 

number of 

patients 

440 99 718 297 

 
Supplementary Table II. Extracted cohort metadata. 

 UoA HUA UNIPI AOUD 

Number of 

features 
167 204 102 82 
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Number of 

instances (cases) 
440 100 718 297 

Categorical 

features 
76 146 85 75 

Numeric features 60 52 17 6 

Good features 27 62 37 51 

Fair features 59 74 50 17 

Bad features* 81 68 15 14 

Features with 

outliers 
0 0 0 0 

Features with 

inconsistencies 
31 6 0 1 

Total % of missing 

values 
44.8% 33.61% 21.98% 17.15% 

*these features were discarded from further analysis. 

 
Supplementary Table III. Cohort data harmonization results. 

 Cohorts 

 UoA HUA UNIPI AOUD 

Number of terms * 82 136 87 67 

Number of relevant 

terms with the pSS 

reference model ** 

39 42 54 46 

Number of lexically 

similar terms with 

those from the 

ontology 

36 38 48 41 

Percentage of 

harmonized terms 
92.3% 90.47% 88.88% 89.13% 

Number of terms 

requiring data 

standardization 

*** 

2 3 1 14 

Common number 

of terms **** 
19 

* after the removal of terms having more than 50% missing values 
(through data curation). 

** the number of pSS-relevant terms for each cohort was identified by 

the clinical experts (after evaluation). 
*** the number of terms that require data transformation according to 

the range values in the ontology. 

**** the number of common harmonized terms (not individual terms) 
across the cohorts. 

 
Supplementary Table IV. Overall population characteristics for 

distributed lymphoma prediction. 

 Cohorts 

 
Set of training cohorts 

Testing 

cohort 

  AOUD  UoA  UNIPI  HUA 

Number of 

lymphoma cases 
26 76 31 6 

Number of 

controls * 
52 152 62 93 

Total population 78 228 93 99 

* the number of controls was randomly selected 5 times to “cover” 

each cohort’s population during training. 

 
Supplementary Table V. Performance evaluation scores per incremental learning 

algorithm and testing cohort combination. 

Algorithm 
Testing 

cohort 
Accuracy Sensitivity Specificity AUC 

XGBoost 

AOUD 0.835 0.692 0.849 0.849 

UoA 0.834 0.526 0.898 0.898 

UNIPI 0.872 0.484 0.889 0.889 

HUA 0.859 0.833 0.86 0.871 

Logistic 

regression 

AOUD 0.926 0.462 0.97 0.97 

UoA 0.805 0.184 0.934 0.934 

UNIPI 0.85 0.29 0.875 0.875 

HUA 0.899 0.167 0.946 0.556 

AOUD 0.902 0.692 0.923 0.923 

UoA 0.714 0.684 0.72 0.72 

Support 

Vector 

Machines 

UNIPI 0.948 0.032 0.99 0.99 

HUA 0.768 0.667 0.774 0.72 

Multinomial 

Naïve Bayes 

AOUD 0.869 0.846 0.871 0.871 

UoA 0.823 0.5 0.89 0.89 

UNIPI 0.799 0.484 0.814 0.814 

HUA 0.828 0.833 0.828 0.831 

Multilayer  

Perceptron 

AOUD 0.875 0.808 0.882 0.882 

UoA 0.839 0.263 0.959 0.959 

UNIPI 0.879 0.387 0.901 0.901 

HUA 0.747 0.833 0.742 0.788 
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