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Supplementary Text: Developments of mathematical models 

 
1. Descriptive models of stress granule fluctuations 

For drawing parallels to processes that might be explanatory for the observed frequency 
spectra and autocovariances of stress granule (SG) appearance in single cells, we implemented 
three different models for transitions between an ‘On’ and an ‘Off’ phase – a random telegraph 
process, an oscillator and a process with transitions according to two gamma distributions (Fig. 
1E). A random telegraph process was simulated by uniform sampling of switching times between 
an ‘On’ and an ‘Off’ phase simulated for 50 days with 4 time points per hour. Average Fourier 
transforms and autocovariances were calculated from n=500 simulations. An oscillator was 
simulated with two switching events per day for 3 days. Histograms of log10-scaled SG phase and 
break lengths in hours were phenomenologically described by a weighted sum of two gamma 
distributions,  
 
 𝑓ሺ𝑥ሻ ൌ ௦భ

௕భ୻ሺ௔భሻ
𝑥௔భିଵ𝑒ି௫/௕భ ൅ ௦మ

௕మ୻ሺ௔మሻ
𝑥௔మିଵ𝑒ି௫/௕మ.     (1.1) 

 
By fitting histograms of untreated or IFN--treated HCV-infected cells, we obtained the following 
parameter estimates: 
 𝑠ଵ 𝑎ଵ 𝑏ଵ 𝑠ଶ 𝑎ଶ 𝑏ଶ 
HCV, peaks 45.93 2.848 0.5949 44.07 21.70 0.2104 
HCV, breaks 40.03 1.645 1.611 22.65 37.03 0.1069 
HCV+IFN-, peaks 86.61 5.819 0.5053 14.48 54.14 0.01645 
HCV+IFN-, 
breaks 

69.33 0.7055 1.501 57.52 15.76 0.2144 

 
To simulate analogous random processes with transitions reflecting short or long gamma-
distributed peaks or breaks, we sampled from 
 
ℎሺ𝑢,𝑔ଵ,𝑔ଶሻ ൌ 𝑢𝑔ଵ ൅ ሺ1 െ 𝑢ሻ𝑔ଶ       (1.2) 
 

with gamma distributed 𝑔ଵ~ ଵ

௕భ୻ሺ௔భሻ
𝑥௔భିଵ𝑒ି௫/௕భ, 𝑔ଶ~ ଵ

௕మ୻ሺ௔మሻ
𝑥௔మିଵ𝑒ି௫/௕మ and 𝑢 being uniformly 

distributed in the interval ሾ0,1ሿ. Again, average Fourier transforms and autocovariances were 
calculated from n=500 simulations for untreated or IFN--treated HCV-infected cells.  

Experimentally observed frequency spectra and autocovariances could only reproduced by 
sampling gamma-distributed peaks and breaks. Observed frequency spectra of SG fluctuations 
were continuously decreasing to higher frequencies, as in case of the telegraph model. However, 
autocovariances with negative values around lags of one day could be only reproduced by 
sampling from gamma-distributions. An interesting analogy can be drawn to a theoretical study of 
neurite growth, a process that continuously switches between growth and shortening phases, 
however, on the time scale of minutes (72). In this study, a gamma distribution of phase times was 
derived from a model accounting for a series of intermediate steps between ‘On’ and ‘Off’ phases.  
 
2. PKR activation model 



 
 

 

It was described that, in cells, PKR binds to dsRNA, forms dimers and is activated by auto-
phosphorylation (8). We observed that the amount of phosphorylated PKR (p-PKR) in Huh7 cells 
8 hours after transfection with dsRNA increased up to an amount of 1 µg. However, lower levels 
of p-PKR resulted when transfecting with higher amounts of dsRNA up to 6 µg (Fig. 3, A and B). 
Similarly, we observed a bell-shaped dependency of the PKR activity on the dsRNA 
concentrations in experiments of PKR activation in vitro by dsRNA of three different fragment 
lengths (40 bp, 100 bp, 200 bp; Fig. 4A, fig. S5). Of note, in these experiments, peak levels of 
PKR activity increased with dsRNA fragment lengths (Fig. 4). Our observations are consistent 
with previous findings of a bell-shaped dependency of PKR activity under in vitro conditions on 
the concentration of (24).  

The bell-shaped dependency of PKR activity on the dsRNA concentration can be explained 
by taking into account the ratio between binding sites in dsRNA and PKR molecules. Starting at 
low ratios between dsRNA and PKR, all possible binding sites will be engaged with PKR 
oligomers. An increase in dsRNA concentration will first result in an increased amount of 
oligomerized PKR bound at dsRNA. However, in case the ratio of binding sites to PKR molecules 
is strongly increased, the largest number of binding sites can be occupied by binding of PKR 
monomers. Therefore, the number of oligomers, and thus PKR activity, will be reduced in presence 
of large dsRNA concentrations.  

We developed an optimal mechanistic model of PKR activation, consisting of coupled 
ordinary differential equations (ODEs), for our dataset of in vivo and in vitro experiments (Fig. 4, 
B to E, fig. S6, fig. S7). Measurements of p-PKR were taken at a time when PKR phosphorylation 
was at steady state. Therefore, experimental data was fitted with model species at steady state. To 
this end, model simulations were performed for an integration time of 3 days, parameters for 
binding were estimated, whereas, parameters for unbinding were fixed to large values (1𝑚𝑖𝑛ିଵ) 
to enforce convergence of model variables to steady state. Thereby, we determined ratios between 
parameters describing binding of PKR to dsRNA,  𝑘ௗ,௢௡ and 𝑘ௗ,௢௙௙, as well as parameters 
describing formation of oligomerized PKR,  𝑘௣,௢௡ and 𝑘௣,௢௙௙.  
  The step-wise model refinement and underlying mechanistic assumptions are visualized in 
fig. S6A. A total of 28 model variants with 4 to 14 species that contained between 15 and 20 
estimated parameters (fig. S6) were calibrated with our experimental dataset of p-PKR 
measurements. The dataset comprised measurements from cells transfected with 200-bp dsRNA 
fragments using 6 different amounts (0 to 6 µg) and in vitro assay measurements at 12 dsRNA 
concentrations (0 to 1 µM) per fragment length in 40 bp, 100 bp and 200 bp dsRNA fragments 
resulting in a total number of 45 data points. For parameter estimations based on maximum 
likelihood estimation the MATLAB toolbox PottersWheel was used (73). A total of 500 multi-
start local optimizations were conducted for each model variant. The corrected Akaike information 
criterion was used for model selection. Equations and observable definitions for selected model 
variants are reported in Table S1. Parameter estimates and parameter confidence intervals for the 
optimal model variant as part of a model of the cellular stress response are reported in Table S4. 

Our first model ‘Variant 1’ took into account independent reactions for PKR dimerization 
and binding to dsRNA, different PKR affinities and binding capacities depending on the dsRNA 
fragment length (fig. S6A). We observed that extending the model by reactions of higher PKR 
oligomers (n=2…6) improved the model fit indicated by a reduction in the 2 measure as well as 
the corrected Akaike information criterion (Cc, fig. S6, B and CFurther extending ‘Variant 
1’ by reactions for PKR activation by cis and trans mechanisms did not result in an improvement 
(‘Variant 1.1’), whereas, excluding oligomerization reactions of PKR without dsRNA (consistent 



 
 

 

with large Kd values for free PKR) improved the model fit (‘Variant 2’). Having observed that the 
decline of PKR activity at high dsRNA concentrations could be better described by including 
reactions to higher oligomers of PKR, we formulated a model accounting for cooperative binding 
of PKR to PKR:dsRNA complexes (‘Variant 3’) which resulted in a strong improvement of the 
model fit. Cooperative recruitment implies that binding of PKR to dsRNA facilitates binding of 
additional PKR molecules, resembled by a sigmoidal dependency of PKR binding on the PKR 
concentration, but is not indicative of the exact stoichiometry of PKR complexes.  

Further in vitro studies investigated possible mechanisms of PKR activation by cis 
(intramolecular) or trans (intermolecular) reactions (25,26). Therefore, we additionally tested 
model variants (‘Variant 4’ to ‘Variant 5.1’) with or without cooperative PKR binding and optional 
cis or cis and trans reactions for PKR activation that, however, did not result in an improvement 
relative to the optimal model ‘Variant 3’. Of note, the observation that it was not necessary to 
include cis/trans reactions for PKR activation in our model could be due to the fact that our dataset 
did not include time-resolved measurements of PKR activation but rather represent PKR activities 
at steady state.  

Taken together, our dataset was optimally explained by a model that describes recruitment 
of PKR to dsRNA and PKR oligomer formation at dsRNA with cooperativity, and takes into 
account different affinities of PKR for dsRNA of varying fragment lengths (40 bp, 100 bp, 200 
bp), as well as for PKR oligomerization at dsRNA fragments of varying fragment lengths. Model 
equations and definitions of observables for the optimal variant are listed in Table S1. A recent 
study based on a mutational analysis of PKR and molecular dynamics simulations proposed that 
PKR protomers interact via front-to-front as well as back-to-back interfaces (26). Notably, these 
different modes of interactions between PKR protomers might provide an explanation for our 
observation that the bell-shaped dependency of PKR activity on the dsRNA concentration is 
optimally described by cooperative PKR recruitment. 
 
3. GADD34 degradation model 

To determine, whether GADD34 degradation is reflected by Michaelis-Menten kinetics or 
by an exponential decay, we fitted two alternative ODE models to measurements of GADD34 
concentrations in Huh7 cells stably over-expressing GADD34 after inhibiting new synthesis by 
cycloheximide, 
 
ௗሾீ஺஽஽ଷସሿ

ௗ௧
ൌ െ𝑘ௗ௘௚,ீ஺஽஽ଷସሾ𝐺𝐴𝐷𝐷34ሿ      (3.1) 

and  
ௗሾீ஺஽஽ଷସሿ

ௗ௧
ൌ െ𝑘ௗ௘௚,ீ஺஽஽ଷସ

ሾீ஺஽஽ଷସሿ

௄೏೐೒,ಸಲವವయరାሾீ஺஽஽ଷସሿ
,     (3.2) 

 
with degradation rate constant 𝑘ௗ௘௚,ீ஺஽஽ଷସ and Michaelis-Menten constant 𝐾ௗ௘௚,ீ஺஽஽ଷସ. To fit the 
experimental dataset, observables were defined by 𝑦ீ஺஽஽ଷସ ൌ 𝑠ீ஺஽஽ଷସሾ𝐺𝐴𝐷𝐷34ሿ ൅ 𝑦௕௚,ீ஺஽஽ଷସ 
with the scaling factor 𝑠ீ஺஽஽ଷସ and the background value 𝑦௕௚,ீ஺஽஽ଷସ to account for the background 
signal in Western blot measurements. To limit the weight of single data points with negligible 
SEM values, we estimated a lower limit of residual weights. To this end, we fitted a linear error 
model 𝜀௜ ൌ 𝑎𝑥௜ ൅ 𝑏maxሺ𝑥௜ሻ, describing the experimental uncertainty 𝜀௜ depending on 
measurements 𝑥௜ for data points with index 𝑖 and coefficients 𝑎 and 𝑏, to standard errors of the 
mean depending on average GADD34 concentrations. Thereafter, the linear coefficient 𝑎 ൌ
2.62𝑛𝑀 was used as lower bound to weight residuals for model fitting. For each of the two models, 



 
 

 
 

a total of 100 multi-start local optimizations were conducted followed by profile likelihood 
estimation to determine parameter confidence intervals (Sup Text Fig. 1). Model comparison 
showed that Eq. (1) was superior to Eq. (2), indicated by an increase in the corrected Akaike 
information criterion of 𝛥𝐴𝐼𝐶௖௢௥௥ ൌ 18.4. It can be concluded that the Michaelis-Menten 
constant 𝐾ௗ௘௚,ீ஺஽஽ଷସ for GADD34 degradation exceeds experimental GADD34 concentrations. 
We estimated a degradation rate constant of 𝑘ௗ௘௚,ீ஺஽஽ଷସ ൌ 0.01854 (1σ-C.I., [0.01516, 0.02289]) 
reflecting a GADD34 half-life of about 37 minutes.  

 
Sup Text Fig. 1. GADD34 degradation. A comparison between linear or Michaelis-Menten (MM) kinetics indicates that 
GADD34 degradation can be sufficiently well described by an exponential decay Shown are mean of n=4 replicates ± SEM. Lines, 
best-fits of GADD34 degradation models. 

 
4. Deterministic model of the integrated stress response 

To quantitatively study the integrated stress response, we constructed an ODE model 
accounting for cellular stress mediated by PKR (dsRNA stress), HRI (oxidative stress) and PERK 
(ER stress). The core model of dsRNA, oxidative and ER stress (Fig. 2A) is described by equations 
listed in Table S2. It contains 18 species and a total of 26 parameters. In the following, we will 
describe the model implementation and underlying assumptions. 

In the model, cellular stress is either evoked by presence of dsRNA resulting in PKR 
activation, PERK activation by thapsigargin or HRI activation by arsenite. Stress kinase activation 
results in phosphorylation of eIF2. We assumed that stress kinase activation is fast compared to 
eIF2 phosphorylation and GADD34 expression. Therefore, stress kinase activity, depending on 
dsRNA, thapsigargin or arsenite, is described at steady state in Eqs. 5–10 as further detailed below 
(Table S2). In the model, phosphorylated eIF2 is denoted by 𝑒𝐼𝐹2∗. Moreover, SG formation 
depending on the concentration of phosphorylated eIF2 and translational inhibition by cellular 
stress are described as fast and cooperative processes, reflected by Hill-type functions (𝑓ௌீ,௉௄ோ, 
𝑓ௌீ,஺ and 𝑓ௌீ,் in Eqs. 6, 8 and 10; Table S2). Depending on these functions, the ppp1r15a 
promoter 𝑃𝑟 becomes activate. Promoter activation is modeled as a process with a temporal delay 
to account for intermediate steps not accessed by experiments (reactions involving ATF4 and 
CHOP, formation of DNA-protein complexes) based on a linear chain of reactions (“linear chain 
trick”; Eqs. 11–16 in Table S2). The active promoter 𝑃𝑟∗ causes expression of GADD34 mRNA. 
GADD34 is only expressed dependent on GADD34 mRNA in presence of cellular stress due to 
regulation by an upstream open reading frame (34). This was accounted for by the dependency of 
GADD34 translation on the Hill-type function for SG formation and translational repression 𝑓ௌீ  
(Eq. 18 in Table S2). GADD34 expression results in dephosphorylation of 𝑒𝐼𝐹2∗. In a first model 
implementation, this GADD34-dependent dephosphorylation was described by Michaelis-Menten 
kinetics. Parameter estimations, however, resulted in large estimates of the 𝐾ெ value for GADD34 
that exceeded the average cellular concentration of total 𝑒𝐼𝐹2 (ሾ𝑒𝐼𝐹2ሿതതതതതതതതതത ൌ 2244nM). Therefore, 



 
 

 

GADD34-dependent dephosphorylation was described with linear kinetics, which did not result in 
reduced fit quality. 

In all Western blot measurements, we observed that, in absence of stressors, a small fraction 
of eIF2 was phosphorylated, which can be attributed to a background phosphorylation rate. In 
the model, background phosphorylation is described by the kinetic parameter 𝑘௣௛,௕௔௦௔௟ (Fig. 3, fig. 
S4, fig. S11). Basal dephosphorylation by CReP (constitutive repressor of eIF2 phosphorylation) 
(74) was accounted for by the parameter 𝑘஼ோ௘௉ (Eqs. 5–10, Table S2). 

The integrated stress response was experimentally characterized in cells infected with 
HCV, transfected with dsRNA, treated with arsenite or thapsigargin. To combine complementary 
information from different experiments and improve parameter identifiability, we performed 
multi-experiment fitting to a combination of experimental datasets. To this end, the core model 
had to be adapted to boundary conditions of each experimental dataset. In the following, we 
describe the eight model parts with partially shared kinetic parameters that were simultaneously 
fitted to experimental datasets. An overview of observables, assignments, algebraic equations, 
scaling factors, background offsets of all model parts is given in Table S3. 

In most experimental datasets, measurements were only taken at single time points for 
different concentrations of the stress stimulus (arsenite, dsRNA, thapsigargin) or overexpressed 
GADD34. These measurements were either recorded at an early time point soon after applying the 
stressor or at a late time point after adaptation to a stressor. Time course measurements of eIF2 
phosphorylation, SG percentage and GADD34 expression were recorded after thapsigargin 
stimulation (fig. S11A). These time-resolved measurements indicated that GADD34 expression 
was not induced after one-hour thapsigargin exposition, whereas, GADD34 expression was 
maximal after 6 hours of thapsigargin exposition. Maximal levels of p-eIF2α were reached at one 
hour after thapsigargin stimulation. In general, measurements at single time points are insufficient 
for fitting a time-resolved function. For this reason, we applied steady state assumptions for model 
parts fitted to datasets containing measurements at single time points for varying stress stimuli or 
initial protein concentrations.  

When fitting single measurements of p-eIF2 and SG percentage at 1 hour after applying 
a stressor, we assumed that these model species were at steady state. Because at that time GADD34 
expression in response to a stressor is not induced, only equations for phosphorylation and 
dephosphorylation of eIF2 as well as SG formation were taken into account (Eqs. 5–10, Table 
S2). In combination with equations accounting for the effect of a stressor, adaptation of the system 
for basal eIF2 phosphorylation and dephosphorylation by CReP before application of a stressor 
was described by including an additional set of model Eqs. 7–18 (Table S2) with stressor 
concentrations set to zero for describing basal levels in model parts 4.3, 4.4 and 4.6 as described 
below and illustrated in Sup Text Fig. 3–10. Thereby, we simulated the effect of a stressor starting 
at basal enzyme activities for (de)phosphorylation of eIF2 but could simultaneously apply the 
steady state assumption for eIF2 phosphorylation and SG formation in response to the applied 
stressor. For model fitting of steady state concentrations, these model parts were simulated for an 
integration time of 3 days for different stress stimuli or initial protein concentrations, which was 
sufficient to enforce steady states of model variables in case of multi-experiment fitting.  

When fitting single measurements at 6 hours (model part 4.4), 8 hours (model part 4.2) or 
later (model parts 4.7, 4.8), the whole set of equations describing eIF2 (de)phosphorylation and 
GADD34 expression was simulated for an integration time of 3 days to enforce steady states. 
Additionally, the dynamics of eIF2 (de)phosphorylation and GADD34 expression could be 
inferred by combined fitting to steady state and time-resolved experimental data (model part 4.5).  



 
 

 

In all model parts, the initial concentration of eIF2 was set to the measured average 
concentration ሾ𝑒𝐼𝐹2ሿതതതതതതതതതത ൌ 2244nM. The initial concentration of PKR was fixed to the 
experimentally determined average concentration of ሾ𝑃𝐾𝑅ሿതതതതതതതത ൌ 25.24nM for untreated cells or 
ሾ𝑃𝐾𝑅ሿതതതതതതതത

ூிே ൌ 75.48nM in cells treated with IFN-. The initial concentration of GADD34 mRNA 
was set to ሾ𝑚𝐺𝐴𝐷𝐷34ሿതതതതതതതതതതതതതതതത ൌ 0.00571nM. This concentration was derived from an average GADD 
mRNA molecule number in untreated cells divided by the average cell volume. The initial value 
of the inactive promoter species 𝑃𝑟 was set to 1. Initial values of all other species were set to zero 
at the start of the integration time. Because GADD34 mRNA degradation was not measured, we 
fixed the kinetic parameter for GADD34 mRNA degradation to 𝑘ௗ௘௚,௠ ൌ 0.0035𝑚𝑖𝑛ିଵ as 
previously reported (45).  

By fitting the combined model to a total of 241 data points, a total of 78 parameters 
(including scaling factors and auxiliary parameters) were estimated. A total of 500 multi-start local 
optimizations were conducted followed by profile likelihood estimation to determine parameter 
confidence intervals. Parameter estimates, parameter bounds and parameter confidence intervals 
are listed in Table S4. In the following, the implementation of model parts describing different 
experimental datasets will be explained. 
 

4.1 Model of PKR activation by in vitro assay  

The model of PKR activation under in vitro conditions was fitted to measurements of phospho-
PKR obtained from an experiment with purified PKR protein and dsRNA. It is equivalent to the 
optimal PKR activation model and consists of Eqs. 1–4 in Table S2. The model describes binding 
of PKR to dsRNA fragments of 40 bp, 100 bp and 200 bp length (with parameter index 𝑖 ∈ ሼ1,2,3ሽ 
of Eqs. 1–4 in Table S2) and cooperative formation of oligomerized PKR at dsRNA (Sup Text 
Fig. 2).  

 
Sup Text Fig. 2. Model for describing PKR in vitro assay. Measurements of p-PKR were associated with the model species 
𝑑𝑠𝑅:𝑃𝐾𝑅௔௖௧௜௩௘ representing active PKR (red area). 

 
We assumed different binding constants for binding of PKR monomers as well as oligomer 

formation. Further, we assumed different factors of binding sites in 100 bp and 200 bp fragments 
relative to the number of binding sites in 40-bp fragments in start value assignments of the model 
species 𝑑𝑠𝑅 of binding sites in dsRNA (Eqs. 1–3, Table S3). Observables contained a scaling 
factor independent of fragment length and background intensities (Eqs. 4–6, Table S3). The upper 
limit of background intensities was set to the minimal measured value of each dataset 
(Supplementary Table S4). Assuming steady states of PKR phosphorylation, the model was 
simulated for an integration time of 3 days to enforce convergence to steady states of model 
variables for parameter estimation. Parameter estimates indicated that the binding capacity for 
PKR molecules was about 11-fold higher in 100-bp fragments and about 23-fold higher in 200-bp 
fragments relative to the binding capacity of 40-bp fragments. Model fits of this part are shown in 
fig S10C. 



 
 

 

 
4.2 Model of PKR activation by dsRNA transfection  

To describe measurements of p-PKR, p-eIF2 (Western blot measurements of p-eIF2, 
and % p-eIF2 measurements by Phos-tag gels) and SG percentage at 8 hours after transfection 
with 200-bp dsRNA, the PKR model was extended by reactions describing PKR-dependent and 
basal eIF2 phosphorylation, ppp1r15a promoter activation (with time delay), GADD34 mRNA 
and protein turnover as well as GADD34-dependent and basal (CReP-dependent) 
dephosphorylation of p-eIF2 (Sup Text Fig. 3).  

The model part consists of Eqs. 1–6 and 11–18 in Table S2 (with parameter index 𝑖 ൌ 4 in 
Eqs. 1–4). Similar as in model part 4.1, the transfected dsRNA amount was related by a scaling 
factor to the initial number of PKR binding sites 𝑑𝑠𝑅. The start value assignment and for 𝑑𝑠𝑅 and 
implementations of observables for this model part are described by Eqs. 7–11 in Table S3. 

Model simulations were performed for an integration time of 3 days to fit measurements 
by the model at steady state. As described in section ‘2. PKR activation model’, we estimated 
ratios between parameters describing binding of PKR to dsRNA, 𝑘ௗ,௢௡ and 𝑘ௗ,௢௙௙, as well as 
parameters describing PKR oligomerization at dsRNA, 𝑘௣,௢௡ and 𝑘௣,௢௙௙. Thereby, however, we 
only could obtain an estimate of equilibrium dissociation constants for the binding of free PKR, 

𝐾ௗ,௉௄ோ ൌ
௞೛,೚೑೑

௞೛,೚೙
ൌ 10.9𝑛𝑀, but not for PKR oligomerization, due to the non-linear dependency of 

PKR oligomerization on the PKR concentration (Eqs. 1–4, Table S2). 
 

 

Sup Text Fig. 3. Model for describing dsRNA-induced cellular stress. Measurements of p-PKR, % SG, p-eIF2 and % p-eIF2 
were associated with model species 𝑑𝑠𝑅:𝑃𝐾𝑅௔௖௧௜௩௘, 𝑒𝐼𝐹2, 𝑒𝐼𝐹2∗, 𝑆𝐺 as indicated by red areas. 

 

Stress granule formation was described by the Hill-function 

𝑓ௌீ,௉௄ோ ൌ
ሾ௘ூிଶఈ∗ሿ೗

௄ೄಸ,ು಼ೃ
೗ ାሾ௘ூிଶఈ∗ሿ೗

             (4.1) 

     
with Hill-coefficient 𝑙 and the parameter Kௌீ,௉௄ோ equal to the 𝑒𝐼𝐹2𝛼∗ concentration at 50% SG 
presence, assuming that SG formation is a fast and cooperative process. Model fits of this part are 
shown in fig S10B. 



 
 

 
 

4.3 Arsenite titration model  

 
Sup Text Fig. 4. Model for describing oxidative stress induced by arsenite. Measurements of p-eIF2, % p-eIF2 and % SG 
after one-hour arsenite exposition were associated with model species 𝑒𝐼𝐹2∗ and 𝑆𝐺 simulated at steady states for eIF2 
phosphorylation. 

 
To simulate eIF2 phosphorylation and SG formation 1 hour after exposition to arsenite for 
different arsenite concentrations (0 to 500µM), basal steady states of model species (𝑒𝐼𝐹2௕௔௦௔௟, 
𝑒𝐼𝐹2∗௕௔௦௔௟, 𝑃𝑟௕௔௦௔௟, 𝑃𝑟∗௕௔௦௔௟, 𝑚𝐺𝐴𝐷𝐷34௕௔௦௔௟, 𝐺𝐴𝐷𝐷34௕௔௦௔௟) were simulated together with 
concentrations of eIF2 and phosphorylated eIF2 (𝑒𝐼𝐹2∗) resulting from active HRI (𝐻𝑅𝐼∗, 
Sup Text Fig. 4). We assumed that activation of HRI by arsenite was at steady state and that the 
concentration of active HRI could be described by  

ሾ𝐻𝑅𝐼∗ሿ ൌ
ሾ𝐻𝑅𝐼ሿ௧௢௧ሾ𝐴ሿ
𝐾஺ ൅ ሾ𝐴ሿ

                                                  (4.2) 

depending on the arsenite concentration ሾ𝐴ሿ, the total HRI concentration ሾ𝐻𝑅𝐼ሿ௧௢௧ and the apparent 
dissociation constant 𝐾஺. In model reaction equations for 𝑒𝐼𝐹2 and 𝑒𝐼𝐹2∗ we summarized the 
kinetic parameter describing eIF2 phosphorylation by 𝐻𝑅𝐼∗ and ሾ𝐻𝑅𝐼ሿ௧௢௧ in the estimated 
parameter 𝑘௣௛,஺ with unit 𝑛𝑀/𝑚𝑖𝑛 describing the enzyme activity of HRI (Eqs. 7 and 8, Table 
S2). Implementations of model observables for this part are described by Eqs. 13–15 in Table S3. 
Stress granule formation was described by a Hill-function 𝑓ௌீ,஺, similar as in model part 4.2, with 
Hill-coefficient 𝑙 and parameter 𝐾ௌீ,஺ (Eq. 16 in Table S3). Model fits of this part are shown in 
Fig. 5B and fig. S10D. 
 

4.4 Thapsigargin titration model  

The thapsigargin titration model was calibrated with measurements of eIF2 phosphorylation and 
SG formation at 1 hour and GADD34 expression at 6 hours after exposition to thapsigargin for 
different thapsigargin concentrations (0 to 2 µM). GADD34 protein was measured by normal and 
calibrated Western blotting (fig. S3C and fig. S10C). Average molecule numbers of GADD34 per 
cell obtained from calibrated Western blots were used to calculate average GADD34 
concentrations according to the average cell volume of 𝑉௖ ൌ 6.71𝑝𝑙. 



 
 

 

 
Sup Text Fig. 5. Model for describing ER stress induced by thapsigargin. Measurements of p-eIF2, % p-eIF2 and % SG at 
1h as well as GADD34 concentrations at 6h after exposition to thapsigargin (GADD34 measurements in arbitrary units from normal 
Western blot experiments and quantitative GADD34 measurements from calibrated Western blots) were associated with model 
species 𝑒𝐼𝐹2∗ and 𝑆𝐺 (at steady states for eIF2 phosphorylation) and 𝐺𝐴𝐷𝐷34௟௔௧௘ (at steady states for eIF2 phosphorylation 
and GADD34 expression). 

 
To fit measurements of p-eIF2 and SG percentages after 1-hour thapsigargin treatment, basal 
steady states of model species were simulated together with concentrations of eIF2 and 
phosphorylated eIF2 (𝑒𝐼𝐹2∗) resulting from active PERK (𝑃𝐸𝑅𝐾∗; Sup Text Fig. 5). Assuming 
that PERK activation was at steady state, the concentration of active PERK could be described by  

ሾ𝑃𝐸𝑅𝐾∗ሿ ൌ
ሾ𝑃𝐸𝑅𝐾ሿ௧௢௧ሾ𝑇ሿ
𝐾் ൅ ሾ𝑇ሿ

                                                (4.3) 

depending on the thapsigargin concentration ሾ𝑇ሿ, the total PERK concentration ሾ𝑃𝐸𝑅𝐾ሿ௧௢௧ and the 
apparent dissociation constant 𝐾். As in case of HRI, the kinetic parameter describing eIF2 
phosphorylation by 𝑃𝐸𝑅𝐾∗ and ሾ𝑃𝐸𝑅𝐾ሿ௧௢௧ were summarized in the estimated parameter 𝑘௣௛,் 
(Eqs. 9 and 10, Table S2). Observable definitions for this model part are described by Eqs. 17–20 
in Table S3. SG formation was described by a Hill-function 𝑓ௌீ,், with Hill-coefficient 𝑙 and the 
parameter 𝐾ௌீ,் (Eq. 21, Table S3). Model fits of this part are shown in Fig. 5B and fig. S10E. 
 

4.5 Thapsigargin kinetics model  

The thapsigargin kinetics model was used to describe time-resolved eIF2 phosphorylation and 
GADD34 expression after thapsigargin exposition at a concentration of 2 µM (Sup Text Fig. 6). It 
consists of Eqs. 9–18 in Table S2. Observable definitions for this model part are described by Eqs. 
22–24 in Table S3. 
It was used to estimate parameters for the dynamics of promoter activation, GADD34 mRNA and 
protein synthesis in combination with the other model parts. To fit measurements between 0 and 
8 hours after adding thapsigargin, the model was first simulated for an integration time for 3 days 
to enforce convergence to basal steady states of model variables before simulating the response to 
thapsigargin-induced stress at time points between 0 and 8 hours (fig. S10F). 



 
 

 

 
Sup Text Fig. 6. Model for describing time-resolved ER stress response. Measurements of p-eIF2, % p-eIF2 and GADD34 
were associated with model species 𝑒𝐼𝐹2∗ and 𝐺𝐴𝐷𝐷34. 

 
4.6 GADD34 titration model  

To study the dose-response of eIF2 dephosphorylation depending on the concentration of 
GADD34, we overexpressed GADD34. Huh7 cells were infected with different concentrations 
using different doses of lentivirus encoding for GADD34 or stably transfected. In addition to 
normal Western blot measurements, calibrated Western blot were conducted to determine average 
molecule numbers per cell, and average concentrations were estimated based on the average cell 
volume (fig. S3B). Concentrations of exogenously expressed GADD34 varied between 17.1nM 
(lowest retrovirus dose) and 123.1nM (stable overexpression). In GADD34-overexpressing and 
control cells, p-eIF2 and SG percentage were measured at 1 hour after thapsigargin exposition, 
at a time when endogenously expressed GADD34 was not induced. As expected, we observed a 
sigmoidal decrease of p-eIF2 at higher GADD34 concentrations (fig. S10G). 

 
Sup Text Fig. 7. Model for describing ER stress in case of GADD34 overexpression. Measurements of p-eIF2, % p-eIF2 
and % SG at 1h after exposition to thapsigargin as well as GADD34 measurements from normal and quantitative Western blotting 
(quant. GADD34) were associated with model species 𝑒𝐼𝐹2∗ and 𝑆𝐺 (at steady states for eIF2 phosphorylation),  𝐺𝐴𝐷𝐷34௕௔௦௔௟ 
(control cells) or 𝐺𝐴𝐷𝐷34௢௘ (overexpressing cells). 

 
To fit measurements after one hour thapsigargin treatment originating from basal steady states, as 
in model parts 4.3 and 4.4, a set of model species describing concentrations at basal steady states 



 
 

 

described by Eqs. 9–18 (Table S2) with a thapsigargin concentration set to zero was included in 
the model (Sup Text Fig. 7). Equations describing basal levels were combined with Eqs. 9 and 10 
from table S2 to simulate phosphorylation of eIF2after thapsigargin exposition. The equations 
for describing basal and thapsigargin-dependent concentrations of (un)phosphorylated eIF2α were 
modified by including the concentration of overexpressed expressed GADD34 (ሾ𝐺𝐴𝐷𝐷34௢௘ሿ): 

𝑑ሾ𝑒𝐼𝐹2𝛼௕௔௦௔௟ሿ
𝑑𝑡

ൌ െ𝑘௣௛,௕௔௦௔௟ሾ𝑒𝐼𝐹2𝛼௕௔௦௔௟ሿ െ 𝑘௣௛,்
ሾ𝑒𝐼𝐹2𝛼௕௔௦௔௟ሿ

𝐾௣௛,் ൅ ሾ𝑒𝐼𝐹2𝛼௕௔௦௔௟ሿ
 

                       ൅𝑘஼ோ௘௉ሾ𝑒𝐼𝐹2𝛼∗௕௔௦௔௟ሿ ൅ 𝑘ௗ௘௣௛ሾ𝑒𝐼𝐹2𝛼∗௕௔௦௔௟ሿሺሾ𝐺𝐴𝐷𝐷34௕௔௦௔௟ሿ ൅
ሾ𝐺𝐴𝐷𝐷34௢௘ሿሻ                                    

(4.4) 

𝑑ሾ𝑒𝐼𝐹2𝛼∗௕௔௦௔௟ሿ
𝑑𝑡

ൌ 𝑘௣௛,௕௔௦௔௟ሾ𝑒𝐼𝐹2𝛼௕௔௦௔௟ሿ ൅ 𝑘௣௛,்
ሾ𝑒𝐼𝐹2𝛼௕௔௦௔௟ሿ

𝐾௣௛,் ൅ ሾ𝑒𝐼𝐹2𝛼௕௔௦௔௟ሿ
 

                      െ𝑘஼ோ௘௉ሾ𝑒𝐼𝐹2𝛼∗௕௔௦௔௟ሿ െ 𝑘ௗ௘௣௛ሾ𝑒𝐼𝐹2𝛼∗௕௔௦௔௟ሿሺሾ𝐺𝐴𝐷𝐷34௕௔௦௔௟ሿ ൅
ሾ𝐺𝐴𝐷𝐷34௢௘ሿሻ                                    

(4.5) 

𝑑ሾ𝑒𝐼𝐹2𝛼ሿ
𝑑𝑡

ൌ െ𝑘௣௛,௕௔௦௔௟ሾ𝑒𝐼𝐹2𝛼ሿ െ 𝑘௣௛,்
ሾ𝑇ሿ

𝐾் ൅ ሾ𝑇ሿ
ሾ𝑒𝐼𝐹2𝛼ሿ

𝐾௣௛,் ൅ ሾ𝑒𝐼𝐹2𝛼ሿ
 

        ൅𝑘஼ோ௘௉ሾ𝑒𝐼𝐹2𝛼 ∗ሿ ൅ 𝑘ௗ௘௣௛ሾ𝑒𝐼𝐹2𝛼 ∗ሿሺሾ𝐺𝐴𝐷𝐷34௕௔௦௔௟ሿ ൅ ሾ𝐺𝐴𝐷𝐷34௢௘ሿሻ     
(4.6) 

𝑑ሾ𝑒𝐼𝐹2𝛼∗ሿ
𝑑𝑡

ൌ 𝑘௣௛,௕௔௦௔௟ሾ𝑒𝐼𝐹2𝛼ሿ ൅ 𝑘௣௛,்
ሾ𝑇ሿ

𝐾் ൅ ሾ𝑇ሿ
ሾ𝑒𝐼𝐹2𝛼ሿ

𝐾௣௛,் ൅ ሾ𝑒𝐼𝐹2𝛼ሿ
 

       െ𝑘஼ோ௘௉ሾ𝑒𝐼𝐹2𝛼 ∗ሿ െ 𝑘ௗ௘௣௛ሾ𝑒𝐼𝐹2𝛼 ∗ሿሺሾ𝐺𝐴𝐷𝐷34௕௔௦௔௟ሿ ൅ ሾ𝐺𝐴𝐷𝐷34௢௘ሿሻ.     
(4.7) 

In case of GADD34 overexpression, the variable 𝐺𝐴𝐷𝐷34௢௘ was fitted to GADD34 measurements 
from normal and quantitative Western blot experiments (parameters 𝐺𝐴𝐷𝐷34௘௫,ଵ to 𝐺𝐴𝐷𝐷34௘௫,଻ 
in Table S4). In control cells, the variable 𝐺𝐴𝐷𝐷34௕௔௦௔௟ was fitted to GADD34 measurements. 
Assignments and model observables for this part are described by Eqs. 25–31 in Table S3. Model 
fits of this part are shown in fig. S10H. 
 

4.7 FISH model  

In single cells, numbers of GADD34 mRNA molecules were detected using FISH probes in 
combination with labeled poly(dT) to indicate presence of cellular stress. To relate SG percentage 
with GADD34 mRNA expression, single-cell data were binned. To define edges of bins, cells were 
ranked according to FISH measurements of HCV (+)ssRNA genomes. Thereby, cells with similar 
amount of viral RNA were grouped. Edges were determined by collecting equal cell numbers per 
bin. Average SG percentages were calculated, and standard errors of SG percentages were 
estimated by bootstrapping with 104 samples per bin. For FISH experiments in HCV-infected 
untreated or IFN--treated cells, average concentrations of GADD34 mRNA in each bin were 
calculated relative to the average cell volume. Thereby, 19 data points of GADD34 concentrations 
and SG percentages were obtained (no cells were assigned to one bin interval for IFN-α-treated 
cells). 



 
 

 
 

 
Sup Text Fig. 8. Model for describing FISH measurements in HCV-infected cells. Measurements of GADD34 mRNA and % 
SG were associated with model species 𝑚𝐺𝐴𝐷𝐷34 and 𝑆𝐺. 

 
To describe the relation between SG percentage and GADD34 mRNA, this model part contained 
Eqs. 5–18 from Table S2. The species 𝑃𝐾𝑅∗ was described as an auxiliary parameter in this model 
part that was estimated for each data point (parameters 𝑃𝐾𝑅_𝑎𝑐𝑡ଵ to 𝑃𝐾𝑅_𝑎𝑐𝑡ଵଽ in Table S4). 
Assignments and observable definitions for this model part are defined by Eqs. 32–34 in Table S3. 
To fit the model at steady state to experimental data, the integration time was set to 3 days. Model 
fits of this part are shown in fig. S10A. 
 

4.8 Model of HCV-infected cells dependent on the infection marker  

For live-cell imaging experiments, we used a reporter construct that indicates virus replication (fig. 
S1, A and B). Assuming that the level of virus replication was proportional to the amount of 
dsRNA, which is formed as an intermediate during virus replication, we fitted the deterministic 
model of the cellular stress response to SG percentages depending on average infection marker 
levels. To this end, we calculated average infection marker intensities and percentages of SG 
presence in single cells recorded in live-cell microscopy experiments. Experimental measurements 
were collected in 10 bins defined by ranking cells to infection marker intensities. Edges of infection 
marker intensities were defined by collecting equal cell numbers per bin.  

 
Sup Text Fig. 9. Model for describing infection marker intensities in HCV-infected cells. Infection marker intensities were 
related to initial values of PKR binding sites 𝑑𝑠𝑅 by a scaling factor. The model equation for SG presence was fitted to 
measurements of SG percentage. 



 
 

 
 

The model describing infection marker intensities and SG percentage values contained Eqs. 
1–6 and 11–18 from Table S2. Infection marker levels were assumed proportional to initial 
concentrations of dsRNA. This assumption was translated to a start value assignment for the model 
species 𝑑𝑠𝑅 (Eq. 36 in Table S3). We separately fitted datasets for HCV-infected cells that were 
untreated or treated with IFN-.  To this end, initial concentrations of PKR were set to 
experimentally measured average values in untreated (ሾ𝑃𝐾𝑅ሿതതതതതതതത ൌ 25.24nM) or IFN--treated cells 
(ሾ𝑃𝐾𝑅ሿതതതതതതതത

ூிே ൌ 75.48nM). Assignments and observable definitions for this model part are defined 
by Eqs. 36–38 in Table S3. To fit the model at steady state to experimental data, the integration 
time was set to 3 days. Model fits of this part are shown in fig. S10I. 

 
5. Stochastic model of the integrated stress response 

The ODE model describing dsRNA-induced stress in HCV-infected cells (Table S4, Eqs. 
5, 6, 11–18) was translated to a stochastic model version describing reactions downstream of active 
PKR. To this end, kinetic parameters were transformed to reaction propensities. According to the 
average cell volume of 𝑉௖ ൌ 6.71pl that was determined from confocal microscopic stack images, 
a concentration of 1nM was equivalent to a number of Nc molecules per cell. Accordingly, kinetic 
parameters with unit 𝑛𝑀 or 𝑛𝑀ିଵ were multiplied with 𝑁௖ or 1/𝑁௖ for scaling to reaction 
propensities. The stochastic model contained a total of 10 species and 13 reaction propensities. 
Stochastic model simulations were performed using the matLeap toolbox that makes use of the 
tau-leaping algorithm (75).  

To simulate heterogeneous cell populations, we determined the parameters  and  of 
initial log-normal distributions of PKR and eIF2 concentrations as well as viral infection marker, 
ℒ𝒩ሺ𝜇௉௄ோ,𝜎௉௄ோሻ,  ℒ𝒩ሺ𝜇௘ூிଶఈ,𝜎௘ூிଶఈሻ and ℒ𝒩ሺ𝜇ூெ,𝜎ூெሻ. Average cellular concentrations of 
PKR and eIF2 were determined from calibrated Western blots using GST-tagged proteins (Fig. 
2C). Parameters  and  of log-normal distributions were derived by combining these average 
concentrations with distributions of single-cell Western blot measurements. From log-scaled 
single-cell Western blot measurements, we determined 𝜎௉௄ோ,ு஼௏ for untreated HCV-infected cells, 
𝜎௉௄ோ,ுூ for HCV-infected cells treated with IFN-, and 𝜎௉௄ோ,ு௉ for HCV-infected PKR-
overexpressing cells. Untreated, IFN--treated and PKR-overexpressing cells did not differ in 
expression of eIF2. Therefore, we assumed the same distribution parameters for these groups and 
determined only one parameter from single-cell Western blot measurements. Based on parameters 
 and average concentrations 𝑚, parameters  of log-normal distributions were calculated from 
𝜇 ൌ logሺ𝑚ሻ െ 𝜎ଶ/2. Parameters of the log-normal distribution for initial infection marker 
intensities were calculated form live-cell imaging data. Parameters used for sampling initial values 
are documented in the following table. 

 
Log-normal distributions of initial 
values 

 

PKR, HCV (nM) 3.1310 0.4416 
PKR, HCV+IFN-(nM) 4.2585 0.3615 
PKR, HCV+PKRoe(nM) 5.0575 0.7412 
eIF2(nM) 7.5942 0.4934 
Infection marker, HCV (a.u.) 7.1831 1.1809 
Infection marker, HCV+IFN-(a.u.) 7.6117 0.4813 

 



 
 

 

To simulate initial conditions for the stochastic model, initial values were sampled for PKR, eIF2 
and the infection marker. Then, steady states of active PKR species (ሾ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚ሿ) were 
simulated by the deterministic model of the integrated stress response (Eqs. 1–4 in Table S2) and 
used as input for stochastic model simulations. Initial values of dsRNA binding sites were 
calculated by multiplying the sampled initial infection marker values by the estimated scaling 
factor 𝑓௦௜௧௘௦,ு஼௏ (Eq. 36 in Table S3).  
To use time courses of viral dsRNA as input for stochastic model simulations (Fig. 7) we evaluated 
average infection marker intensities in untreated or IFN--treated HCV-infected cells (Sup Text 
Fig. 10). 

 
Sup Text Fig. 10. Infection marker time courses. Average time courses of the infection marker intensity, normalized to the 
average initial value, in untreated (blue circles) or IFN-a-treated (pink circles) HCV-infected cells measured in live-cell experiments 
(error bars: SEM). Time courses were fitted by an exponential function to determine turnover parameters. 

An exponential function of the form  
 

𝐼ሺ𝑡ሻ ൌ 𝐼଴ ቆ1 െ
𝑘ூ,௦௬௡
𝑘ூ,ௗ௘௚

ቇ exp൫െ𝑘ூ,ௗ௘௚𝑡൯ ൅
𝑘ூ,௦௬௡
𝑘ூ,ௗ௘௚

   (5.1) 

that describes synthesis and degradation of the infection marker 𝐼 with parameters 𝑘ூ,௦௬௡ and 
𝑘ூ,ௗ௘௚, starting from an initial intensity 𝐼଴, and represents the solution of an ODE describing 
synthesis and degradation of the infection marker 𝑑𝐼/𝑑𝑡 ൌ 𝑘ூ,௦௬௡ െ 𝑘ூ,ௗ௘௚𝐼, was fitted to the 
normalized average trajectories. We obtained parameter estimates 𝑘ூ,௦௬௡,ு஼௏ ൌ 0.168ℎିଵ and 
𝑘ூ,ௗ௘௚,ு஼௏ ൌ 0.0917ℎିଵ in untreated HCV-infected cells and 𝑘ூ,௦௬௡,ுூ ൌ 0.00220ℎିଵ and 
𝑘ூ,ௗ௘௚,ுூ ൌ 0.00869ℎିଵ in IFN--treated HCV-infected cells. 

To simulate time courses of PKR activity in a heterogenous cell population of 𝑛 cells with 
indices 𝑖 ൌ 1 …𝑛, we sampled initial infection marker values 𝐼଴,௜~ℒ𝒩ሺ𝜇ூெ,𝜎ூெሻ and simulated 
infection marker time courses in single cells  
 

𝐼௜ሺ𝑡ሻ ൌ 𝐼଴,௜ ቆ1 െ
𝑘ூ,௦௬௡,௜

𝑘ூ,ௗ௘௚
ቇ exp൫െ𝑘ூ,ௗ௘௚𝑡൯ ൅

𝑘ூ,௦௬௡,௜

𝑘ூ,ௗ௘௚
   (5.2) 

  
using single cell parameters for synthesis 𝑘ூ,௦௬௡,௜ ൌ 𝐼଴,௜𝑘ூ,௦௬௡. Thereby, we assumed that 

each single cell infection marker intensity was changed during live-cell imaging experiments by 



 
 

 

the same factor 
௞಺,ೞ೤೙

௞಺,೏೐೒
 as the population average (𝑓ு஼௏ ൎ 1.83 in untreated and 𝑓ுூ ൎ 0.253 in IFN-

-treated cells). The concentration time course of dsRNA binding sites  
 
ሾdsRሿሺ𝑡ሻு஼௏,௜ ൌ 𝑓௦௜௧௘௦,ு஼௏𝐼௜ሺ𝑡ሻ    (5.3) 

 
was calculated using the estimated scaling factor 𝑓௦௜௧௘௦,ு஼௏. To simulate time resolved PKR 

activity from estimated dsRNA concentrations in single cells, we modified the model part 
describing PKR activation (Eqs. 1–4, Table S2) by including turnover of dsRNA binding sites 
described by parameters 𝑘ூ,௦௬௡,௜ and 𝑘ூ,ௗ௘௚ 
 
𝑑ሾ𝑃𝐾𝑅ሿ௜

𝑑𝑡
ൌ െ𝑘ௗ,௢௡𝛼ு஼௏ሾ𝑃𝐾𝑅ሿ௜ሾ𝑑𝑠𝑅ሿ௜ ൅ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ௜ 

        െ𝑘௣,௢௡ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ௜ሾ𝑃𝐾𝑅ሿ௜
ሾ௉௄ோሿ೔

೓

൫௄೛,೚೙ఊಹ಴ೇ൯
೓
ାሾ௉௄ோሿ೔

೓ ൅ 𝑘௣,௢௙௙ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧௜ 

        ൅𝑘ூ,ௗ௘௚ ቀሾdsRሿ௜ ൅ ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ௜ ൅ 2ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧௜ቁ                          

(5.4) 

𝑑ሾ𝑑𝑠𝑅ሿ௜
𝑑𝑡

ൌ െ𝑘ௗ,௢௡𝛼ு஼௏ሾ𝑃𝐾𝑅ሿ௜ሾ𝑑𝑠𝑅ሿ௜ ൅ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ௜ ൅ 𝑘ூ,௦௬௡,௜

െ 𝑘ூ,ௗ௘௚ሾdsRሿ௜ 
(5.5) 

𝑑ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ௜
𝑑𝑡

ൌ 𝑘ௗ,௢௡𝛼ு஼௏ሾ𝑃𝐾𝑅ሿ௜ሾ𝑑𝑠𝑅ሿ௜ െ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ௜ 

        െ𝑘௣,௢௡ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ௜ሾ𝑃𝐾𝑅ሿ௜
ሾ௉௄ோሿ೔

೓

൫௄೛,೚೙ఊಹ಴ೇ൯
೓
ାሾ௉௄ோሿ೔

೓ ൅ 𝑘௣,௢௙௙ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧௜ 

         െ𝑘ூ,ௗ௘௚ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ௜        

(5.6) 

𝑑ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧௜
𝑑𝑡

ൌ 𝑘௣,௢௡ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ௜ሾ𝑃𝐾𝑅ሿ௜
ሾ𝑃𝐾𝑅ሿ௜

௛

൫𝐾௣,௢௡𝛾ு஼௏൯
௛
൅ ሾ𝑃𝐾𝑅ሿ௜

௛
 

        െ𝑘௣,௢௙௙ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧௜ െ 𝑘ூ,ௗ௘௚ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧௜. 
 

(5.7) 

Thereby, single-cell time courses of active PKR species ሾ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚ሿ were simulated 
that served as time-dependent input for stochastic simulations. These were performed in 
subsequent 15-minute intervals with updated PKR activity values in each interval. To reproduce 
experimental data of SG presence in single cells, we simulated 𝑁 ൌ 200 single-cell trajectories 
per experimental condition over 3 days. Presence of SGs was defined based on the Hill-function 
for SG formation by 𝑓ௌீ ൒ 0.5.  

For an independent prediction of the live-cell imaging dataset recorded in PKR-
overexpressing cells by stochastic model simulations (Fig. 7, fig. S13), we used the same initial 
conditions for eIF2 and the infection marker as in HCV-infected untreated cells (𝜇௘ூிଶఈ, 𝜎௘ூிଶఈ, 
𝜇ூெ, 𝜎ூெ, 𝑘ூ,௦௬௡,ு஼௏ and 𝑘ூ,ௗ௘௚,ு஼௏), and only adjusted the parameters of the log-normal 
distribution of initial PKR concentrations.  

During evaluation of live-cell imaging data, short fluctuations of SG appearance or removal 
(peaks and breaks) of one 15-minute time point were regarded as noise and therefore removed 
assuming that SG formation and resolution takes place on a longer time scale. For comparison 
with experimental measurements of single-cell SG time series, short peaks and breaks of one 15-



 
 

 
 

minute time point were removed from SG time series simulations. Comparisons of stochastic 
simulations and experimental measurements of single-cell SG time series are shown in Fig. 7. 

 

Supplementary Figures  

 

 
 
Fig. S1. Characterization of HCVTCP system and live-cell time-lapse imaging. (A) Schematic 
representation of HCV RLuc-mCherry bicistronic replicon used for the production of HCVTCP.  
HCV 5’ non-translated region (NTR) drives the translation of Renilla luciferase that is fused N-
terminally to 16 codons of the Core protein of HCV. The internal ribosome entry site (IRES) of 
the encephalomyocarditis virus (EMCV) directs the translation of the HCV sequence NS3 to 
NS5B.  K1402Q (indicated with a star) is a mutation in NS3, which increases assembly 
efficiency. The sequence of mCherry was inserted in fusion with NS5A. (B) Replication 
efficiency of HCV RLuc-mCherry replicon in Huh7 cells (n=3). Cells were lysed at the time 
points specified in the bottom to determine Renilla luciferase activity (Relative Light Units, 
RLU). Values were normalized to the 4 h time point post electroporation (left panel). Right 
panel: cells infected with HCVTCP for 48 h were treated with 100 IU/ml IFN-α for up to 72 h, or 
left untreated. Renilla luciferase activity was determined and values normalized to the time point 
0 of IFN-α addition (n=3). (C) Experimental procedure for the time-lapse imaging of SG 
response dynamics in HCVTCP-infected cells. Huh7 YFP-TIA1 cells were infected with HCVTCP. 
Forty-eight hours post infection, cells were treated with 100 IU/ml IFN-α or left untreated and 
transferred to the microscope heating chamber for live-cell time-lapse microscopy. Images were 
acquired with an interval of 15 min for 72 h. Representative still images of the YFP-TIA1 and 
NS5A-mCherry channels are shown on the bottom. The white dotted square corresponds to the 



 
 

 

cell shown in Fig. 1A. Scale bar, 100 µm. (D) Example of complete single-cell time-lapse 
analysis output including for each time frame (i) the measurement of NS5A-mCherry signal 
intensity (total pixel count), (ii) the number and average size (± SD) of SGs and (iii) the total SG 
pixel count. The star indicates the end of a cell track. Cells with a NS5A-mCherry signal 
intensity above 103 pixels were classified as “infected”. Only cells tracked for at least 48 h were 
considered for the analysis. The red dotted line indicates the threshold of 15 total SG pixels 
below which cells were not considered to have stress. From these parameters, SG response time 
series reflecting the sequence of SG-On and SG-Off phases were deduced for each cell, and 
schematized in the top with dark blue regions for SG-On phases and clear blue regions for SG-
Off phases.  



 
 

 

 
 
Fig. S2. Single-cell SG response time series characteristics. (A) Single-cell SG response time 
series. Shown are SG phases (left panels) and NS5A-mCherry intensity (right panels) from 
uninfected (n=105) and HCV-infected cells (n=135). Only cells tracked for more than 48 h were 
considered for further analysis. Single-cell SG response time series were sorted based on the 
total stress duration, with cell 1 on the top having more stress than cells on the bottom of the 
panel. (B) Significant correlations are visualized by blue colors (p<pcrit=0.05/21, Bonferroni 
correction for 21 comparisons). Spearman correlation coefficients (left panel) indicate positive 
(red) to negative (blue) correlations between SG size, area, number, SG integral and NS5A-
mCherry intensity levels. The number of SG phases correlated negatively with all SG parameters 
except for the NS5A-mCherry intensity levels. Correlation of single-cell parameters (right panel; 
p-Values from Spearman rank correlation). (C) Histograms of experimentally measured SG-On 
phase lengths and SG-Off phase lengths together with fits of two joint-gamma distributions. (D) 
Exponential decay parameters from fits to the autocorrelation functions shown in (Fig. 1F). 
  



 
 

 
 

 
 
Fig. S3. Quantification of model species. (A) Absolute quantifications of eIF2α and PKR 
average molecules per cell. Lysates of defined numbers of Huh7 cells were spiked with 
increasing amounts of recombinant GST-tagged eIF2α (rec. eIF2α, top panel) or GST-tagged 
PKR kinase domain (rec. PKRKD, bottom panel) and analyzed by quantitative Western blotting. 
(B) Determination of Huh7 YFP-TIA1 cells mean volume by confocal analysis. Cells were 
imaged in 3D using Z-stacks spaced by 1 µm. Shown are 5 Z-sections from a representative cell 
starting from the top (0 µm). For each slice, the YFP-TIA1 signal was used to manually outline 
the border of the cell (white line). Scale bar, 20 µm. The mean cell volume ± SD (n=6) was 
estimated to be approximately 6.71 pL. (C) Absolute quantifications of GADD34-GFP in Huh7 
GADD34-GFP cell lysates (n=3). GADD34-GFP levels were compared to amounts of 
recombinant eGFP (rec. eGFP). Shown are representative Western blot analyses using GADD34-
and eGFP-specific antibodies (top and bottom, respectively) and quantification. (D) Induction of 
GADD34 expression in Huh7 cells treated with increasing concentrations of thapsigargin. Cell 
lysates were analyzed by quantitative Western blotting using Huh7 GADD34-GFP as loading 
reference. Shown are mean GADD34 molecules per cell ± SD (n=3). (E) Analysis of PKR and 
eIF2α half-lives. Huh7 cells were treated with CHX for 48 h and analyzed by Western blotting. 
Shown is the quantification of PKR (left panel) and eIF2α (right panel) expression levels 
normalized to β-actin levels and relative to untreated cells. The dotted lines depict the best non-
linear fit (one-phase decay).  



 
 

 
 

 
 
Fig. S4. Activation of stress kinases. (A) Analytical agarose gel of in vitro synthesized single-
stranded RNAs of negative (-) and positive (+) polarity before and after hybridization (dsRNA). 
Different RNA lengths were analyzed (100, 200 and 400 bp). (B) Analysis of PKR activation in 
Huh7 cells transfected with dsRNAs of different lengths (15.5 nmol). Shown is a representative 
Western blot analysis of PKR and p-PKR expression levels. Expression level of β-actin was used 
as loading control. (C) Quantification of p-eIF2α levels in Huh7 cells transfected with increasing 
amount of 200-bp dsRNA (related to Fig. 3A), normalized to β-actin levels and relative to 
untreated cells (n=3). Statistical significance is indicated compared to untreated cells; 
****p<0.0001. (D) Quantification of p-eIF2α levels in Huh7 cells treated with increasing 
arsenite concentrations (related to Fig. 3D), normalized to β-actin levels and relative to untreated 
cells (n=3). Statistical significance is given in the top; *p<0.05. (E to J) Huh7 cells were treated 
with increasing amounts of thapsigargin. Shown is representative Western blot analysis upon 1 h 
treatment (mean ± SD, n=3) (E) and its corresponding quantification of p-eIF2α levels 
normalized relative to β-actin levels and relative to cells treated with DMSO (F). Samples were 
analyzed by Phos-tag polyacrylamide gel analysis and the percentage of p-eIF2α relative to total 
eIF2α quantified (n=3). (H) The corresponding percentage of SG-positive cells was analyzed by 
fluorescence microscopy. For each condition, at least 100 cells were analyzed for the presence of 



 
 

 
 

YFP-TIA1-positive SGs. Shown are mean percentages ± SD. Statistical significance is indicated 
compared to DMSO-treated cells; ****p<0.0001. (I and J) To overcome technical limitations 
and high p-eIF2α background in DMSO-treated cells, the thapsigargin titration experiment was 
repeated using thapsigargin from a new supplier. The concentration range was adapted since the 
new thapsigargin is 10-fold more potent than the previous one. Sample harvesting conditions 
were optimized to reduce p-eIF2α signal in DMSO-treated cells. (I) Shown are is a representative 
Phos-tag gel analysis and percentage of p-eIF2α relative to total eIF2α (n=3). Statistical 
significance is indicated compared to DMSO-treated cells; *p<0.05, ***p<0.001. (J) The 
corresponding percentage of SG-positive cells was analyzed by fluorescence microscopy (n=3). 
For each condition, at least 100 cells were analyzed for the presence of YFP-TIA1-positive SGs. 
Shown are mean percentages ± SD. Statistical significance is indicated compared to DMSO-
treated cells; *p<0.05, ***p<0.001, ****p<0.0001. 
 
  



 
 

 
 

 
 
Fig. S5. PKR in vitro kinase assay with dsRNA of varying lengths. Increasing amounts of 40-
bp, 100-bp and 200-bp dsRNA were incubated with recombinant His-tagged PKR and eIF2α 
(n=3). (A) Results for PKR in vitro activation by 100-bp dsRNA. Upper panel shows a 
representative Western blot analysis of p-PKR and p-eIF2α expression levels. Silver staining of 
the proteins on gel served as loading control. Quantification of mean levels ± SD are shown in 
the lower panels. Values were normalized to the untreated control. (B) Quantification of absolute 
p-eIF2α in PKR in vitro kinase assays. Upper panels show representative Phos-tag acrylamide 
gel analysis. Lower panels show quantification p-eIF2α. (C) Results for PKR in vitro activation 
by 40-bp dsRNA. Statistical significance is indicated compared to untreated; *p<0.05, **p<0.01, 
***p<0.001, ****p<0.0001. 
  



 
 

 

 



 
 

 

Fig. S6. Selection of an optimal PKR activation model. (A) The optimal PKR activation 
model variant was systematically identified by a sequence of model extensions (+) and 
reductions (–). Model features additionally included or excluded are described for each model 
variant. An improved fit was indicated by reduction in χ² (B) or the corrected Akaike information 
criterion (C) (Δχ²<0, ΔAICc<0), whereas, an increase in χ² or AICc (Δχ²>0, ΔAICc>0) indicated 
an inferior model fit. For model variants accounting for different PKR oligomerization states, 
differences are indicated for the best model variants. Based on AICc values, variant 3 was 
selected as an optimal model that accounts for (1) different affinities of PKR monomers to PKR 
bound at dsRNA fragments of 40-bp, 100-bp or 200-bp length, (2) different binding site numbers 
for dsRNA fragments, (3) no PKR oligomerization without dsRNA, and (4) cooperative binding 
of PKR at dsRNA. (B) Model variants 3, 5 and 5.1 (‘Var3’, ‘Var 5’, ‘Var 5.1’) accounting for 
cooperative binding of PKR to dsRNA were significantly better compared to variants 1 to 4.1 
and variant 5 (ΔΧ2>170). For model variants 1 to 4.1, different versions, in which PKR could 
form different types of oligomers (o2…o6: dimer to hexamer), were implemented and tested, 
resulting in a total number of 28 model versions. (C) Model selection based on differences in 
corrected Akaike information criterion (ΔAICc). Variant 3 that did not account for cis and trans 
activation (Variant 5) or cis activation of PKR (Variant 5.1) was selected as the optimal model 
variant. 
  



 
 

 

 

Fig. S7. Visualizations of tested PKR activation model variants. For model variants 1, 1.1, 2, 
4 and 4.1, versions with different forms of PKR oligomerization (dimers to hexamers) were 
implemented and tested (dsR: binding sites for PKR at dsRNA; dsR:PKRn or dsR:PKRactive in 
red font: active PKR species). In these model versions that explicitly describe PKR 
oligomerization states, it was assumed that only the highest PKR oligomers could become active. 
In model variants 3, 5 and 5.1, PKR binding to PKR monomers at dsRNA was described as a 
cooperative process based on a Hill function. In model variants 1.1, 4, 4.1, 5 and 5.1, additional 
cis or trans reactions were included for describing PKR activation. 



 
 

 

 
 
Fig. S8. Transcriptional induction of GADD34 by HCV infection detected at single-cell 
level. Huh7 cells were infected with HCV for 24 h and fixed for further FISH analysis. (A) 
Shown are representative still images of uninfected and HCV-infected cells. HCV (+) ssRNA 
genomes (HCV(+)ss), GADD34 transcripts and total polyadenylated mRNAs (polyA) were 
simultaneously detected using fluorescent probes. Additionally, uninfected cells were stained 
with probes targeting E. coli dapB transcripts and HCV (+)ss RNA genomes to determine 
background signals and unspecific binding of probes for the respective fluorophores. PolyA 
signal was used to outline cell boundaries. White circles indicate single particles detected after 
background subtraction. Scale bar, 20 µm. (B) Quantification of the mean number of HCV 
transcripts ± SD in Huh7 cells in presence and absence of IFN-α (related to Fig.5A). Statistical 
significance and the number of analyzed cells (n) cells from two independent biological repeats 
are indicated; ***p<0.001, ****p<0.0001. (C and D) FISH analysis of GADD34 transcriptional 
induction in PKRKO cells. Huh7 PKRKO Puro cells were left untreated or infected with HCV and 
treated with IFN-α. Huh7 Puro cells were used as a control. (C) Shown are representative still 
images. Scale bar, 20µm. (D) Quantification of mean GADD34 transcripts ± SD. Shown are 
pooled cells from two independent biological repeats. Statistical significance and the number of 
analyzed cells (n) cells are indicated; **p<0.01, ****p<0.0001. 
  



 
 

 

 
 
Fig. S9. PKR transcriptional induction in HCV infected cells.  (A and B) Huh7 cells were 
infected with HCV for 24 h, subsequently treated with IFN-α for 24 h and fixed for further FISH 
analysis. (A) Shown are representative still images of uninfected and HCV-infected cells, left 
untreated (upper panel) or treated with IFN-α (bottom panel). HCV positive-sense (+) ssRNA 
genomes (HCV(+)ss), PKR transcripts and total polyA-tailed mRNAs (polyA) were 
simultaneously detected using fluorescent probes. PolyA signal was used to outline cell 
boundaries. White circles indicate single particles detected after background subtraction. Scale 
bar, 20 µm. (B) Quantification of the mean number of PKR (upper graph) and HCV (bottom 
graph) transcripts ± SD. Statistical significance and the number of analyzed cells (n) from two 
independent biological repeats are indicated; ****p<0.0001. (C) Scatter plot of the correlation 
between GADD34 transcripts and HCV (+)ssRNA genomes in HCV-infected cells treated with 
IFN-α. n, number of analyzed cells; R², coefficient of determination. 
  



 
 

 
 

 
Fig. S10. Best fits of the deterministic model of integrated stress response. Multi-experiment 
fitting was performed by multi-starts local optimizations (n=2,500 runs). (A) Model fits to data 
from FISH analyses (mGADD34, mRNA of GADD34). Concentrations of GADD34 mRNA 
were estimated by dividing single-cell counts of detected particles by the average cell volume 
(Vcell=6.71pl). (B) Model fits to data from dsRNA transfection experiments (p-eIF2α in a. u. 
from Western blot analysis; % p-eIF2α from Phos-tag gel analysis; % SG-positive cells by 
fluorescence microscopy). (C) Model fits to data from in vitro PKR activation experiments using 
40 bp, 100 bp or 200 bp dsRNA. (D) Model fits to data from arsenite titration experiments (the 
fit to % SG-positive cells is shown in Fig. 5D). (E) Model fits to data from thapsigargin titration 
experiments (the fit to % SG-positive cells shown in Fig. 5B). Of note, for the percentage of p-
eIF2α (Phos-tag analyses), experimental data obtained with thapsigargin from a new supplier and 
optimized harvesting conditions (related to fig. S4, I and J) confirm the model fit obtained with 
normal thapsigargin. (F) Model fits to data from thapsigargin kinetics experiment. (G and H) 
Model fits to data from the GADD34 titration experiments. Cells were transduced with different 
amounts of lentivirus for GADD34 expression or a lentivirus for expression of a puromycin 
resistance gene as control (Puro) before treatment with thapsigargin (fits to p-eIF2α, % p-eIF2α, 
% SG-positive cells and GADD34 (F). (G) Fits to GADD34 concentration measurements in 
transduced cells compared to Huh7 GADD34 overexpressing cells (OE). (I) Model fits to the 
percentage of SG-positive cells as a function of NS5A-mCherry fluorescence intensity measured 
in time-lapse experiments.  



 
 

 
 

 
 
Fig. S11. Characterization of GADD34 activity. (A and B) Kinetics of GADD34 induction in 
Huh7 cells in response to treatment with 2 µM thapsigargin. (A) Shown are representative 
Western blot and Phos-tag gel analyses (n=3). (B) Quantification of mean percentage ± SD of p-
eIF2α relative to total eIF2α (upper panel) and mean GADD34 expression levels ± SD 
normalized to the loading control β-actin and relative to untreated cells (lower panel). Statistical 
significance is indicated compared to untreated cells; *p<0.05, **p<0.01. (C and D) Ectopic 
expression of GADD34 using lentiviruses. Huh7 cells were transiently transduced by various 
amounts of lentivirus encoding GADD34 (GADD34 LV) for 30 hours. Lentivirus encoding for 
the puromycin resistance gene (Puro LV) was used as a control. (C) A reference lysate of Huh7 
GADD34-GFP cells was loaded for quantification. Shown is a representative Western blot 
analysis of GADD34 expression. GAPDH was used as loading control (upper panel) (n=3). 
Quantification of the mean GADD34 molecules per cell ± SD is shown at the bottom. Statistical 
significance is indicated compared to cells transduced with control lentivirus (Puro); *p<0.05; 
****p<0.0001. (D) Impact of GADD34 expression on eIF2α dephosphorylation (n=3). After 
transduction, Huh7 cells were treated with 2 µM thapsigargin for one hour and harvested for 
analysis of GADD34 and p-eIF2α by Western blot and Phos-tag gel analyses, respectively. SG 
formation was additionally analyzed in more than 100 cells for each condition by fluorescence 
microscopy. Shown in the top are representative Western blot and Phos-tag gel analyses. 
Quantifications of the mean percentages ± SD of p-eIF2α relative to total eIF2α and of SG-
positive cells are shown at the bottom. Statistical significance is indicated compared untreated 
cells; *p<0.05; ****p<0.0001. 
  



 
 

 

 
 
Fig. S12. Adaptation to repeated stress pulses. Computational simulations of two consecutive 
one-hour stress pulses interspaced by a five-hour recovery period. Shown is a range of stress 
kinase activities (stress intensities) varying between 10-fold lower (min) and 10-fold higher 
(max) than the reference kinase activity leading to 50% SG-positive cells. Color plots show the 
behavior of ppp1r15a promoter activity, concentrations of GADD34 mRNA and protein, 
percentages of p-eIF2α and SG-positive cells. Graphs at the bottom reflect the behavior of the 
above mentioned components for one chosen stress intensity (black line, moderate stress). 
Shown are the results for different kinase activity decays (t1/2): (A) 0 h, (B) 1 h and (C) 2 h. 
  



 
 

 
 

 
 
Fig. S13. Single-cell Western blot analyses of PKR and eIF2α. Quantification of the relative 
cell-to-cell variation in eIF2α and PKR expression levels by single-cell Western blot analysis. 
Single Huh7 cells were loaded into the micro-wells of array slides patterned in a photoactive 
polyacrylamide gel. After chemical lysis and electrophoresis, proteins were stained with primary 
and fluorescently-labeled secondary antibodies. The presence of cells in wells was confirmed by 
staining with an anti-GAPDH antibody. (A and B) Shown is a representative crop sections of a 
scanned micro-well array slide after staining. GADPH was detected using a secondary antibody 
labeled with AlexaFluor 532. Expression of eIF2α was detected using a secondary antibody 
labeled with AlexaFluor 635 (A). (B) Quantification of relative eIF2α levels per cell (a.u., 
arbitrary units). Mean signal intensity ± SD is indicated. The number of analyzed cells (n) and 
statistical significance compared to empty wells are indicated; ****p<0.0001. (C and D) 
Analysis of cell-to-cell variability of PKR expression levels in Huh7 cells left untreated or 
treated with IFN-α. Huh7 PKRKO cells were used as background control. (C) Representative crop 
sections of a scanned micro-well array slide after staining. GADPH was detected using a 
secondary antibody labeled with AlexaFluor 532. Expression of PKR was detected using a 
secondary antibody labeled with AlexaFluor 635. (D) Quantification of relative PKR levels per 
cell (a.u., arbitrary units). Mean signal intensity ± SD is indicated. The number of analyzed cells 
(n) and statistical significance compared to PKRKO cells are indicated; ****p<0.0001. (E) 
Analysis of NS5A-mCherry signal intensity in 72 h time-lapse experiments of HCV-infected 
cells in presence and absence of IFN-α. Shown are mean signal intensities (± SD) per cell for 
each time frame. Black lines represent best non-linear model fits. 
  



 
 

 

 



 
 

 

Fig. S14. Analysis of PKR expression in Huh7 cells overexpressing PKR. (A and B) 
Quantitative Western blot analysis of eIF2α and PKR expression levels in Huh7 PKROE cells. 
Lysates of defined numbers of Huh7 PKROE cells were spiked with increasing amounts of 
recombinant GST-tagged eIF2α (rec. eIF2α, top panel) or GST-tagged PKR kinase domain (rec. 
PKRKD, bottom panel) and analyzed by quantitative Western blotting. (B) Estimated eIF2α and 
PKR mean molecule numbers per cell ± SD. Values for Huh7 cells untreated or treated with 
IFN-α (related to Fig. 2C) are shown for comparison. Number of repeats (n) and statistical 
significance compared to untreated cells are indicated; ****p<0.0001. (C and D) Cell-to-cell 
variability in eIF2α and PKR expression levels in Huh7 PKROE cells. Empty wells or Huh7 
PKRKO cells were used as background control. Shown are representative crop sections of a 
scanned micro-well array slide after staining. GADPH was detected using a secondary antibody 
labeled with AlexaFluor 532. Expression of eIF2α or PKR was detected using a secondary 
antibody labeled with AlexaFluor 635. (C) Quantification of relative eIF2α levels per cell (a.u., 
arbitrary units). Mean signal intensity ± SD is indicated. The number of analyzed cells (n) and 
statistical significance compared to empty wells are indicated; ****p<0.0001. (D) Quantification 
of PKR levels per cell (a.u., arbitrary units). Mean signal intensity ± SD is indicated. The number 
of analyzed cells (n) and statistical significance compared to PKRKO cells are indicated; 
****p<0.0001. (E) Analysis of PKR and GADD34 transcription levels in HCV-infected Huh7 
PKROE cells by FISH. The upper panel shows representative still images of uninfected and HCV-
infected cells. HCV (+) ssRNA genomes, GADD34 transcripts and total polyadenylated mRNAs 
(polyA) were simultaneously detected using fluorescent probes. Staining of polyA mRNAs 
allowed for the visualization of SGs and cell boundaries. Outlined in red is a SG-positive cell, 
outlined in white an unstressed cell. White circles indicate single particles detected after 
background subtraction. Scale bar, 20 µm. Scatter plots of GADD34 mean transcript levels ± SD 
per cell are shown on the bottom. Statistical significance and the number of analyzed cells (n) 
cells are indicated; *p<0.05, **p<0.01, ****p<0.0001. 
  



 
 

 

Table S1. Selection of PKR activation models visualized in Fig. S6. 
Variant 1 (Supplementary Fig. S6; n=2, oligomerization of PKR up to 

dimers) 

 

Model equations Description 

𝑑ሾ𝑃𝐾𝑅ሿ

𝑑𝑡
ൌ െ𝑘௣,௢௡,௜ሾ𝑃𝐾𝑅ሿଶ ൅ 𝑘௣,௢௙௙ሾ𝑃𝐾𝑅ଶሿ െ 𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅ሿ 

                  ൅𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ െ 𝑘௣,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ

൅ 𝑘௣,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ଶሿ 

with  𝑘ௗ,௢௡,௜ ൌ ቐ

𝑘ௗ,௢௡ 𝑓𝑜𝑟 𝑖 ൌ 1 ሺ40𝑏𝑝,in-vitroሻ
𝑘ௗ,௢௡𝛼ଵ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ൌ 2 ሺ100𝑏𝑝,in-vitroሻ
𝑘ௗ,௢௡𝛼ଶ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ∈ ሼ3,4ሽ ሺ200𝑏𝑝,in-vitro/transf.ሻ

 

and 𝑘௣,௢௡,௜ ൌ ቐ

𝑘௣,௢௡ 𝑓𝑜𝑟 𝑖 ൌ 1 ሺ40𝑏𝑝,in-vitroሻ
𝑘௣,௢௡𝛾ଵ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ൌ 2 ሺ100𝑏𝑝,in-vitroሻ
𝑘௣,௢௡𝛾ଶ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ∈ ሼ3,4ሽ ሺ200𝑏𝑝,in-vitro/transf.ሻ

 

Unbound PKR 

𝑑ሾ𝑑𝑠𝑅ሿ
𝑑𝑡

ൌ െ𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅ሿ ൅ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ

െ 𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ଶሿሾ𝑑𝑠𝑅ሿ ൅ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ଶሿ 

Binding to dsRNA and 

unbinding 

𝑑ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ

𝑑𝑡
ൌ 𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅ሿ െ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ 

                          െ𝑘௣,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ ൅ 𝑘௣,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ଶሿ  

Complexes dsRNA and 

PKR  

𝑑ሾ𝑃𝐾𝑅ଶሿ

𝑑𝑡
ൌ 𝑘௣,௢௡,௜ሾ𝑃𝐾𝑅ሿଶ െ 𝑘௣,௢௙௙ሾ𝑃𝐾𝑅ଶሿ െ 𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ଶሿሾ𝑑𝑠𝑅ሿ 

                  ൅𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ଶሿ  

PKR dimers 

𝑑ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ଶሿ

𝑑𝑡
ൌ 𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ଶሿሾ𝑑𝑠𝑅ሿ െ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ଶሿ   

                      ൅𝑘௣,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ െ 𝑘௣,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ଶሿ  

Active PKR dimers 

Variant 3 (optimal model variant)  

Model equations Description 

𝑑ሾ𝑃𝐾𝑅ሿ
𝑑𝑡

ൌ െ𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅ሿ ൅ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ 

 െ𝑘௣,௢௡ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿሾ𝑃𝐾𝑅ሿ
ሾ௉௄ோሿ೓

௄೛,೚೙,೔
೓ ାሾ௉௄ோሿ೓

൅ 𝑘௣,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚ሿ 

with 𝑘ௗ,௢௡,௜ ൌ ቐ

𝑘ௗ,௢௡ 𝑓𝑜𝑟 𝑖 ൌ 1 ሺ40𝑏𝑝,in-vitroሻ
𝑘ௗ,௢௡𝛼ଵ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ൌ 2 ሺ100𝑏𝑝,in-vitroሻ
𝑘ௗ,௢௡𝛼ଶ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ∈ ሼ3,4ሽ ሺ200𝑏𝑝,in-vitro/transf.ሻ

 

Binding of PKR to dsRNA 
and PKR oligomerization at 
dsRNA, different affinities 
for binding to dsRNA and 
oligomerization of dsRNA 
fragments 



 
 

 

and 𝐾௣,௢௡,௜ ൌ ቐ

𝐾௣,௢௡ 𝑓𝑜𝑟 𝑖 ൌ 1 ሺ40𝑏𝑝,in-vitroሻ
𝐾௣,௢௡𝛾ଶ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ൌ 2 ሺ100𝑏𝑝,in-vitroሻ
𝐾௣,௢௡𝛾ଶ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ∈ ሼ3,4ሽ ሺ200𝑏𝑝,in-vitro/transf.ሻ

 

𝑑ሾ𝑑𝑠𝑅ሿ
𝑑𝑡

ൌ െ𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅ሿ ൅ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ 
Binding to dsRNA and 
unbinding 

𝑑ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ
𝑑𝑡

ൌ 𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅ሿ െ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ 

െ𝑘௣,௢௡ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿሾ𝑃𝐾𝑅ሿ
ሾ𝑃𝐾𝑅ሿ௛

𝐾௣,௢௡,௜
௛ ൅ ሾ𝑃𝐾𝑅ሿ௛

൅ 𝑘௣,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚ሿ 

Complexes of dsRNA and 
PKR 

𝑑ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧

𝑑𝑡
ൌ 𝑘௣,௢௡ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿሾ𝑃𝐾𝑅ሿ

ሾ𝑃𝐾𝑅ሿ௛

𝐾௣,௢௡,௜
௛ ൅ ሾ𝑃𝐾𝑅ሿ௛

 

െ𝑘௣,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚ሿ 

Active oligomerized PKR 
bound to dsRNA 

Start value assignments, observables, algebraic equations, 
scaling factors, background offsets* 

Description 

ሾdsRሿሺ𝑡଴ሻସ଴௕௣ ൌ ሾ𝑑𝑠𝑅𝑁𝐴ସ଴௕௣ሿ 
ሾdsRሿሺ𝑡଴ሻଵ଴଴௕௣ ൌ ሾ𝑑𝑠𝑅𝑁𝐴ଵ଴଴௕௣ሿ𝑓௦௜௧௘௦,ଵ଴଴௕௣ 
ሾdsRሿሺ𝑡଴ሻଶ଴଴௕௣ ൌ ሾ𝑑𝑠𝑅𝑁𝐴ଶ଴଴௕௣ሿ𝑓௦௜௧௘௦,ଶ଴଴௕௣ 
ሾdsRሿሺ𝑡଴ሻଶ଴଴௕௣,௧௥௔௡௦௙ ൌ ሾ𝑑𝑠𝑅𝑁𝐴ଶ଴଴௕௣ሿ𝑓௦௜௧௘௦,ଶ଴଴௕௣𝛽௧௥௔௡௦௙ 
 

Start value assignment of 
PKR binding sites at 
dsRNA (dsR) depending on 
the concentration of dsRNA 
fragments, factors for 100bp 
and 200bp fragments and a 
factor for transfection 
 

𝑦௉௄ோ∗,ସ଴௕௣ ൌ  𝑠௉௄ோ∗,௜௩ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧ ൅ 𝑏௉௄ோ∗,௜௩,ସ଴௕௣ 

𝑦௉௄ோ∗,ଵ଴଴௕௣ ൌ  𝑠௉௄ோ∗,௜௩ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧ ൅ 𝑏௉௄ோ∗,௜௩,ଵ଴଴௕௣ 
𝑦௉௄ோ∗,ଶ଴଴௕௣ ൌ  𝑠௉௄ோ∗,௜௩ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧ ൅ 𝑏௉௄ோ∗,௜௩,ଶ଴଴௕௣ 

𝑦௉௄ோ∗,ଶ଴଴௕௣,௧௥௔௡௦௙ ൌ  𝑠௉௄ோ∗,௧௥௔௡௦௙ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧ ൅ 𝑏௉௄ோ∗,௧௥௔௡௦௙ 
 

Observables for 
phosphorylated PKR at 
dsRNA fragments 
containing scaling factors 
and background intensities 
 

* Upper limits of background offsets were defined by minimal values of respective datasets 
(Supplementary Table S4). 
 

  



 
 

 

Table S2. Deterministic model of the integrated stress response visualized in Fig. 2A. 
Model equations Description 

𝑑ሾ𝑃𝐾𝑅ሿ
𝑑𝑡

ൌ െ𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅ሿ ൅ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ 

 െ𝑘௣,௢௡ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿሾ𝑃𝐾𝑅ሿ
ሾ௉௄ோሿ೓

௄೛,೚೙,೔
೓ ାሾ௉௄ோሿ೓

൅ 𝑘௣,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚ሿ  

(1) 

with 

𝑘ௗ,௢௡,௜ ൌ

⎩
⎪
⎨

⎪
⎧ 𝑘ௗ,௢௡ 𝑓𝑜𝑟 𝑖 ൌ 1 ሺ40𝑏𝑝,in-vitroሻ
𝑘ௗ,௢௡𝛼ଵ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ൌ 2 ሺ100𝑏𝑝,in-vitroሻ
𝑘ௗ,௢௡𝛼ଶ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ∈ ሼ3,4ሽ ሺ200𝑏𝑝,in-vitro/transf.ሻ
𝑘ௗ,௢௡𝛼ு஼௏ 𝑓𝑜𝑟 𝑖 ൌ 5 ሺ𝐻𝐶𝑉ሻ

 

and  

𝐾௣,௢௡,௜ ൌ

⎩
⎪
⎨

⎪
⎧ 𝐾௣,௢௡ 𝑓𝑜𝑟 𝑖 ൌ 1 ሺ40𝑏𝑝,in-vitroሻ
𝐾௣,௢௡𝛾ଵ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ൌ 2 ሺ100𝑏𝑝,in-vitroሻ
𝐾௣,௢௡𝛾ଶ଴଴௕௣ 𝑓𝑜𝑟 𝑖 ∈ ሼ3,4ሽ ሺ200𝑏𝑝,in-vitro/transf.ሻ
𝐾௣,௢௡𝛾ு஼௏ 𝑓𝑜𝑟 𝑖 ൌ 5 ሺ𝐻𝐶𝑉ሻ

 

Binding of PKR to 
dsRNA and PKR 
oligomerization at 
dsRNA, different 
affinities for binding 
to dsRNA and 
oligomerization of 
dsRNA fragments 
and HCV  

ௗሾௗ௦ோሿ

ௗ௧
ൌ െ𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅ሿ ൅ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ                                          (2) Binding to dsRNA 

and unbinding 
ௗሾௗ௦ோ:௉௄ோሿ

ௗ௧
ൌ 𝑘ௗ,௢௡,௜ሾ𝑃𝐾𝑅ሿሾ𝑑𝑠𝑅ሿ െ 𝑘ௗ,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿ     

   െ𝑘௣,௢௡ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿሾ𝑃𝐾𝑅ሿ
ሾ௉௄ோሿ೓

௄೛,೚೙,೔
೓ ାሾ௉௄ோሿ೓

൅ 𝑘௣,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚ሿ                   (3) 

Complexes of 
dsRNA and PKR 

ௗሾௗ௦ோ:௉௄ோ೚೗೔೒ሿ

ௗ௧
ൌ 𝑘௣,௢௡ሾ𝑑𝑠𝑅:𝑃𝐾𝑅ሿሾ𝑃𝐾𝑅ሿ

ሾ௉௄ோሿ೓

௄೛,೚೙,೔
೓ ାሾ௉௄ோሿ೓

െ 𝑘௣,௢௙௙ሾ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚ሿ       

(4) 

Active oligomerized 
PKR bound to 
dsRNA 

𝑑ሾ𝑒𝐼𝐹2𝛼ሿ
𝑑𝑡

ൌ െ𝑘௣௛,௕௔௦௔௟ሾ𝑒𝐼𝐹2𝛼ሿ െ 𝑘௣௛,௉௄ோሾ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚ሿ
ሾ𝑒𝐼𝐹2𝛼ሿ

𝐾௣௛,௉௄ோ ൅ ሾ𝑒𝐼𝐹2𝛼ሿ
 

 ൅𝑘஼ோ௘௉ሾ𝑒𝐼𝐹2𝛼 ∗ሿ ൅ 𝑘ௗ௘௣௛ሾ𝑒𝐼𝐹2𝛼 ∗ሿሾ𝐺𝐴𝐷𝐷34ሿ                                   (5) 

Phosphorylation of 
eIF2α by PKR 
 

𝑑ሾ𝑒𝐼𝐹2𝛼 ∗ሿ
𝑑𝑡

ൌ 𝑘௣௛,௕௔௦௔௟ሾ𝑒𝐼𝐹2𝛼ሿ ൅ 𝑘௣௛,௉௄ோሾ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚ሿ
ሾ𝑒𝐼𝐹2𝛼ሿ

𝐾௣௛,௉௄ோ ൅ ሾ𝑒𝐼𝐹2𝛼ሿ
 

 െ𝑘஼ோ௘௉ሾ𝑒𝐼𝐹2𝛼 ∗ሿ െ 𝑘ௗ௘௣௛ሾ𝑒𝐼𝐹2𝛼 ∗ሿሾ𝐺𝐴𝐷𝐷34ሿ                                   (6) 

𝑓ௌீ,௉௄ோ ൌ
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

𝐾ௌீ,௉௄ோ
௟ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

 

Phosphorylated 
eIF2α, PKR;  
𝑓ௌீ,௉௄ோ, function 
describing SG 
formation 

𝑑ሾ𝑒𝐼𝐹2𝛼ሿ
𝑑𝑡

ൌ െ𝑘௣௛,௕௔௦௔௟ሾ𝑒𝐼𝐹2𝛼ሿ െ 𝑘௣௛,஺
ሾ𝐴ሿ

𝐾஺ ൅ ሾ𝐴ሿ
ሾ𝑒𝐼𝐹2𝛼ሿ

𝐾௣௛,஺ ൅ ሾ𝑒𝐼𝐹2𝛼ሿ
 

 ൅𝑘஼ோ௘௉ሾ𝑒𝐼𝐹2𝛼 ∗ሿ ൅ 𝑘ௗ௘௣௛ሾ𝑒𝐼𝐹2𝛼 ∗ሿሾ𝐺𝐴𝐷𝐷34ሿ                                   (7) 

Phosphorylation of 
eIF2α by HRI after 
activation of HRI by 
arsenite (A, 
arsenite) 



 
 

 

𝑑ሾ𝑒𝐼𝐹2𝛼 ∗ሿ
𝑑𝑡

ൌ 𝑘௣௛,௕௔௦௔௟ሾ𝑒𝐼𝐹2𝛼ሿ ൅ 𝑘௣௛,஺
ሾ𝐴ሿ

𝐾஺ ൅ ሾ𝐴ሿ
ሾ𝑒𝐼𝐹2𝛼ሿ

𝐾௣௛,஺ ൅ ሾ𝑒𝐼𝐹2𝛼ሿ
 

     െ𝑘஼ோ௘௉ሾ𝑒𝐼𝐹2𝛼 ∗ሿ െ 𝑘ௗ௘௣௛ሾ𝑒𝐼𝐹2𝛼 ∗ሿሾ𝐺𝐴𝐷𝐷34ሿ                                   (8) 

𝑓ௌீ,஺ ൌ
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

𝐾ௌீ,஺
௟ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

 

Phosphorylated 
eIF2α, HRI 

𝑑ሾ𝑒𝐼𝐹2𝛼ሿ
𝑑𝑡

ൌ െ𝑘௣௛,௕௔௦௔௟ሾ𝑒𝐼𝐹2𝛼ሿ െ 𝑘௣௛,்
ሾ𝑇ሿ

𝐾் ൅ ሾ𝑇ሿ
ሾ𝑒𝐼𝐹2𝛼ሿ

𝐾௣௛,் ൅ ሾ𝑒𝐼𝐹2𝛼ሿ
 

 ൅𝑘஼ோ௘௉ሾ𝑒𝐼𝐹2𝛼 ∗ሿ ൅ 𝑘ௗ௘௣௛ሾ𝑒𝐼𝐹2𝛼 ∗ሿሾ𝐺𝐴𝐷𝐷34ሿ                                   (9) 

 

Phosphorylation of 
eIF2α by PERK 
after activation of 
PERK by 
thapsigargin  
(T, thapsigargin) 

𝑑ሾ𝑒𝐼𝐹2𝛼 ∗ሿ
𝑑𝑡

ൌ 𝑘௣௛,௕௔௦௔௟ሾ𝑒𝐼𝐹2𝛼ሿ ൅ 𝑘௣௛,்
ሾ𝑇ሿ

𝐾் ൅ ሾ𝑇ሿ
ሾ𝑒𝐼𝐹2𝛼ሿ

𝐾௣௛,் ൅ ሾ𝑒𝐼𝐹2𝛼ሿ
 

 െ𝑘஼ோ௘௉ሾ𝑒𝐼𝐹2𝛼 ∗ሿ െ 𝑘ௗ௘௣௛ሾ𝑒𝐼𝐹2𝛼 ∗ሿሾ𝐺𝐴𝐷𝐷34ሿ                                 (10) 

𝑓ௌீ,் ൌ
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

𝐾ௌீ,்
௟ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

 

Phosphorylated 
eIF2α, PERK 

ௗሾ௉௥೚೑೑ሿ

ௗ௧
ൌ െ𝑘௉௥,௢௡ሾ𝑃𝑟௢௙௙ሿ𝑓ௌீሺሾ𝑒𝐼𝐹2𝛼 ∗ሿሻ ൅ 𝑘௉௥,௢௙௙ሾ𝑃𝑟௢௡ሿ                            (11) PPP1R15A 

promoter activation 
ௗሾ௉௥೏೐೗ೌ೤,భሿ

ௗ௧
ൌ 𝑘௉௥,௢௡ሾ𝑃𝑟௢௙௙ሿ𝑓ௌீሺሾ𝑒𝐼𝐹2𝛼 ∗ሿሻ െ 𝑘௉௥,௢௡ሾ𝑃𝑟ௗ௘௟௔௬,ଵሿ                     (12) 

ௗሾ௉௥೏೐೗ೌ೤,మሿ

ௗ௧
ൌ 𝑘௉௥,௢௡ሾ𝑃𝑟ௗ௘௟௔௬,ଵሿ െ 𝑘௉௥,௢௡ሾ𝑃𝑟ௗ௘௟௔௬,ଶሿ                                         (13) 

ௗሾ௉௥೏೐೗ೌ೤,యሿ

ௗ௧
ൌ 𝑘௉௥,௢௡ሾ𝑃𝑟ௗ௘௟௔௬,ଶሿ െ 𝑘௉௥,௢௡ሾ𝑃𝑟ௗ௘௟௔௬,ଷሿ                                         (14) 

ௗሾ௉௥೏೐೗ೌ೤,రሿ

ௗ௧
ൌ 𝑘௉௥,௢௡ሾ𝑃𝑟ௗ௘௟௔௬,ଷሿ െ 𝑘௉௥,௢௡ሾ𝑃𝑟ௗ௘௟௔௬,ସሿ                                         (15) 

ௗሾ௉௥೚೙ሿ

ௗ௧
ൌ 𝑘௉௥,௢௡ሾ𝑃𝑟ௗ௘௟௔௬,ସሿ െ 𝑘௉௥,௢௙௙ሾ𝑃𝑟௢௡ሿ                                                     (16) 

Delay of 
transcriptional 
response described 
by reaction chain 

ௗሾ௠ீ஺஽஽ଷସሿ

ௗ௧
ൌ 𝑘௦௬௡,௠ሾ𝑃𝑟௢௡ሿ െ 𝑘ௗ௘௚,௠ሾ𝑚𝐺𝐴𝐷𝐷34ሿ                                         (17) Turnover of 

GADD34 mRNA 
𝑑ሾ𝐺𝐴𝐷𝐷34ሿ

𝑑𝑡
ൌ 𝑘௦௬௡,ீ஺஽஽ଷସሾ𝑚𝐺𝐴𝐷𝐷34ሿ𝑓ௌீሺሾ𝑒𝐼𝐹2𝛼 ∗ሿሻ 

 െ𝑘ௗ௘௚,ீ஺஽஽ଷସሾ𝐺𝐴𝐷𝐷34ሿ                                                                     (18) 

Turnover of 
GADD34 

 

  



 
 

 

Table S3. Parts of deterministic model and model observables. 

Model part Start value assignments, observables, algebraic equations, 
scaling factors, background offsets*  

 

PKR 
activation, in-
vitro assay 
(40bp, 100bp 
and 200bp 
dsRNA)  

ሾdsRሿሺ𝑡଴ሻସ଴௕௣ ൌ ሾ𝑑𝑠𝑅𝑁𝐴ସ଴௕௣ሿ 
ሾdsRሿሺ𝑡଴ሻଵ଴଴௕௣ ൌ ሾ𝑑𝑠𝑅𝑁𝐴ଵ଴଴௕௣ሿ𝑓௦௜௧௘௦,ଵ଴଴௕௣ 
ሾdsRሿሺ𝑡଴ሻଶ଴଴௕௣ ൌ ሾ𝑑𝑠𝑅𝑁𝐴ଶ଴଴௕௣ሿ𝑓௦௜௧௘௦,ଶ଴଴௕௣ 
 
𝑦௉௄ோ∗,ସ଴௕௣ ൌ  𝑠௉௄ோ∗,௜௩ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧ ൅ 𝑏௉௄ோ∗,௜௩,ସ଴௕௣ 
𝑦௉௄ோ∗,ଵ଴଴௕௣ ൌ  𝑠௉௄ோ∗,௜௩ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧ ൅ 𝑏௉௄ோ∗,௜௩,ଵ଴଴௕௣ 
𝑦௉௄ோ∗,ଶ଴଴௕௣ ൌ  𝑠௉௄ோ∗,௜௩ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧ ൅ 𝑏௉௄ோ∗,௜௩,ଶ଴଴௕௣ 
 

(1) 
(2) 
(3) 
 
 

(4) 
 

(5) 
 

(6) 
 

PKR 
activation, 
transfection 
with 200bp 
dsRNA 

ሾdsRሿሺ𝑡଴ሻଶ଴଴௕௣,௧௥௔௡௦௙ ൌ ሾ𝑑𝑠𝑅𝑁𝐴ଶ଴଴௕௣ሿ𝑓௦௜௧௘௦,ଶ଴଴௕௣𝛽௧௥௔௡௦௙ 
 
𝑦௉௄ோ∗ ൌ  𝑠௉௄ோ∗,௧௥௔௡௦௙ൣ𝑑𝑠𝑅:𝑃𝐾𝑅௢௟௜௚൧ ൅ 𝑏௉௄ோ∗,௧௥௔௡௦௙ 
𝑦௘ூிଶఈ∗ ൌ  𝑠௘ூிଶఈ∗,ௗ௦ோே஺ሾ𝑒𝐼𝐹2𝛼 ∗ሿ ൅ 𝑏௘ூிଶఈ∗,ௗ௦ோே஺ 

𝑦௣௛௢௦௧௔௚ ൌ  ௧௥௔௡௦௙
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ

ሾ𝑒𝐼𝐹2𝛼ሿ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ
 

𝑦ௌீ ൌ  ௧௥௔௡௦௙𝑓ௌீ,௉௄ோ 
 

𝑓ௌீ,௉௄ோ ൌ
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

𝐾ௌீ,௉௄ோ
௟ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

 

(7) 

 
(8) 
(9) 
 
(10) 
 

(11) 
 
 
(12) 

Arsenite 
titration 

𝑦௘ூிଶఈ∗ ൌ  𝑠௘ூிଶఈ∗,஺ሾ𝑒𝐼𝐹2𝛼 ∗ሿ ൅ 𝑏௘ூிଶఈ∗,஺ 

𝑦௣௛௢௦௧௔௚ ൌ  
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ

ሾ𝑒𝐼𝐹2𝛼ሿ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ
 

𝑦ௌீ ൌ  𝑓ௌீ,஺ 
 

𝑓ௌீ,஺ ൌ
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

𝐾ௌீ,஺
௟ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

 

(13) 

 
(14) 
(15) 
 
 
(16) 

Thapsigargin 
titration 

𝑦௘ூிଶఈ∗ ൌ  𝑠௘ூிଶఈ∗,்ሾ𝑒𝐼𝐹2𝛼 ∗ሿ ൅ 𝑏௘ூிଶఈ∗,் 

𝑦௣௛௢௦௧௔௚ ൌ  
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ

ሾ𝑒𝐼𝐹2𝛼ሿ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ
 

𝑦ீ஺஽஽ଷସ,௤௨௔௡௧ ൌ  ሾ𝐺𝐴𝐷𝐷34ሿ 
𝑦ௌீ ൌ  𝑓ௌீ,் 

𝑓ௌீ,் ൌ
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

𝐾ௌீ,்
௟ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

 

(17) 
 
(18) 
 

(19) 
(20) 
 
(21) 

Thapsigargin 
kinetics 

𝑦௘ூிଶఈ∗ ൌ  𝑠௘ூிଶఈ∗,்,௞௜௡ሾ𝑒𝐼𝐹2𝛼 ∗ሿ ൅ 𝑏௘ூிଶఈ∗,்,௞௜௡ 

𝑦௣௛௢௦௧௔௚ ൌ  
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ

ሾ𝑒𝐼𝐹2𝛼ሿ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ
 

𝑦ீ஺஽஽ଷସ ൌ  𝑠ீ஺஽஽ଷସ,்,௞௜௡ሾ𝐺𝐴𝐷𝐷34ሿ 

(22) 

 
(23) 
(24) 

GADD34 
titration 
(thapsigargin 
treatment in 
GADD34- 

ሾGADD34௢௘,௜ሿሺ𝑡଴ሻ ൌ ൜
0 𝑓𝑜𝑟 𝑖 ൌ 0

GADD34௘௫,௜ 𝑓𝑜𝑟 𝑖 ∈ ሼ1, … ,7ሽ 

 
𝑦௘ூிଶఈ∗ ൌ  𝑠௘ூிଶఈ∗,ீሾ𝑒𝐼𝐹2𝛼 ∗ሿ ൅ 𝑏௘ூிଶఈ∗,ீ  

 

(25) 

 
(26) 
 



 
 

 

overexpressing 
and control 
cells)  

𝑦௣௛௢௦௧௔௚ ൌ  
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ

ሾ𝑒𝐼𝐹2𝛼ሿ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ
 

𝑦ீ஺஽஽ଷସ,௜ ൌ 𝑠ீ஺஽஽ଷସ,ீ ൜
ሾ𝐺𝐴𝐷𝐷34ሿ 𝑓𝑜𝑟 𝑖 ൌ 0
ሾGADD34௘௫ሿ 𝑓𝑜𝑟 𝑖 ∈ ሼ1, … ,7ሽ

 

𝑦ீ஺஽஽ଷସ,௤௨௔௡௧,௜ ൌ  ൜
ሾ𝐺𝐴𝐷𝐷34ሿ 𝑓𝑜𝑟 𝑖 ൌ 0
ሾGADD34௘௫ሿ 𝑓𝑜𝑟 𝑖 ∈ ሼ1, … ,7ሽ

 

𝑦ௌீ ൌ  𝑓ௌீ,் 

 

𝑓ௌீ,் ൌ
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

𝐾ௌீ,்
௟ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

 

(27) 
 

(28) 
 
 
(29) 
(30) 

 
(31) 

FISH (Cells 
infected with 
HCV) 

ሾPKR ∗௔௖௧,௜ሿሺ𝑡଴ሻ ൌ 𝑃𝐾𝑅_𝑎𝑐𝑡௜   𝑓𝑜𝑟   𝑖 ∈ ሼ1, … ,19ሽ 
 
𝑦ீ஺஽஽ଷସ,௠ோே஺ ൌ ሾ𝑚𝐺𝐴𝐷𝐷34ሿ 
𝑦ௌீ ൌ  𝑓ௌீ,௉௄ோ 

 

𝑓ௌீ,௉௄ோ ൌ
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

𝐾ௌீ,௉௄ோ
௟ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

 

(32) 

 
(33) 
(34) 
 
 
(35) 

Infection 
marker (Cells 
infected with 
HCV; 𝐼௜௡௙, 
infection marker 
intensity) 

ሾdsRሿሺ𝑡଴ሻு஼௏ ൌ 𝐼௜௡௙𝑓௦௜௧௘௦,ு஼௏ 
 
𝑦ௌீ ൌ  𝑓ௌீ,௉௄ோ 

 

𝑓ௌீ,௉௄ோ ൌ
ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

𝐾ௌீ,௉௄ோ
௟ ൅ ሾ𝑒𝐼𝐹2𝛼 ∗ሿ௟

 

(36) 
 
 

(37) 
 
 
(38) 

* Upper limits of background offsets were defined by minimal values of respective datasets 
(Supplementary Table S4). 

 
  



 
 

 

Table S4. Parameter estimates and confidence intervals.  
Parameter Unit Best fit 

value 
Confidence interval obtained 
from profile likelihood 
estimation 

identifiable Allowed parameter 
interval 

Lower bound Upper bound Lower 
bound 

Upper 
bound 

𝑘𝑝,𝑜𝑛/𝑘𝑝,𝑜𝑓𝑓* nM-1 0.09159 0.07153 0.1228 yes 10-6 105 

𝑘ௗ,௢௡/𝑘ௗ,௢௙௙* nM-1 0.002426 0.002203 0.002954 yes 10-6 105 

𝛼ଵ଴଴௕௣ unitless 17.63 8.339 34.45 yes 1 103 

𝛼ଶ଴଴௕௣ unitless 3.881 1.951 6.66 yes 1 103 

𝛼ு஼௏ unitless 19.14 10.48 41.79 yes 10-6 103 

𝐾௣,௢௡ nM 147.4 146.8 148.1 yes 10-6 105 

ℎ unitless 100 85.83 Inf no 1 102 

𝛾ଵ଴଴௕௣ unitless 0.006702 0.003701 0.007295 yes 10-6 1 

𝛾ଶ଴଴௕௣ unitless 0.04226 0.02792 0.07227 yes 10-6 1 

𝛾ு஼௏ unitless 16.98 0 Inf no 10-6 103 

𝑓௦௜௧௘௦,ଵ଴଴௕௣ unitless 11.04 9.421 13.07 yes 1 103 

𝑓௦௜௧௘௦,ଶ଴଴௕௣ unitless 23.22 20.69 26.47 yes 1 103 

𝛽௧௥௔௡௦௙ unitless 2.278 1.857 2.519 yes 10-6 105 

𝑓௦௜௧௘௦,ு஼௏ nM 0.0004136 0.0002634 0.0005161 yes 10-6 103 

𝑘௣௛,௕௔௦௔௟  min-1 0.006799 0.005629 0.008403 yes 10-6 105 

𝑘஼ோ௘௉ min-1 0.0395 0.03314 0.04858 yes 10-6 105 

𝑘௣௛,௉௄ோ min-1 1020 275.1 543.9 yes 10-6 105 

𝐾௣௛,௉௄ோ nM 60.52 0 Inf no 10-6 105 

𝑘ௗ௘௣௛ min-1 0.003571 0.003087 0.004288 yes 10-6 105 

𝐾ௌீ,௉௄ோ nM 841.8 687.5 883.3 yes 10-6 105 

𝑙 unitless 11.25 9.911 12.34 yes 1 50 

𝑘௣௛,஺ nMmin-1 45.94 37.24 57.83 yes 10-6 105 

𝐾௣௛,௉௄ோ nM 0.003542 0 Inf no 10-6 105 

𝐾஺ nM 72.71 61.79 88.17 yes 10-6 105 

𝐾ௌீ,஺ nM 892.8 819 969.6 yes 10-6 105 

𝑘௣௛,் nMmin-1 275.5 168.8 Inf no 10-6 105 

𝐾௣௛,் nM 5195 2639 Inf no 10-6 105 

𝐾் nM 275.9 250.7 305.6 yes 10-6 105 

𝐾ௌீ,் nM 605.4 588.0 622.6 yes 10-6 105 

𝑘௉௥,௢௡ min-1 0.01499 0.01339 0.01701 yes 10-6 105 

𝑘௉௥,௢௙௙ min-1 5619 0 Inf no 10-6 105 

𝑘௦௬௡,௠ nMmin-1 345.6 0 Inf no 10-6 105 

𝑘ௗ௘௚,௠ min-1 0.0035**      

𝑘௦௬௡,ீ஺஽஽ଷସ min-1 200.2 137.2 285.4 yes 10-6 105 

𝑘ௗ௘௚,ீ஺஽஽ଷସ min-1 0.01854*** 0.01516 0.02289 yes 10-4 102 

𝑠௉௄ோ∗,௧௥௔௡௦௙  nM-1 5.652 4.749 7.252 yes 10-4 106 

𝑏௉௄ோ∗,௧௥௔௡௦௙ unitless 1.000 0.9795 1.019 yes 10-4 1.11 

௧௥௔௡௦௙ unitless 0.336 0.3264 0.3454 yes 10-2 1 



 
 

 

 

𝑠௉௄ோ∗,௜௩ nM-1 1.002 0.8928 1.117 yes 10-4 106 

𝑏௉௄ோ∗,௜௩,ସ଴௕௣ unitless 0.3301 0.3270 Inf no 10-4 0.3301 

𝑏௉௄ோ∗,௜௩,ଵ଴଴௕௣ unitless 0.2196 0.1850 Inf no 10-4 0.2196 

𝑏௉௄ோ∗,௜௩,ଶ଴଴௕௣ unitless 0.4959 0.4704 Inf no 10-4 0.4959 

𝑠௘ூிଶఈ∗,ௗ௦ோே஺ nM-1 0.00123 0.001145 0.001323 yes 10-3 103 

𝑏௘ூிଶఈ∗,ௗ௦ோே஺ unitless 0.5945 0.5545 0.6327 yes 10-6 103 

𝑠௘ூிଶఈ∗,஺ nM-1 0.00206 0.001762 0.002422 yes 10-6 105 

𝑏௘ூிଶఈ∗,஺ unitless 0.3213 0.2514 0.4307 yes 10-6 105 

𝑠௘ூிଶఈ∗,் nM-1 0.001146 0.0009139 0.001381 yes 10-6 105 

𝑏௘ூிଶఈ∗,் unitless 0.6228 0.5403 0.702 yes 10-6 105 

𝑠௘ூிଶఈ∗,ீ  nM-1 0.0008348 0.0008114 0.0008587 yes 10-6 105 

𝑏௘ூிଶఈ∗,ீ  unitless 1.00210-6 0 0.001217 no 10-6 105 

𝑠ீ஺஽஽ଷସ,ீ  nM-1 0.009771 0.009426 0.01013 yes 10-6 105 

𝑠ீ஺஽஽ଷସ,்,௞௜௡ nM-1 0.03304 0.0213 0.04735 yes 10-6 105 

𝑠௘ூிଶఈ∗,்,௞௜௡ nM-1 0.0008976 0.0008309 0.000921 yes 10-6 105 

𝑏௘ூிଶఈ∗,்,௞௜௡ unitless 1.00210-6 0 0.2009 no 10-6 105 

𝐺𝐴𝐷𝐷34௘௫,ଵ nM 14.53 9.656 20.20 yes 10-2 103 

𝐺𝐴𝐷𝐷34௘௫,ଶ nM 22.39 16.08 30.84 yes 10-2 103 

𝐺𝐴𝐷𝐷34௘௫,ଷ nM 42.57 24.37 57.33 yes 10-2 103 

𝐺𝐴𝐷𝐷34௘௫,ସ nM 68.49 48.49 88.81 yes 10-2 103 

𝐺𝐴𝐷𝐷34௘௫,ହ nM 105.3 73.07 139.5 yes 10-2 103 

𝐺𝐴𝐷𝐷34௘௫,଺ nM 102.5 70.21 142.5 yes 10-2 103 

𝐺𝐴𝐷𝐷34௘௫,଻ nM 123.1 53.01 193.2 yes 10-2 103 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵ min-1 0.01173 0.007992 0.01728 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଶ min-1 0.01297 0.00972 0.01717 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଷ min-1 0.01468 0.01065 0.02031 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ସ min-1 0.01521 0.01082 0.02155 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ହ min-1 0.01529 0.01103 0.02127 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡଺ min-1 0.02002 0.0124 0.03234 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡଻ min-1 0.02137 0.01511 0.03026 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡଼ min-1 0.02350 0.01374 0.03949 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଽ min-1 0.02924 0.01878 0.04582 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵ଴ min-1 0.03001 0.01961 0.04593 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵଵ min-1 0.04581 0.02745 0.07559 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵଶ min-1 0.04843 0.02905 0.0814 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵଷ min-1 0.05189 0.03025 0.08741 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵସ min-1 0.08617 0.05138 0.143 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵହ min-1 0.08899 0.05422 0.1431 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵ଺ min-1 0.1344 0.08084 0.2176 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵ଻ min-1 0.4212 0.1064 0.6430 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵ଼ min-1 0.7110 0.1938 1.0627 yes 10-6 105 

𝑃𝐾𝑅_𝑎𝑐𝑡ଵଽ min-1 1.256 0.3796 1.8443 yes 10-6 105 



 
 

 

* In absence of time-resolved p-PKR measurements, we only estimated parameters  𝑘𝑝,𝑜𝑛 and 
and 𝑘𝑑,𝑜𝑛, while keeping parameters 𝑘𝑑,𝑜𝑓𝑓 and 𝑘𝑑,𝑜𝑓𝑓 fixed to 1𝑚𝑖𝑛ିଵ. By model simulations for 
an integration time of 3 days, we enforced steady states and determined parameter ratios  
𝑘𝑝,𝑜𝑛/𝑘𝑝,𝑜𝑓𝑓  and 𝑘ௗ,௢௡/𝑘ௗ,௢௙௙. 
 ** The kinetic parameter for GADD34 mRNA degradation was fixed to 𝑘ௗ௘௚,௠ ൌ
0.0035𝑚𝑖𝑛ିଵ as previously reported (45).  
*** The kinetic parameter for GADD34 protein degradation, 𝑘ௗ௘௚,ீ஺஽஽ଷସ ൌ 0.01854𝑚𝑖𝑛െ1 was 
independently fitted (section ‘GADD34 degradation model’ in Supplementary Text) and fixed to 
this value for fitting the deterministic model of the integrated stress response. 
 
 

Movie S1. 

HCV-induced SG-On and SG-Off phases in Huh7 YFP-TIA1 cells treated with 100 IU/ml IFN-
α.   

Movie S2. 

HCV-induced SG-On and SG-Off phases in Huh7 YFP-TIA1 cells.   

Movie S3. 

HCV-induced SG-On and SG-Off phases in Huh7 YFP-TIA1 cells overexpressing PKR. 
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