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Figure S1. The insulin signaling cascades in the liver and skeletal muscle. The 
6-week-old male mice were divided into four groups, including LS, LL, HS, and HL 
groups.  A The GLUT2 translocation in the liver and quantification of plasma 
membrane GLUT2 to total GLUT2; Immunoblots for phosphorylation level of AKT 
in the liver. B The GLUT4 translocation in the skeletal muscle and quantification of 
plasma membrane GLUT4 to total GLUT4; Immunoblots for phosphorylation level of 
AKT in the skeletal muscle. Data are presented as means ± SD of 8 mice per group, 
one-way ANOVA with Mann-Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001. LS, 
LFD-saline (i.p.); LL, LFD-lactate (i.p.); HS, HFD-saline (i.p.); HL, HFD-lactate 
(i.p.); PM, Plasma membrane. 
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Figure S2. Moderate L-lactate administration did not lead to the development of 
hyperlactatemia or lactic acidosis. The 6-week-old male mice were divided into 
four groups, including LS, LL, HS, and HL groups. A The serum pH value. B Food 
intake. C Energy intake. D Liver weight. E Spleen weight. F-G The serum ALT (F) 
and AST (G). H The H&E staining of liver and spleen; scale bar, 100 μm. Data are 
presented as means ± SD of 8 mice per group, one-way ANOVA with Mann-Whitney 
test; *p < 0.05, **p < 0.01, ***p < 0.001. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); 
HS, HFD-saline (i.p.); HL, HFD-lactate (i.p.); ALT, Alanine transaminase; AST, 
Aspartate aminotransferase. 
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Figure S3. The effects of moderate L-lactate administration on energy 
expenditure in LFD and HFD-fed mice. At the age of 18 weeks, the metabolic 
capability in mice from four groups was measured. A-B VO2 (A) and VCO2 (B) per g 
body weight were detected without L-lactate injection during a 24-hour light-dark 
cycle. C-D VO2 (C) and VCO2 (D) per mouse were detected without L-lactate 
injection during a 24-h light-dark cycle. E-F VO2 (E) and VCO2 (F) per g body 
weight were detected during a 24-hour light-dark cycle and 400mg/kg L-lactate was 
injected at 9 a.m. and 6 p.m. Data are presented as means ± SD of 8 mice per group, 
one-way ANOVA with Mann-Whitney test. *p < 0.05, **p < 0.01, ***p < 0.001 
compared with HS group; #p < 0.05, ##p < 0.01, ###p < 0.001, LL group was 
compared with LS group. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); HS, 
HFD-saline (i.p.); HL, HFD-lactate (i.p.); VO2, Oxygen consumption; VCO2, Carbon 
dioxide production. 
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Figure S4. The fatty acid oxidation and glucose  catabolism in the liver and 
skeletal muscle. The 6-week-old male mice were divided into four groups, including 
LS, LL, HS, and HL groups.  A-B The relative genes of fatty acid oxidation and 
glucose  catabolism in the liver (A) and skeletal muscle (B). Data are presented as 
means ± SD of 8 mice per group, one-way ANOVA with Mann-Whitney test; *p < 
0.05, **p < 0.01, ***p < 0.001. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); HS, 
HFD-saline (i.p.); HL, HFD-lactate (i.p.). 
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Figure S5. The expression of MCT1 in ATMs and BMDMs after inflammatory 
stimulation. The 6-week-old male mice were divided into four groups, including LS, 
LL, HS, and HL groups. A The mRNA level of MCT1 in EATs. B The mRNA level of 
MCT1 in ATMs from EATs. BMDMs were treated with vehicle or L-lactate (5 mM or 
10 mM), and then LPS was added. C The mRNA level of MCT1 in BMDMs. Data are 
presented as means ± SD of 8 mice per group in vivo, 4 parallel cell samples per 
group in ATMs and 6 parallel cell samples per group in BMDMs, one-way ANOVA 
with Mann-Whitney test for mice and two-tailed Student’s t-test for cell samples; *p < 
0.05, **p < 0.01, ***p < 0.001. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); HS, 
HFD-saline (i.p.); HL, HFD-lactate (i.p.); Lac, Lactate; EAT, Epididymal adipose 
tissue; ATM, Adipose tissue macrophage. 
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Figure S6. The expression of GPR132 in adipocytes and SVFs. A The mRNA level 
of GPR132 in adipocytes and SVFs from EATs in HFD-fed mice. B The mRNA level 
of GPR132 in primary adipocytes after L-lactate treatment. C The mRNA level of 
GPR132 in SVFs after L-lactate treatment. Data are presented as means ± SD of 4 
parallel samples per group, one-way ANOVA with Mann-Whitney test for mice and 
two-tailed Student’s t-test for cell samples; *p < 0.05, **p < 0.01, ***p < 0.001.  
 

 
  



S‐8 
 

Figure S7. siRNA-mediated knockdown of GPR132 in BMDMs. BMDMs were 
transfected with a negative control siRNA or a siRNA targeting GPR132 for 48 h and 
lysed for immunoblots. Immunoblots for GPR132 in BMDMs and quantification of 
GPR132 to β-actin. Data are presented as means ± SD of 4 parallel samples per group, 
two-tailed Student’s t-test; *p < 0.05, **p < 0.01, ***p < 0.001.  
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Figure S8. GPR132-PKA participated in the inhibition of L-lactate on 
macrophage M1 polarization. BMDMs were treated with vehicle, L-lactate, Con 
siRNA, or GPR132 siRNA, and then LPS was added. A-B Flow cytometry analyses 
of M1 surface marker CD38 (A) and CD274 (B). C The mRNA levels of 
pro-inflammatory genes. In another independent study, BMDMs were treated with 
vehicle or L-lactate, and then LPS was added. H89 was used as a PKA inhibitor. D-E 
Flow cytometry analyses of M1 surface marker CD38 (D) and CD274 (E). F The 
mRNA levels of pro-inflammatory genes. Data are presented as means ± SD of 4 
parallel samples per group, two-tailed Student’s t-test; *p < 0.05, **p < 0.01, ***p < 
0.001. Lac, L-lactate.  
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Figure S9. The expression of TGF-β1 and TGF-β2 in EATs. The 6-week-old male 
mice were divided into four groups, including LS, LL, HS, and HL groups. A-B The 
mRNA levels of TGF-β1 (A) and TGF-β2 (B). C Immunoblots for TGF-β1 and 
TGF-β2 in EATs and quantification of TGF-β1 and TGF-β2 to β-actin. Data are 
presented as means ± SD of 8 mice per group, one-way ANOVA with Mann-Whitney 
test; *p < 0.05, **p < 0.01, ***p < 0.001. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); 
HS, HFD-saline (i.p.); HL, HFD-lactate (i.p.).  
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Figure S10. The proposed mechanism for moderate L-lactate administration 
improves adipose tissue insulin resistance. On the one hand, moderate L-lactate 
administration elevates adipose tissue mitochondrial thermogenic protein UCP1 
expression. On the other hand, L-lactate could bind to the GPR132 on the membrane 
of macrophages and activates the downstream PKA-LKB1-AMPKα1 signal, which 
subsequently inhibits the NF-kB signal and the secretion of inflammatory cytokines. 
The suppression of moderate L-lactate administration on macrophage 
pro-inflammatory M1 polarization further promotes AKT phosphorylation and 
GLUT4 translocation in adipocytes. Collectively, moderate L-lactate administration 
activates adipose tissue macrophage GPR132-PKA-AMPKα1 pathway to alleviate 
obesity-associated insulin resistance in mice. 
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Table S1. The primer sequences used for qRT-PCR. 
 

Gene Forward primer Reverse primer 

β-actin CATCCGTAAAGACCTCTATGCCAAC ATGGAGCCACCGATCCACA 

TNF-α ACGGCATGGATCTCAAAGAC AGATAGCAAATCGGCTGACG 

IL-1β CTTCCCCAGGGCATGTTAAG ACCCTGAGCGACCTGTCTTG 

IFN-γ ATGAACGCTACACACTGCATC CCATCCTTTTGCCAGTTCCTC 

MCP1 CCCCAAGAAGGAATGGGTCC GGTTGTGGAAAAGGTAGTGG 

F4/80 TGACTCACCTTGTGGTCCTAA CTTCCCAGAATCCAGTCTTTCC 

Nos2 CCAAGCCCTCACCTACTTCC CTCTGAGGGCTGACACAAGG 

Arg1 CTCCAAGCCAAAGTCCTTAGAG AGGAGCTGTCATTAGGGACATC 

Ucp1 CACTCAGGATTGGCCTCTACG GGGGTTTGATCCCATGCAGA 

Prdm16 CCACCAGACTTCGAGCTACG ACACCTCTGTATCCGTCAGCA 

Pgc-1α CCCTGCCATTGTTAAGACC TGCTGCTGTTCCTGTTTTC 

Cidea TGACATTCATGGGATTGCAGAC GGCCAGTTGTGATGACTAAGAC 

GPR132 GTGCCATTGTGGATCATCTACA CTCTCCAGTGCATAGACCACG 

MCT1 TGTTAGTCGGAGCCTTCATTTC CACTGGTCGTTGCACTGAATA 

TGF-β1 CTCCCGTGGCTTCTAGTGC GCCTTAGTTTGGACAGGATCTG 

TGF-β2 CTTCGACGTGACAGACGCT GCAGGGGCAGTGTAAACTTATT 

Cpt1a CTCCGCCTGAGCCATGAAG CACCAGTGATGATGCCATTCT 

Cpt2 CAGCACAGCATCGTACCCA TCCCAATGCCGTTCTCAAAAT 

Pkm2 GCCGCCTGGACATTGACTC CCATGAGAGAAATTCAGCCGAG 

G6pc CGACTCGCTATCTCCAAGTGA GTTGAACCAGTCTCCGACCA 

CPT1b GCACACCAGGCAGTAGCTTT CAGGAGTTGATTCCAGACAGGTA 

PPARα AGAGCCCCATCTGTCCTCTC ACTGGTAGTCTGCAAAACCAAA 
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Table S2. The antibodies used in this study. 
 

 Antibody Source Catalog 
number 

Dilution 

Western blot β-actin Cell Signaling Technology 4967 5000 

AKT Cell Signaling Technology 4691S 5000 

Phosphor-AKT Cell Signaling Technology 9271S 1000 

AMPKα1 Cell Signaling Technology 2532S 1000 

Phosphor-AMPKα1 Cell Signaling Technology 2531S 1000 

LKB1 Cell Signaling Technology 3047 1000 

Phosphor-LKB1 Cell Signaling Technology 3482 1000 

UCP1 Abcam ab209483 5000 

TGF-β1 Abcam ab215715 1000 

TGF-β2 Abcam ab36495 1000 

GPR132 Santa sc-137112 200 

GLUT2 Proteintech 66889-1-Ig 5000 

GLUT4 Millipore 07-1404 1000 

Flow 
cytometry 

APC anti-mouse F4/80 BioLegend 123116 200 

FITC anti-mouse CD206 BioLegend 141704 300 

PE anti-mouse CD11c eBioscience 12-0114 200 

APC anti-mouse CD274 BioLegend 124312 200 

PE anti-mouse CD38 BioLegend 102708 200 

 


