Supplementary material

Moderate L-lactate administration suppresses adipose tissue macrophage M1 polarization to alleviate obesity-associated insulin resistance

Authors: Hao Cai, Xin Wang, Zhixin Zhang, Juan Chen, Fangbin Wang, Lu Wang, Jian Liu*

* Corresponding author: Jian Liu

E-mail: liujian509@hfut.edu.cn

The Supplemental material includes:

Fig. S1-10 (included in this file)

Table. S1-2 (included in this file)

Figure S1. The insulin signaling cascades in the liver and skeletal muscle. The 6-week-old male mice were divided into four groups, including LS, LL, HS, and HL groups. A The GLUT2 translocation in the liver and quantification of plasma membrane GLUT2 to total GLUT2; Immunoblots for phosphorylation level of AKT in the liver. B The GLUT4 translocation in the skeletal muscle and quantification of plasma membrane GLUT4 to total GLUT4; Immunoblots for phosphorylation level of AKT in the skeletal muscle. Data are presented as means \pm SD of 8 mice per group, one-way ANOVA with Mann-Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); HS, HFD-saline (i.p.); HL, HFD-lactate (i.p.); PM, Plasma membrane.

Figure S2. Moderate L-lactate administration did not lead to the development of hyperlactatemia or lactic acidosis. The 6-week-old male mice were divided into four groups, including LS, LL, HS, and HL groups. A The serum pH value. B Food intake. C Energy intake. D Liver weight. E Spleen weight. F-G The serum ALT (F) and AST (G). H The H&E staining of liver and spleen; scale bar, 100 μ m. Data are presented as means \pm SD of 8 mice per group, one-way ANOVA with Mann-Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); HS, HFD-saline (i.p.); HL, HFD-lactate (i.p.); ALT, Alanine transaminase; AST, Aspartate aminotransferase.

Figure S3. The effects of moderate L-lactate administration on energy expenditure in LFD and HFD-fed mice. At the age of 18 weeks, the metabolic capability in mice from four groups was measured. A-B VO₂ (A) and VCO₂ (B) per g body weight were detected without L-lactate injection during a 24-hour light-dark cycle. C-D VO₂ (C) and VCO₂ (D) per mouse were detected without L-lactate injection during a 24-h light-dark cycle. E-F VO₂ (E) and VCO₂ (F) per g body weight were detected during a 24-hour light-dark cycle and 400mg/kg L-lactate was injected at 9 a.m. and 6 p.m. Data are presented as means \pm SD of 8 mice per group, one-way ANOVA with Mann-Whitney test. *p < 0.05, **p < 0.01, ***p < 0.001 compared with LS group; #p < 0.05, ##p < 0.01, ####p < 0.001, LL group was compared with LS group. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); HS, HFD-saline (i.p.); HL, HFD-lactate (i.p.); VO₂, Oxygen consumption; VCO₂, Carbon dioxide production.

Figure S4. The fatty acid oxidation and glucose catabolism in the liver and skeletal muscle. The 6-week-old male mice were divided into four groups, including LS, LL, HS, and HL groups. A-B The relative genes of fatty acid oxidation and glucose catabolism in the liver (A) and skeletal muscle (B). Data are presented as means \pm SD of 8 mice per group, one-way ANOVA with Mann-Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); HS, HFD-saline (i.p.); HL, HFD-lactate (i.p.).

Figure S5. The expression of MCT1 in ATMs and BMDMs after inflammatory stimulation. The 6-week-old male mice were divided into four groups, including LS, LL, HS, and HL groups. A The mRNA level of *MCT1* in EATs. B The mRNA level of *MCT1* in ATMs from EATs. BMDMs were treated with vehicle or L-lactate (5 mM or 10 mM), and then LPS was added. C The mRNA level of *MCT1* in BMDMs. Data are presented as means \pm SD of 8 mice per group in vivo, 4 parallel cell samples per group in ATMs and 6 parallel cell samples per group in BMDMs, one-way ANOVA with Mann-Whitney test for mice and two-tailed Student's t-test for cell samples; **p* < 0.05, ***p* < 0.01, ****p* < 0.001. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); HS, HFD-saline (i.p.); HL, HFD-lactate (i.p.); Lac, Lactate; EAT, Epididymal adipose tissue; ATM, Adipose tissue macrophage.

Figure S6. The expression of GPR132 in adipocytes and SVFs. A The mRNA level of *GPR132* in adipocytes and SVFs from EATs in HFD-fed mice. **B** The mRNA level of *GPR132* in primary adipocytes after L-lactate treatment. **C** The mRNA level of *GPR132* in SVFs after L-lactate treatment. Data are presented as means \pm SD of 4 parallel samples per group, one-way ANOVA with Mann-Whitney test for mice and two-tailed Student's t-test for cell samples; *p < 0.05, **p < 0.01, ***p < 0.001.

Figure S7. siRNA-mediated knockdown of GPR132 in BMDMs. BMDMs were transfected with a negative control siRNA or a siRNA targeting GPR132 for 48 h and lysed for immunoblots. Immunoblots for GPR132 in BMDMs and quantification of GPR132 to β -actin. Data are presented as means \pm SD of 4 parallel samples per group, two-tailed Student's t-test; *p < 0.05, **p < 0.01, ***p < 0.001.

Figure S8. GPR132-PKA participated in the inhibition of L-lactate on macrophage M1 polarization. BMDMs were treated with vehicle, L-lactate, Con siRNA, or GPR132 siRNA, and then LPS was added. A-B Flow cytometry analyses of M1 surface marker CD38 (A) and CD274 (B). C The mRNA levels of pro-inflammatory genes. In another independent study, BMDMs were treated with vehicle or L-lactate, and then LPS was added. H89 was used as a PKA inhibitor. D-E Flow cytometry analyses of M1 surface marker CD38 (D) and CD274 (E). F The mRNA levels of pro-inflammatory genes. Data are presented as means \pm SD of 4 parallel samples per group, two-tailed Student's t-test; *p < 0.05, **p < 0.01, ***p < 0.001. Lac, L-lactate.

Figure S9. The expression of TGF-\beta1 and TGF-\beta2 in EATs. The 6-week-old male mice were divided into four groups, including LS, LL, HS, and HL groups. **A-B** The mRNA levels of *TGF-\beta1* (**A**) and *TGF-\beta2 (B). C Immunoblots for TGF-\beta1 and TGF-\beta2 in EATs and quantification of TGF-\beta1 and TGF-\beta2 to \beta-actin. Data are presented as means \pm SD of 8 mice per group, one-way ANOVA with Mann-Whitney test; *p < 0.05, **p < 0.01, ***p < 0.001. LS, LFD-saline (i.p.); LL, LFD-lactate (i.p.); HS, HFD-saline (i.p.); HL, HFD-lactate (i.p.).*

Figure S10. The proposed mechanism for moderate L-lactate administration improves adipose tissue insulin resistance. On the one hand, moderate L-lactate administration elevates adipose tissue mitochondrial thermogenic protein UCP1 expression. On the other hand, L-lactate could bind to the GPR132 on the membrane of macrophages and activates the downstream PKA-LKB1-AMPKa1 signal, which subsequently inhibits the NF-kB signal and the secretion of inflammatory cytokines. The suppression of moderate L-lactate administration on macrophage pro-inflammatory M1 polarization further promotes AKT phosphorylation and GLUT4 translocation in adipocytes. Collectively, moderate L-lactate administration activates adipose tissue macrophage GPR132-PKA-AMPKa1 pathway to alleviate obesity-associated insulin resistance in mice.

Gene	Forward primer	Reverse primer	
β -actin	CATCCGTAAAGACCTCTATGCCAAC	ATGGAGCCACCGATCCACA	
TNF-α	ACGGCATGGATCTCAAAGAC	AGATAGCAAATCGGCTGACG	
IL-1β	CTTCCCCAGGGCATGTTAAG	ACCCTGAGCGACCTGTCTTG	
IFN-γ	ATGAACGCTACACACTGCATC	CCATCCTTTTGCCAGTTCCTC	
MCP1	CCCCAAGAAGGAATGGGTCC	GGTTGTGGAAAAGGTAGTGG	
F4/80	TGACTCACCTTGTGGTCCTAA	CTTCCCAGAATCCAGTCTTTCC	
Nos2	CCAAGCCCTCACCTACTTCC	CTCTGAGGGCTGACACAAGG	
Argl	CTCCAAGCCAAAGTCCTTAGAG	AGGAGCTGTCATTAGGGACATC	
Ucp1	CACTCAGGATTGGCCTCTACG	GGGGTTTGATCCCATGCAGA	
Prdm16	CCACCAGACTTCGAGCTACG	ACACCTCTGTATCCGTCAGCA	
Pgc-1a	CCCTGCCATTGTTAAGACC	TGCTGCTGTTCCTGTTTTC	
Cidea	TGACATTCATGGGATTGCAGAC	GGCCAGTTGTGATGACTAAGAC	
GPR132	GTGCCATTGTGGATCATCTACA	CTCTCCAGTGCATAGACCACG	
MCT1	TGTTAGTCGGAGCCTTCATTTC	CACTGGTCGTTGCACTGAATA	
TGF - β1	CTCCCGTGGCTTCTAGTGC	GCCTTAGTTTGGACAGGATCTG	
TGF - β2	CTTCGACGTGACAGACGCT	GCAGGGGCAGTGTAAACTTATT	
Cptla	CTCCGCCTGAGCCATGAAG	CACCAGTGATGATGCCATTCT	
Cpt2	CAGCACAGCATCGTACCCA	TCCCAATGCCGTTCTCAAAAT	
Pkm2	GCCGCCTGGACATTGACTC	CCATGAGAGAAATTCAGCCGAG	
<i>G6pc</i>	CGACTCGCTATCTCCAAGTGA	GTTGAACCAGTCTCCGACCA	
CPT1b	GCACACCAGGCAGTAGCTTT	CAGGAGTTGATTCCAGACAGGTA	
PPARa	AGAGCCCCATCTGTCCTCTC	ACTGGTAGTCTGCAAAACCAAA	

 Table S1. The primer sequences used for qRT-PCR.

	Antibody	Source	Catalog number	Dilution
Western blot	β-actin	Cell Signaling Technology	4967	5000
	AKT	Cell Signaling Technology	4691S	5000
	Phosphor-AKT	Cell Signaling Technology	9271S	1000
	AMPKa1	Cell Signaling Technology	2532S	1000
	Phosphor-AMPKa1	Cell Signaling Technology	2531S	1000
	LKB1	Cell Signaling Technology	3047	1000
	Phosphor-LKB1	Cell Signaling Technology	3482	1000
	UCP1	Abcam	ab209483	5000
	TGF-β1	Abcam	ab215715	1000
	TGF-β2	Abcam	ab36495	1000
	GPR132	Santa	sc-137112	200
	GLUT2	Proteintech	66889-1-Ig	5000
	GLUT4	Millipore	07-1404	1000
Flow	APC anti-mouse F4/80	BioLegend	123116	200
cytometry	FITC anti-mouse CD206	BioLegend	141704	300
	PE anti-mouse CD11c	eBioscience	12-0114	200
	APC anti-mouse CD274	BioLegend	124312	200
	PE anti-mouse CD38	BioLegend	102708	200

Table S2. The antibodies used in this study.