Design of stable and self-regulated microbial consortia for chemical synthesis

Li et. al

Supplementary Fig. 1. Growth of glycerol-utilizing strain Bgly1 and glucose-utilizing strain Bglc1 in glucose and glycerol media, respectively. Data shown are mean \pm s.d. (n = 3 independent experiments). Source data are provided as a Source Data file.

Supplementary Fig. 2. Growth of Bglc2 in culture media supplemented with different amino acids. a Growth with glutamate at different concentrations, b Growth with 2 g/L of each amino acid. Data shown are mean \pm s.d. (n = 3 independent experiments). Source data are provided as a Source Data file.

Supplementary Fig. 3. Growth curves of Bgly2 in culture media supplemented with different combinations of carboxylic acids at 2 g/L each. Data shown are mean \pm s.d. (n = 3 independent experiments). Source data are provided as a Source Data file.

Supplementary Fig. 4. Metabolomic analysis of the supernatants of the neutral and the mutualistic cocultures. Samples were taken at 36h. Data shown are mean ± SD (n=3 independent experiments). Source data are provided as a Source Data file.

Supplementary Fig. 5. Biosynthetic pathways of salidroside, coniferol and silybin/isosilybin. Genes: ppc encodes phosphoenolpyruvate carboxylase; pykA/F encodes pyruvate kinase; ppsA encodes phosphoenolpyruvate synthetase; Enzymes: AroG, 3-deoxy-7-phosphoheptulonate synthase; TyrA, prephenate dehydrogenase; TyrB, aromatic amino acid transaminase; TAL, tyrosine ammonia lyase; HpaBC, 4-hydroxyphenylacetic acid 3-hydroxylase; ARO10, ketoacid decarboxylase; ADH6, alcohol dehydrogenase; UGT85A1, glycosyltransferase; Pgm, phosphoglucomutase; GalU, UDP-glucose pyrophosphorylase; 4CL1, 4-coumarate-CoA ligase; CCoAOMT, caffeoyl-CoA O-methyltransferase; CCR, cinnamoyl-CoA reductase; ADH, alcohol dehydrogenase; CHS, chalcone synthase; CHI, chalcone isomerase; F3H, flavanone 3-hydroxylase; APX1, ascorbate peroxidase 1; NOX1, NADH oxidase. Metabolites: PEP, phosphoenolpyruvate; E4P, erythrose 4-phosphate; DAHP, 3-deoxy-7-phosphoheptulonate; CHA, chorismate; PYR, pyruvate; L-GLU, L-glutamate; G6P, glucose-6-phosphate; G1P, glucose-1-phosphate; UDP-glucose, uridine diphosphate glucose.

Supplementary Fig. 6. Comparison of salidroside production in the monoculture and the coculture. a Curves of carbon sources consumption, **b** Salidroside yields, **c** Salidroside titers, **d** Curves of cell growth. Strain BW-Sal was used in the monoculture while strains Bgly2-Tyr/Bglc2-Sal were used in the coculture. The IIR of the coculture is 1:1. Data shown are mean ± SD (n=3 independent experiments). Source data are provided as a Source Data file.

Supplementary Fig. 7. Continuous passage cultivation of the mutualistic coculture. a Salidroside titers, and b Population composition of each subculture. Data shown are mean \pm SD (n=3 independent experiments). Source data are provided as a Source Data file.

Supplementary Fig. 8. Responsiveness of DmpR and NahR biosensors to different phenolic compounds. a DmpR to caffeate, b NahR to caffeate, c DmpR to phenol and d DmpR to L-dopa, tyrosine and *p*-coumaric acid. Data shown are mean \pm s.d. (n = 3 independent experiments). Source data are provided as a Source Data file.

Supplementary Fig. 9. Production of coniferol and taxifolin from caffeate. Strains BW21513 (pZE-CA4C) and BW21513 (pZE-CCF4) were used. Caffeate (500 mg/L) was fed to the cell cultures, and samples were taken at 48 h. The Data shown are mean \pm s.d. (n = 3 independent experiments). Source data are provided as a Source Data file.

Supplementary Fig. 10. Two examples of the flow cytometry results. a Analysis of the population composition with green and red fluorescence. **b** Analysis of the population composition with/without red fluorescence. SSC-A, Side Scatter-Area; FITC-H, Fluoresce in Isothiocyanate-Height; PC5.5-A, Phycoerythrin Cyanin 5-Area.

Supplementary Fig. 11. ESI-MS results of silybin/isosilybin. a The standard, **b** The sample. Source data are provided as a Source Data file.

Supplementary Fig. 12. Standard curves of the related compounds in HPLC. a Tyrosine, b Tyrosol,
c Salidroside, d Caffeate, e Coniferol, f Taxifolin, g Silybin/isosilybin, h Glucose and i Glycerol.
Source data are provided as a Source Data file.

Strains	Description	Source
BW25113	$rrnBT14 \Delta lacZWJ16 hsdR514 \Delta araBADAH33$	Coli genome
	$\Delta rhaBADLD78$	stock center
BW25113 $\Delta pykAF$	BW25113 $\Delta pykA\Delta pykF$	1
Bgly1	$BW25113\Delta pykA\Delta pykF\Delta ptsG\Delta glk\Delta manXYZ$	This study
Bglc1	BW25113 $\Delta glpk$	This study
Bgly2	$BW25113\Delta pykA\Delta pykF\Delta ptsG\Delta glk\Delta manXYZ\Delta ppc$	This study
Bglc2	BW25113 $\Delta glpk\Delta gdhA\Delta gltBD$	This study
Bgly1-Tyr	Bgly1, pZE12-luc and pCS-TPTA and pSA-mcherry	This study
Bglc1-Sal	BGlc1, pZE-ugt85A1 and pCS-pg and pSA-AA	This study
Bgly2-Tyr	Bgly2, pZE12-luc and pCS-TPTA and pSA-mcherry	This study
Bglc2-Sal	Bglc2, pZE-ugt85A1 and pCS-pg and pSA-AA	This study
BW-Sal	BW25113\DeltapykAF, pZE-ugt85A1 and pCS-TPTA-pg and	This study
	pSA-AA	
Bgly2-Caf	Bgly2, pZE-TAL and pCS-TH and pSA-mcherry	This study
Bglc2-Con	Bglc2, pZE-CA4C and pCS27 and pSA-eGFP	This study
Bglc2-ConDmpR	Bglc2, pZE-CA4C and pCS27 and pSA-P _{dmp} -GS-P _{J23101} -dmpR	This study
Bglc2-Sil	Bglc2, pZE-CA and pCS-CF4C-PJ23101-CA and	This study
	pSA-P _{dmp} -GS-P _{J23101} -DN	
Bglc2-Con(b)	Bglc2, pZE12-luc and pCS-4C-PJ23101-CA and pSA-eGFP	This study
Bglc2-Sil(b)	Bglc2, pZE-CA and pCS-CF4 and pSA-P _{dmp} -GS-P _{J23101} -DN	This study

Supplementary Table 1. Strains used in this study.

Plasmids	Description	Source
pZE12-luc	P_LlacO1 , <i>colE ori</i> , <i>luc</i> , Amp^R	1
pCS27	P _L lacO1, <i>P15A ori, Kan^R</i>	1
pSA74	P _L lacO1, <i>pSC101 ori</i> , <i>Cl^R</i>	1
pCS-TPTA	pCS27, tyrA, ppsA, tktA and aroG from E. coli	1
pSA-mcherry	pSA74, mcherry	This study
pZE-ugt85A1	pZE12-luc, ugt85A1 from Arabidopsis thaliana	This study
pCS-pg	pCS27, <i>pgm</i> and <i>galU</i> from <i>E. coli</i>	This study
pSA-AA	pSA74, aro10 and adh6 from Saccharomyces cerevisiae	This study
pZE-TAL	pZE12-luc, tal from Rhodobacter glutinis	2
pCS-TH	pCS27, tyrA, ppsA, tktA, aroG and hpaBC from E. coli	1
pZE-CCF4	pZE12-luc, chs from Petunia x hybrida, chi from Medicago sativa, f3h from Camellia sinensis and 4cl1 from A. thaliana	This study
pZE-CA4C	pZE12-luc, <i>ccr</i> from <i>Leucaena leucocephala, adh</i> from <i>S.cerevisiae, 4cl1, ccoaomt</i> from <i>A. thaliana</i>	2
pSA-eGFP	pSA74, <i>egfp</i>	This study
pSA- PJ23101-dmpR	pSA74, PJ23101 promoter, <i>dmpR</i> from <i>Pseudomonas CF600</i>	This study
pSA- P _{J23101} -nahR	pSA74, P _{J23101} promoter, <i>nahR</i> from <i>Pseudomonas putida</i>	This study
pZE-P _{dmp} -eGFP	pZE12-luc, <i>egfp</i> with P _{dmp} promoter	This study
pZE-P _{nah} -eGFP	pZE12-luc, <i>egfp</i> with P _{nah} promoter	This study
pSA-P _{dmp} -GS-P _{J23101} -dmpF	This study	
pSA-P _{dmp} -GS-P _{J23101} -DN	pSA74, <i>gdhA</i> ssrA with P_{dmp} promoter, <i>dmpR</i> and nox1 (from <i>Lactococcus lactis</i>) with P_{J23101} promoter	This study
pZE-APX1	pZE12-luc, apx1 from Silybum marianum	This study
pCS-P _{lac} -CF4C-P _{J23101} -CA	pCS27, <i>chi</i> , <i>f3h</i> , <i>4cl</i> 1 and <i>ccoaomt</i> with P_{lac} promoter, <i>ccr</i> and <i>adh</i> with P_{J23101} promoter	This study
pZE-CHS	pZE12-luc, chs	This study
pCS-CF4	pCS27, <i>chi</i> , <i>f3h</i> and <i>4cl1</i>	This study
pZE-CA	pZE12-luc, chs and apx1	This study
pCS-4C-PJ23101-CA	pCS27, 4cl1 and ccoaomt with P_{lac} promoter, ccr and adh with P_{J23101} promoter	This study
pSA-P _{J23101} -NOX1	pSA74, nox1 with PJ23101 promoter	This study

Supplementary Table 2. Plasmids used in this study.

Supplementary references

1. Li, X. et al. Establishing an artificial pathway for efficient biosynthesis of hydroxytyrosol. *ACS Synth Biol* **7**, 647-654 (2018).

2. Chen, Z., Sun, X., Li, Y., Yan, Y. & Yuan, Q. Metabolic engineering of *Escherichia coli* for microbial synthesis of monolignols. *Metab Eng* **39**, 102-109 (2017).