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The following document contains the supplementary material for the publication “Terrestrial connectivity,

upstream aquatic history and seasonality shape bacterial community assembly within a large boreal aquatic

network”. The corresponding R code for the supplementary material can be found on the publication’s Github

repository: https://github.com/CarBBAS/Paper_Stadler-delGiorgio_ISMEJ_2021.
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Supplementary material and methods

SM1: Catchment characteristics

The river springs between the Atlantic and Saint Lawrence watersheds (52°52’20“N 63°36’55”W; elevation:

702 masl), and consequently flows through a series of lakes (hereafter riverine lakes) including the biggest

lake in the catchment – Lake Brûlé (A: 127.11 km2, elevation: 470 masl). The river mainly flows towards the

South with a maximum distance from the northern headwaters to the river mouth expanding to approximately

475.1 km.

The catchment was glaciated 7 000 – 10 000 years ago and left mostly a till blanket and veneer as surficial

material. It is mainly dominated by acid rocks (e.g. granodiorite, granite, quart diorite) with granitized

sedimentary and volcanic rock, and has isolated patches of permafrost (0-10%)(Natural Resources Canada).

The soil is composed of roughly 61.4% sand, 31.9% silt, 6.7% clay and stores approximately 140.4 t ha-1 of

organic carbon (in top 5 cm; given are catchment averages) (Lehner and Grill (2013), Hengl et al. (2014)).

The northern part of the catchment is characterised by a flat open black spruce (Picea mariana)-lichen

forest with shrubs and moss-lichen (Fig. S1a). As one follows the river downstream, the relief changes

drastically to a steep mountainous stretch that forms sections of canyons (Fig. S1b). The river looses 330 m

of elevation from the mountainous section until it makes a sharp turn to the west into the lower coastal plain.

The coastal plain is characterised by peatland areas with swamps and shallow waters that are completely

permafrost free (Fig. S1c). There are two larger tributaries in the coastal plain that flow through the lakes

Puyjalon (A: 13.10 km2) and Allard (A: 19.24 km2). Nearly half of the catchment is covered by coniferous

forests (P.mariana-moss), with mixed forests being rather minor (11%) and deciduous stands with white birch

(Betula papyrifera) and trembling aspen (Populus tremuloides) are even more rare (2%)(l’environnement and

Canadian Environmental Assessment Agency (2009)).

The Romaine river was dammed during the sampling period, forming a reservoir cascade complex with 4

reservoirs by 2020 after the sampling period. The reservoirs Romaine 2 (RO2, A: 81.15 km2, mean depth:

61 m), Romaine 1 (RO1, A: 13.22 km2, mean depth: 22 m) and Romaine 3 (RO3, A: 35.18 km2, mean depth:

66 m) were flooded in the years 2014 (winter), 2015 (winter), and 2017 (spring), respectively.

A weather station located in the lower coastal plain (50° 16’55.000" N, 63° 36’41.000" W, Havre-Saint-Pierre

Airport, Natural Resources Canada) recorded an annual precipitation of 810.77 ± 35.25 mm and 1.18 ± 0.73

°C, -32.63 ± 1.36 °C, and 25.8 ± 0.66 °C for mean, minimum and maximum temperature over the sampled

years.
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Figure S1: Landscape within the Romaine catchment. (a) Northern area with shrubs and moss-lichen,
(b) Mountainous section close to Reservoir 3, (c) Lower coastal plain with peatland areas, (d) Example of a
sampled stream.

SM2: Sample processing and sequencing

Surface water samples were directly collected into a pre-rinsed carboy bottle at a depth of 0.5 m, close to

the shore for stream samples and diverse locations within the river and reservoirs. Surface soil samples

were collected by mixing three randomly selected cores (30 cm) that were taken in proximity of installed

piezometers to sample soilwater. The upper 5 cm including surface vegetation were removed before the soil

was transferred into a sterile plastic bag. Three piezometers were randomly installed in proximity (30-100 cm)

to a sampled stream with an average depth of 50 ± 20 cm. However, if the piezometers were installed too

close to the stream main channel, hyporheic water was sampled instead. Piezometers were emptied 3 times

(1-2 h) with a peristaltic pump before sample water was collected. The water from the piezometers was pooled

for each site. Groundwater was directly collected from constructed wells with submersible pumps. Lake

sediment samples were collected with sediment cores (1-2 m depth), and the upper 10 cm were collected

and mixed for subsequent processing. All samples were stored in cooler boxes until return to the laboratory

(maximum duration 7h), and were subsequently stored at 4 °C upon arrival at the laboratory until further

processing on the same day of sampling. A minimum of 25 mL and 250 mL of soil-/hyporheic-water and

surface water, respectively, were filtered through 0.22 µm polycarbonate membrane filters (Merck Millipore,

Darmstadt, Germany). Homogenized soil and sediment samples were transferred to aliquots of 0.25 g. After

filtration, samples for RNA extraction were submerged in RNAlater and LifeGuard Soil Preservation solution

(QIAGEN, Hilden, Germany) for water and humic samples (soil, soilwater, hyporheic water), respectively. To
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allow stabilisation in the buffer, samples were left at 4 °C overnight and were subsequently stored frozen. All

DNA and RNA samples were frozen at -20 °C at the field station and further stored at -80 °C at the university

laboratory until extraction.

For extractions, PowerWater and PowerSoil DNA and RNA extraction kits (MoBio, Carlsbad, CA, USA) were

used to extract water and soil/soil-/hyporheic-water/sediment samples, respectively. In 2017, the equivalent

DNeasy and RNeasy PowerWater Kits (QIAGEN, Hilden, Germany) were used for DNA and RNA samples,

respectively, due to discontinuation of the MoBio kit series.

Prior to cDNA reverse transcription, RNA extracts were checked for DNA contamination with a negative PCR

test. Subsequently, cDNA was synthesised with a high capacity cDNA Reverse Transcription Kit (Applied

Biosystems, Foster City, CA, USA). Successful DNA extraction and cDNA synthesis was evaluated via PCR

amplification of the 515F-806R primers (IDT Technologies, Coralville, IA, USA) and DNA concentration was

measured with a NanoDrop 2000c (Thermo Fisher Scientific Inc., Waltham, MA, USA).

SM3: Bioinformatic analysis

Primers were removed from 16S rRNA DNA and cDNA (hereafter RNA) data sets using the software cutadapt

(Version 1.18, Martin (2013)), which allows for the removal of the primer sequence and its variants in their

true and complement orientations. Additionally, all reads shorter than 125 nucleotides were removed as they

cannot achieve a minimum overlap necessary for paired-end merging in downstream processing.

To identify amplicon sequence variants (ASVs), 16S rRNA amplicon reads were analysed through the DADA2

(Divisive Amplicon Denoising Algorithm 2) pipeline (Version 1.14.1, Callahan, McMurdie, and Holmes (2017))

on R Version 3.6.3 R Core Team (2020)). Read qualities were evaluated for each sequencing plate separately

and read length was trimmed according to their quality scores. Samples were pooled by plate, season and

sequencing depth for learning the error rates. DADA2 runs on a sample by sample basis, and thus removes

observed singletons by sample to avoid inclusion of false-positive sequencing errors. To retain more rare taxa

within a sampling campaign (year-season combinations) along the continuum, samples were ‘pseudo’-pooled

for the dada() step. This step enables the removal of singletons by pool but retains singletons within a

sample. Paired-ends were merged after successful inference of amplicon variants. Chimeras were removed

(removeBimeraDenovo()) and, finally, taxonomy was assigned with the DECIPHER package (Version 2.14.0,

Wright (2016)) implementing the increased accuracy IDTAXA algorithm Murali, Bhargava, and Wright (2018)

and the provided trained classifier of the GTDB database (Release 95, Parks et al. (2018)). Only ASVs that

were classified as Bacteria and not as Mitochondria or Chloroplast were evaluated in this study. Several
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ASVs were found to be highly abundant only in RNA. To account for slight differences that may have emerged

between DNA and RNA ASVs and also to merge potential differences among 16S rRNA copies within a

single genome, ASVs were merged into OTUs by a 99% similarity threshold Větrovský and Baldrian (2013)

with the DECIPHER package (AlignSeqs(), DistanceMatrix(), IdClusters(), Wright (2016)). The sequence of

the most abundant ASV within a OTU cluster was kept as a reference sequence if it was classified as at

least at the domain level as “Bacteria”. If the most abundant ASV within a cluster did not have any taxonomic

classification, the ASV that had a taxonomic classification was chosen to represent the OTU cluster.

SM4: Effects of rarefaction

Cumulative sum scaling (CSS) results were compared with results achieved with various rarefaction thresh-

olds. There were no substantial differences in the results between CSS and various rarefaction thresholds

on α diversity estimates, which is believed to be most susceptible to library size differences (Fig. S2).

We further re-run all analyses in the manuscript with the examined rarefaction thresholds. Both PCoAs

showed negligible differences while the patterns in Sørensen and Bray-Curtis distances showed variation

across rarefaction thresholds. Depending on the rarefaction threshold used, we observed different patterns

in when incidence and when abundance-based distances were greater than the other, which was likely

introduced by the random sampling procedure imposed by rarefaction affecting both incidences as well

as abundances. As the threshold becomes higher (e.g. 10000), all patterns in the absolute numbers

of Sørensen and Bray-Curtis distances approach our originally observed patterns with CSS. We mainly

use the ∆-distances to interpret shifts in mass effects and selection, and while the absolute numbers in

∆-distances changed, the patterns across habitat types and seasons remained fairly consistent across

rarefaction thresholds with the highest rarefaction threshold resembling the original results the most. Hence,

these results showed that the absolute numbers in ∆-distances do not hold meaning per se, it is the spatio-

temporal relative change that gives our analysis meaning. Rarefaction does change the DNA-RNA distances

themselves likely due to the loss of rare taxa and making abundance differences among OTUs smaller,

however, the final interpretations remain the same.

Finally, we explored the effects of rarefaction on how reactive and unreactive OTUs were identified. Across all

rarefaction thresholds, we could observe a clear differentiation between OTUs that were classified within each

habitat as ‘unreactive’. Firstly, due to their absence in any RNA and secondly, by the absence in a DNA to

RNA contribution relationship. OTUs that were categorized by these two ‘unreactive’ categories were clearly

different from those that were named ‘reactive’ due to the presence of a linear relationship in their DNA and

RNA contribution. Within each rarefaction threshold, unreactive OTUs were characterized by diverse origins,
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and reactive taxa were mainly dominated by soil and soilwater taxa. We could also observe that with lower

rarefaction thresholds (e.g. 1470), more taxa from ‘aquatic’ habitats seemed to be reactive (i.e. taxa first

detected in streams and upriver), however, as the rarefaction threshold increases, their proportion reduces

(e.g. 10000). These results point to the fact that rare taxa are important contributors to our observed patterns,

and hence we strongly believe that rarefaction does rather bias our observations by removing taxa essential

to natural processes in microbial assembly (e.g. seed banks, Lennon and Jones (2011)). Rarefaction does

not affect our observation that there were taxa that have a decoupled DNA-RNA relationship (below potential

activity threshold), and those that do (above potential activity threshold). Consequently, CSS results were

used for our manuscript.

Figure S2: Comparing the effect of rarefaction on α diversity patterns. Three different α diversity
indices were investigated: Shannon-Wiener index (H’), Simpson’s index (λ) and Pielou’s evenness (J). CSS
= cumulative sum scaling. Rarefied datasets with the applied minimum library size threshold are indicated as
’Lib[threshold]’.
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SM5: Data exploration and statistical analyses

To explore differences in microbial community composition across habitat types and seasons, a Principal

Coordinates Analysis (PCoA) was conducted with Bray-Curtis dissimilarities (DBC) (Bray and Curtis (1957),

Legendre and Legendre (1998)) based on all DNA samples with the function pcoa in the ape package

(Paradis and Schliep (2018)). The community matrix was Hellinger transformed to resolve a horse-shoe

effect (Legendre and Gallagher (2001)). To correct any negative eigenvalues problematic for PERMANOVA

analysis, the DBC matrix was square-root transformed to Euclidean distance (Legendre and Legendre

(1998), Borcard, Gillet, and Legendre (2011)). To evaluate statistical differences in habitat type and season

a PERMANOVA was computed with 9999 permutations with the adonis function. A PERMANOVA cannot

distinguish among-group from within-group variation if data dispersion is variable among groups (Anderson

and Walsh (2013)), therefore, an analysis of multivariate homogeneity was computed with betadisper. Using

permutest, we finally tested whether dispersion differs between groups.

Secondly, to evaluate whether sampled RNA-based assemblages were different from the DNA-based as-

semblages, we performed a second PCoA (DBC with square-root transformation) with both DNA and RNA

samples. Again, statistically different groups were investigated with a PERMANOVA (9999 permutations),

where habitat type, season and nucleic acid type (DNA vs. RNA) formed the groups. The same framework

explained above to check for dispersions was applied. To quantify how different DNA-/RNA-based assem-

blages of the same sample are, the Bray-Curtis distance (mBC) of each DNA-RNA sample pair within the

PCoA ordination space was computed across n-dimensional space (Tabak (2004)):

m(p, q) =
√

(| p1 − q1 |)2 + (| p2 − q2 |)2 + · · ·+ (| pn − qn |)2

where p and q represent DNA and RNA site scores, respectively, of each sample and n is the used maximum

number of dimensions. We focused on the first axes that cumulatively explain 75% of the variation for each

ordination (n75%), similar to (Osterholz et al. (2016)). This approach was implemented as it was evident from

the PCoA that essential variation within non-aquatic samples was captured outside the first three axes. The

distance across all PCoA axes equals the initial pair-wise dissimilarity on which the PCoA is based on (Fig.

S3). As such, the distance across n75% axes extracts the proportion of the initial pair-wise dissimilarity that is

captured by the axes cumulatively explaining 75% of the PCoA.

9



Figure S3: Distance along all PCoA axes equal pair-wise dissimilarity. As a proof of concept, the
computed distance (e.g. mBC) extracts a proportion of the individual pair-wise dissimilarities, summation of
the distances across all PCoA dimensions equals the initial pair-wise Bray-Curtis dissimilarities, which is the
input matrix into the PCoA. Thus, computing the pair-wise distance among a sub-selection of axes of the
PCoA captures a proportion of the overall pair-wise dissimilarity that is explained by the variation and drivers
of the selected axes.

To gain further insight into the processes shaping assemblage dissimilarities, we computed a PCoA with

the Sørensen dissimilarity (DS), which is the incidence based equivalent of DBC (square-root transformed

to achieve Euclidean space) (Legendre and Legendre (1998), Sørensen (1948))(Fig. S4). By comparing

incidence and abundance based dissimilarities, we can further distinguish in which samples DNA-/RNA-

based assemblages diverge primarily due to different present taxa or their abundances, respectively. We

further applied the same framework of calculating the distance among DNA and RNA pairs across n75% axes

resulting the Sørensen-based distance (mS).
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Figure S4: Schematic representation of n-distance calculation

SM6: Simulation of theoretical communities to understand underlying patterns of

∆-distances

In order to support our approach to examine assembly processes using the ∆-distances approach between

Sørensen and Bray-Curtis dissimilarity based PCoAs, we simulated different scenarios and calculated the

∆-distances on these theoretical communities.

We used four different species abundance distributions (SADs) of varying evenness (Pielou’s J) to mimic the

DNA assemblages of different habitat types. We hypothesized that the degree of selection increases with

lower evenness (higher ∆-distance), as only a few taxa are selected for and dominate the community. Each

SAD was composed of 10000 OTUs (Lennon et al. (2018)), which is close to our overall OTU pool of 16322

OTUs found across the dataset. We used lognormal distributions to create SADs and modified the evenness

by changing the scale parameter between 0.9 and 2.7. The higher the parameter is, the steeper and less

even the community becomes. To create the DNA assemblages, we randomly sampled 25000 times from

each SAD, which was based on our average library size across the dataset (mean: 24687.21).

As a second step, we duplicated the randomly sampled DNA assemblages to retrieve a base community for

the corresponding RNA assemblages. To introduce additional mass effects, we implemented a gradient of

OTU removal from the created DNA assemblages. The number of OTUs removed from the RNA assemblages

were either 1/2, 1/3, 1/6 or 1/9 of all sampled OTUs in a site (hereafter, replacement). We hypothesized that
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the higher the replacement, the stronger the mass effect will be (lower ∆-distance). The number of reads that

were removed as a result of the random OTU removal were re-sampled from the OTUs that were not present

in the DNA assemblage of a particular site, leading to equal library sizes across sites. We further corrected

for phantom taxa (RNA > 0, DNA = 0) with DNA = 1, following the analysis of our empirical dataset. Overall,

we implemented 4 SAD and 4 replacement treatments that were run 9 times to avoid random sampling

biases and compute standard deviations of the resulting metrics (overall n = 288).

Once the OTU matrix with all sites were set-up, we re-ran our analysis by calculating the PCoAs for both

Sørensen and Bray-Curtis based dissimilarities, extracted the axes that cumulatively explain 75% of the

variation and calculated the ∆-distances. Furthermore, two metrics were calculated for each site: 1) the

number of OTUs that do not have any RNA, which were classified as “unreactive” taxa in our study, and 2)

the mean read difference between individual OTU’s DNA and RNA, which indicates the discrepancy between

the DNA and RNA. We hypothesized that higher DNA-RNA discrepancies indicate stronger selection.

Figure S5: Simulated ∆-distances. Points represent the arithmetic mean of 9 independent simulations
of SAD and replacement categorical combinations. Error bars indicate the standard deviation from the
arithmetic mean.

Our simulation results indicate that there is indeed a clear trend in our evenness and replacement treatment

on ∆-distances with lower ∆-distances observed in even communities (i.e. stronger mass effect) and higher

∆-distances in uneven communities (i.e. stronger selection) (Fig. S5). Additionally, higher replacement

values lower the ∆-distances within each SAD treatment indicating stronger mass effects.
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Figure S6: Linear regressions of ∆-distances and computed metrics. Points are arithmetic means for
simulations (a-b) and individual samples for empirical data (c-d) (simulation: n = 16, empirical data: n = 193).
Assumptions of normality and homogeneity were checked for each linear regression. Lines and grey areas
represent regression slope and confidence intervals, respectively. Regression formulae and statistics are
given within the individual plots.

We also regressed the two above mentioned metrics with the ∆-distances (Fig. S6), and we found a negative

relationship of the number of “unreactive” OTUs with ∆-distances in line with our interpretation of mass

effects and its dependency on a higher proportion of unreactive taxa. Furthermore, mean abundance

differences were positively related to ∆-distances indicating stronger selection with higher abundance

differences between DNA and RNA. Although our empirical relationships (Fig. S6 c-d) are less stronger than

the simulation based estimates (Fig. S6 a-b), the overall trends are the same.

We would like to end this simulation section by highlighting that the absolute number of ∆-distances is likely

to hold little meaning. Absolute ∆-distance values are not interpretable on their own, it is the comparison

across habitats or gradients that create patterns and gives this approach room for interpretation.
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SM7: Abundance classification

Traditionally, abundance groups (AGs) such as “abundant” and “rare” have been defined by various relative

abundance thresholds ranging from 0.1 to 1 % within the literature. While inconsistencies hinder comparisons

among studies, we additionally are working with variance stabilised read numbers, thus traditional thresholds

based on relative abundances are not applicable. In order to classify OTUs into AGs, we developed a new

framework to classify OTUs into AGs based on the shape of rank abundance curves of each habitat. We

initiate the framework by calculating the mean abundance of each OTU by habitat type. Subsequently, for

each habitat type a smoothed rank abundance curve was generated with the function smooth.spline with

the smoothing parameter set to 0.7 in base R (Fig. S7). Ranks that correspond to moments of acceleration

along the curve were identified by taking the second derivative of the log(x + 1) transformed abundance

curve (Fig. S7c). All OTUs ranked below the second maximum acceleration were defined as rare. OTUs

falling above the first maximum acceleration were defined as abundant, while the section in between the

two maxima represents moderately abundant OTUs (Fig. S7a). The CSS reads corresponding to the ranks

identified for the AGs were extracted for each habitat type separately. Subsequently, the average CSS reads

for each abundance threshold was calculated. This approach classified all OTUs with >= 72 CSS reads as

abundant, < 72 and >= 10 CSS reads as moderate, and < 10 CSS reads as rare.

Figure S7: Classification of abundance groups. Schematic representation of the used approach to
classify abundance groups based on derivative approximation of the log-transformed rank abundance curve
by habitat type, where a) represents the original rank abundance curve and b) the log-transformed equivalent
to derive points of maximum and minimum acceleration. The blue point represents the first minimum of the
second derivative, red points are the first and second maxima of the second derivative. Pink, green and blue
ranges visualise abundant, medium and rare classifications, respectively.
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SM8: Software details

The packages phyloseq, tidyverse, plyr and data.table were used for data wrangling and transformation

(McMurdie and Holmes (2013),Wickham et al. (2019), Wickham (2011), Dowle and Srinivasan (2019)), and

doMC and parallel enabled parallel processing (Revolution Analytics and Weston (2019), R Core Team

(2020)). ggplot2, ggpubr, ggnewscale and cowplot were used to visualize the results (Wickham (2016), A

Kassambara (2020), Campitelli (2020), Wilke (2019)). For statistical analyses, vegan and rstatix were used

(Oksanen et al. (2019), Alboukadel Kassambara (2020)).

Maps were created with QGIS (version 3.12) and a digital elevation model provided by Natural Resources

Canada. Watersheds were delineated with ArcMap (version 10.5.1, ESRI Inc., Redland, CA) and the Spatial

Analyst Toolbox.

Additional supplementary figures

Figure S8: Taxonomic composition of habitat types. Given are averages of phyla found across habitat
types. Upper panel shows average library sizes across habitat types. Error bars indicate the standard
deviation from the mean.
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Figure S9: No clear seasonal clustering within terrestrial samples. PCoA analysis with square rooted
Bray-Curtis dissimilarity on Hellinger transformed community matrix with only terrestrial samples (n = 156,
11 047 OTUs). Habitat types are distinguished by colour, seasons are indicated by shapes and nucleic acid
type are visualised by different line colour.
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Figure S10: Habitat type and seasonal separation of RNA. PCoA analysis with square rooted Bray-Curtis
dissimilarity on Hellinger transformed community matrix of all RNA samples (n = 201, 7 549 OTUs). Habitat
types are distinguished by colour and seasons are indicated by shapes.
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Figure S11: Unreactive and reactive fractions of OTUs. Proportion of bacterial OTUs (%) within each
habitat type and season that can be attributed to the unreactive (RNA = 0 and < Median) and reactive (>
Median) fraction.
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Figure S12: Modelled and measured discharge across the watershed. Discharge was continuously
measured at point locations at various stream orders by Hydro-Québec. A model was created to model the
discharge of all streams and rivers within the watershed using mean monthly air temperatures (weather
station at Havre-Saint-Pierre airport), monthly difference in snow melt (retrieved from Brown and Brasnett
(2010)) and flow accumulation (derived via GIS). This model is part of a separate manuscript in preparation,
hence, the script and data are not available on Github.
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Figure S13: Seasonal differences in discharge across the watershed. Given are predicted discharges
of all lotic systems within the watershed for the years 2015-2017. Spring, Summer and Autumn correspond
to the months June, August and October, during which the field campaigns were carried out. Lines represent
polynomial linear regressions. These results are part of a separate manuscript in preparation, hence, the
script and data are not available on Github.

Suppplementary Tables

Table S1: Number of samples per habitat type.
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Table S2: Estimated seasonal variation in water residence time (d) across reservoirs. Water residence
time is given in days. Water residence time was estimated from reservoir volume and continously measured
discharge data at the reservoir outflow by Hydro-Québec. Monthly reservoir volume was estimated from
a water level to volume relationship derived by Hydro-Québec. The underlying data are part of a separate
manuscript in preparation, hence, the script and data are not available on Github.

Reservoir Spring Summer Autumn

RO1 3.9 6.5 7.4

RO2 90.8 144.2 190.5

RO3 43.8 86.4 115.6

References

Anderson, Marti J., and Daniel C. I. Walsh. 2013. “Anderson and Walsh (2013) PERMANOVA, ANOSIM,

and the Mantel test in the face of heterogeneous dispersions- What null hypothesis are you .pdf.” Ecological

Monograph 83 (4): 557–74. https://doi.org/10.1890.

Borcard, Daniel, Francois Gillet, and Pierre Legendre. 2011. Numerical Ecology with R. Edited by Robert

Gentleman, Kurt Hornik, and Giovanni G Parmigiani. New York: Springer. https://doi.org/10.1007/978-1-

4419-7976-6.

Bray, J. Roger, and J. T. Curtis. 1957. “An ordination of the upland forest communities of Southern Wisconsin.”

Ecological Monographs 27 (4): 325–49. https://doi.org/10.2307/1942268.

Brown, R. D., and B. Brasnett. 2010. “Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis

Data.” Boulder, Colorado USA: NASA National Snow; Ice Data Center Distributed Active Archive Center.

https://doi.org/10.5067/W9FOYWH0EQZ3.

Callahan, Benjamin J., Paul J. McMurdie, and Susan P. Holmes. 2017. “Exact sequence variants should

replace operational taxonomic units in marker-gene data analysis.” The ISME Journal 11: 2639–43.

https://doi.org/10.1038/ismej.2017.119.

Campitelli, Elio. 2020. “ggnewscale: Multiple Fill and Colour Scales in ’ggplot2’.” https://cran.r-project.org/pa

ckage=ggnewscale.

Dowle, Matt, and Arun Srinivasan. 2019. “data.table: Extension of ‘data.frame‘.” https://cran.r-project.org/pa

ckage=data.table.

Hengl, T., J. M. de Jesus, R. A. MacMillan, N. H. Batjes, G. B. Heuvelink, E. Ribeiro, A. Samuel-Rosa, et al.

21

https://doi.org/10.1890
https://doi.org/10.1007/978-1-4419-7976-6
https://doi.org/10.1007/978-1-4419-7976-6
https://doi.org/10.2307/1942268
https://doi.org/10.5067/W9FOYWH0EQZ3
https://doi.org/10.1038/ismej.2017.119
https://cran.r-project.org/package=ggnewscale
https://cran.r-project.org/package=ggnewscale
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=data.table


2014. “SoilGrids1km—global soil information based on automated mapping.” PLoS ONE 9 (8): e105992.

https://doi.org/10.1371/journal.pone.0105992.

Kassambara, A. 2020. “ggpubr: ’ggplot2’ Based Publication Ready Plots.”

Kassambara, Alboukadel. 2020. “rstatix: Pipe-Friendly Framework for Basic Statistical Tests.” https://cran.r-

project.org/package=rstatix.

Legendre, Pierre, and Eugene D. Gallagher. 2001. “Ecologically meaningful transformations for ordination of

species data.” Oecologia 129 (2): 271–80. https://doi.org/10.1007/s004420100716.

Legendre, Pierre, and Louis Legendre. 1998. Numerical Ecology. 2nd ed. Amsterdam: Elsevier.

Lehner, Bernhard, and Günther Grill. 2013. “Global river hydrography and network routing: baseline data

and new approaches to study the world’s large river systems.” Hydrological Processes 27 (15): 2171–86.

www.hydrosheds.org.

Lennon, Jay T, and Stuart E Jones. 2011. “Microbial seed banks: the ecological and evolutionary implications

of dormancy.” Nature Reviews Microbiology 9: 119–30. https://doi.org/10.1038/nrmicro2504.

Lennon, JT, ME Muscarella, SA Placella, and BK Lehmkuhl. 2018. “How, When, and Where Relic DNA

Affects Microbial diversity.” mBio 9 (3): e00637–18.

l’environnement, Bureau d’audiences publiques sur, and Canadian Environmental Assessment Agency.

2009. “Romaine Hydroelectric Complex Project: Investigation and Public Hearing Report.” https://iaac-

aeic.gc.ca/050/documents/34211/34211E.pdf.

Martin, Marcel. 2013. “Cutadapt removes adapter sequences from high-throughput sequencing reads.”

EMBnet.journal 17 (1): pp. 10–12. https://doi.org/10.14806/ej.17.1.200.

McMurdie, Paul J., and Susan Holmes. 2013. “phyloseq: An R package for reproducible interactive analysis

and graphics of microbiome census data.” PLoS ONE 8 (4): e61217.

Murali, Adithya, Aniruddha Bhargava, and Erik S. Wright. 2018. “IDTAXA: A novel approach for accurate

taxonomic classification of microbiome sequences.” Microbiome 6 (1): 1–14. https://doi.org/10.1186/s40168-

018-0521-5.

Oksanen, Jari, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter

R. Minchin, et al. 2019. “vegan: Community Ecology Package.” https://cran.r-project.org/package=vegan.

Osterholz, Helena, Gabriel Singer, Bernd Wemheuer, Rolf Daniel, Meinhard Simon, Jutta Niggemann, and

Thorsten Dittmar. 2016. “Deciphering associations between dissolved organic molecules and bacterial

22

https://doi.org/10.1371/journal.pone.0105992
https://cran.r-project.org/package=rstatix
https://cran.r-project.org/package=rstatix
https://doi.org/10.1007/s004420100716
www.hydrosheds.org
https://doi.org/10.1038/nrmicro2504
https://iaac-aeic.gc.ca/050/documents/34211/34211E.pdf
https://iaac-aeic.gc.ca/050/documents/34211/34211E.pdf
https://doi.org/10.14806/ej.17.1.200
https://doi.org/10.1186/s40168-018-0521-5
https://doi.org/10.1186/s40168-018-0521-5
https://cran.r-project.org/package=vegan


communities in a pelagic marine system.” The ISME Journal 10: 1717–30. https://doi.org/10.1038/ismej.20

15.231.

Paradis, E, and K Schliep. 2018. “ape 5.0: an environment for modern phylogenetics and evolutionary

analyses in R.” Bioinformatics 35 (526-528).

Parks, Donovan H., Maria Chuvochina, David W. Waite, Christian Rinke, Adam Skarshewski, Pierre Alain

Chaumeil, and Philip Hugenholtz. 2018. “A standardized bacterial taxonomy based on genome phylogeny

substantially revises the tree of life.” Nature Biotechnology 36 (10): 996. https://doi.org/10.1038/nbt.4229.

R Core Team. 2020. “R: A language and environment for statistical computing.” Vienna. https://www.r-

project.org/.

Revolution Analytics, and Steve Weston. 2019. “doMC: Foreach Parallel Adaptor for ’parallel’.” https://cran.r-

project.org/package=doMC.

Sørensen, Thorvald. 1948. “A method of establishing groups of equal amplitude in plant sociology based on

similarity of species content, and its application to analysis of the vegetation on Danish commons.” Biologiske

Skrifter Kongelige Danske Videnskabernes Selskab 5: 1–34. https://doi.org/10.1007/BF02852438.

Tabak, John. 2004. “Differential Geometry.” In Geometry: The Language of Space and Form, 150. New York:

Facts on File, Inc.
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