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Reviewer comments, first version: 
 
Reviewer #1 (Remarks to the Author: Overall significance): 
 
The paper titled " ME-VAE: Multi-Encoder Variational AutoEncoder for Controlling Multiple 
Transformational Features in Single Cell Image Analysis" by Luke Ternes and colleagues describes a 
novel computational model called Multi-encoder VAE (ME-VAE) for single cell image feature 
extraction that removes specified uninformative features by making them uniform and invariant 
across the reconstructions, using modified pairs of transformed input and output images by self-
supervised transformation, and utilizing multiple encoding blocks. Using the ME-VAE to control for 
these multiple transformational features, the authors are able to extract biologically meaningful and 
transform-invariant single cell information and better separate heterogeneous cell types. The 
approach is novel, aims to address an important problem, and results in improved downstream 
results compared to the Standard VAE using no informed transformations. The authors also illustrate 
the ability of ME-VAE for multi-modal integration and comparison. 
 
Reviewer #1 (Remarks to the Author: Impact): 
 
I do think this is an important paper but it needs major revisions (as I detail below) and seems more 
appropriate for Nature Comp Sci or Comms Biology. However, if the authors make the changes 
suggested and do a great job it could be appropriate for Nature Comms. 
 
Reviewer #1 (Remarks to the Author: Strength of the claims): 
 
There are key limitations to this work, first the lack of details pertaining to generalizability and 
scalability, and the reduced clarity in presentation of the data, along with incomplete explanation of 
figures and equations. The manuscript feels rushed and not quite ready for submission, adding to 
the lack or clarity and readability. 
 
I highlight other concerns below that I think should be addressed. 
 
1. The first limitation is the lack of generalizability to other emerging multiplexed technologies such 
as CODEX, or MIBI. 
As mentioned in the introduction, there are upcoming multiplexed imaging technologies. In the 
current work, the authors only show ME-VAE on CYCIF data. For generalizability of such novel 
methods, it is essential to demonstrate ME-VAE on one other imaging technology. There is public 
data available for both CODEX and MIBI. For example see: 
https://portal.hubmapconsortium.org/docs/assays/codex and https://www.angelolab.com/mibi-
data 
 
2. In the last section of Results (A), the authors mention about generalizability and scalability. To 
address generalizability, please refer to comment #1. To address scalability, please show runtime 
benchmarks of ME-VAE against Standard VAE for one of the experiments (e.g. between Figure 1c - e) 
 
3. Regarding known controllable transformations: The results are shown for features that are known 
controllable transformations. These are then used as self-supervision to extract invariant features 
during model training. What about the case of noise-induced transformations that are unknown? 
Further, some of the known uninformative transformations such as rotation and polar orientation 
are not independent features. How do we know that these uninformative features are not getting 



 

mixed across encoders? 
 
4. Size and shape of a cell are important and informative features. For example, depending on the 
tissue being imaged and the context, certain cell types are larger than others (e.g. macrophages), or 
they might have a certain shape (spindle-like). This information is essential to be able to segregate 
them. Is it then justifiable to convert these features to being uniform and invariant across 
transformations? 
 
5. The crux of this work relies on transformed image pairs. What are these image pairs – an input 
image and its transformed output? Or are these the two transformed images, one for rotation and 
one for polar orientation? 
 
6. Figure 2: 
 
a. Legend says ‘Rotation angle of cells are shown in UMAP embedding to show the influence of 
unimportant features on downstream analysis’. Where is this shown in the figure? 
b. For Figure 2b, what is the input to k-means? Also mention what each dot is in the UMAP or k-
means plot. How many dots are shown in the figure? 
c. What are regional cell images (e.g. in Figure 2b, c)? The blue square seems to have many dots 
whereas the zoomed in regional cell image shows 25 cells. Please also provide one higher resolution 
color image, with an explanation of biologically relevant features (stain localization, intensity, and 
subcellular pattern) within this zoomed-in regional cell image. 
d. What are the radial slopes for Figure 2c. Since this is computed by fitting a regression line, how 
can a same/similar slope distinguish similar distributions for different cell types? 
e. ‘The cluster purities from radial slope metrics, however, are still lower than the full ME-VAE 
cluster purity, indicating more features beyond the radial slope are being extracted from ME-VAE’: Is 
this really a case of more features or is this a case of ME-VAE being overfit to the ‘noise’ that got 
extracted? 
7. Figure 3: ‘Size does show some distribution in the UMAP’: Please highlight this in Figure 3, 
Supplementary 3b 
 
8. In Figure 4a (bottom), each column is a cluster and is identified by a set of differentially expressed 
markers. Why is then each row showing a different set of differentially expressed markers per 
column? Same comment for Supplementary Figure 4 
 
9. Please give an example of ‘morpho-spatial profiles’ (mentioned in Results D) 
 
10. Supplemental Figure 4b: Please highlight or mention in the legend the row/column number 
where the following is observed: a ‘single aggregated feature that shows significant correlations 
shows correlates to every RPPA pathway activity profile (Supplemental Figure 4b). Second, there is a 
single RPPA pathway that correlates to every standard VAE aggregated feature.’ 
 
11. In Results D, please add citations for ‘known biology’, ‘known literature’. 
 
12. In the Discussion, there is mention of ‘augmenting’ the model. What would an example for an 
augmented feature be and how would this be transformed for the ME-VAE 
 
13. How reliable was the EGFR channel for segmentation? For cells where the EGFR signal is not 
clear, would it not help to identify such cells by using additional nuclear markers for segmentation? 
For the extended dataset, was the segmentation again done using only the EGFR channel? If only 
EGFR was used, why was this the case? 



 

 
14. Figure 5: ‘ME-VAE features used for comparison were the features with largest correlation to the 
respective CYCIF marker’. Why not compare CYCIF with the ME_VAE clustered (aggregate) features? 
The authors already point out that they do hierarchical clustering on the ME-VAE feature ‘to reduce 
the feature dimensionality and reduce spurious correlations in the biological findings. 
a. This comparison would also give an idea of how the clustered features look like 
b. Further, how many ME-VAE and Standard VAE features were there? 
c. Is there any close correspondence between the z-scores in either column per row? 
 
15. ‘ME-VAE encoding features were restricted to 18 single features for each’. Does this mean that 1 
ME-VAE feature = 18 single features? If this is the case, how were 18 single features assigned to one 
ME-VAE feature? 
 
16. Equations in Methods B: Please explain all the variables and what the equations do. 
 
17. Figure 1: Mention the data used, number of cells etc. in the Figure legend. 
 
18. What are the data dimensions for the RPPA dataset? 
 
19. There are two cell numbers reported – 71314 and 73,134. Is the former after pre-processing the 
images? 
 
 
20. C. Evaluation metrics: Explicitly state how the slope was calculated: was it using the \beta from 
the regression equation? 
 
21. Which clustering method was used from the seaborn clustermap function? 
 
22. Please spell check the document. There are typographical errors relating to words e.g. decrease, 
separability, reconstruction, hierarchical, python, spearman, as well as word repeats. 
 
23. Supplemental Fig 4: correct the text to reflect Standard VAE. 
 
24. Figure 5: specify which type of ANOVA was used, and what was the p-value or F-statistic and 
depict this in a figure. 
 
Reviewer #1 (Remarks to the Author: Reproducibility): 
 
The authors do host the code on GitHub and provide appropriate documentation. 
 
Reviewer #2 (Remarks to the Author: Overall significance): 
 
Ternes et al. propose an extension of the classical VAE (variational autoencoder) for single cell image 
analysis for the purpose to extract biologically more meaningful latent representation of the input 
images. The main motivation is that the vanilla VAE tends to identify non-biological images features 
present in the dataset, such as rotation, scale etc, which can be viewed as confounding factors/ 
biases in the training dataset. The authors propose a method, called ME-VAE, to remove these non-
informative features from the latent representation, hoping that the resulting new latent 
representation can lead to a better clustering or characterization of cell types/states. 
The main idea behind ME-VAE is data normalization plus data augmentation. It generates a new set 
of target images that have been properly normalized, corrected based on a given set of predefined 



 

transformations. It then trains the model with random transformations of the input images, forcing 
the model to learn to ignore these transformations and focus on biological more meaningful 
features. The authors demonstrated that ME-VAE was able to yield biologically more meaningful 
representations than VAE through clustering and correlation analysis. 
 
 
Reviewer #2 (Remarks to the Author: Impact): 
 
It seems to me a more focused, specialized journal is more appropriate for this manuscript. 
 
Reviewer #2 (Remarks to the Author: Strength of the claims): 
 
Although the work is potentially interesting, I have the following major concerns: 
 
1. The authors focus on comparing ME-VAE to vanilla VAE. However, this is highly biased for several 
reasons. First, there are several other recent works on single cell image analysis that have not been 
properly discussed, and certainly not experimentally compared. I highly recommend the authors 
take a close look at the methods described in the following paper and carry out a thorough 
comparison analysis against these existing methods. 
 
MCMICRO: A scalable, modular image-processing pipeline for multiplexed tissue imaging by Schapiro 
et al. 
 
Second, going back to the VAE method itself, it is well known that VAE does not handle confounding 
factors well. There are many existing works on how to correct confounding factors on VAE. Some of 
these methods have also been proposed for single cell genomic data analysis. A few references 
include: 
 
Moyer, D. et al. (2018) Invariant representations without adversarial training. Advances in Neural 
Information Processing Systems, 31, 9084–9093. 
 
Deep Generative Modeling for Single-cell Transcriptomics, Romain Lopez et al, Nature Methods, 
2018 
 
Cao et al, SAILER: Scalable and Accurate Invariant Representation Learning for Single-Cell ATAC-Seq 
Processing and Integration, 2021 
 
Although they are applied to different types of datasets, the methods themselves can be applied to 
single cell image analysis as well. Instead of comparing with vanilla VAE, the author should compare 
with these more recent extensions of VAEs. 
 
2. It’s also unclear to me why VAE is a good method for single cell image analysis. VAE is a generative 
model. The Gaussian prior applied on the latent variable tends to pull all representations toward the 
origin, and consequently reduces the separation between different cell types. The authors should 
provide a justification on why VAE is a good model for single cell analysis, and why it is better than a 
simpler denoise auto-encoder, the non-generative model. 
 
3. The approach works for pre-defined, well-known confounding factors such as rotation, scale. But 
what about latent features not associated with a well-defined transformation? It is well known that 
deep learning models tend to pick up correlated features that are not biologically meaningful. How 
do you plan to handle these features, which are a) not known beforehand, and b) may not be 



 

associated with a rigid simple transformation. 
 
4. Because the current model doesn’t address batch effect, the better clustering shown in Figure 2 
can potentially be associated with the batch effect. I would recommend testing the model on 
biological replicates of the same cell types to show that cells of the same type from different batches 
are mixed. 
 
5. I would also like to see the results from the samples not in the training dataset. If the features are 
truly biologically meaningful, I would expect to see similar results on these samples as well. 
 
6. Regarding the method itself, the authors should compare with the vanilla VAE using 
normalized/corrected images, that is, applying VAEs on normalized images instead of raw images. 
 
7.Please use standard metrics such as ARI, NMI to evaluate clustering qualities. 
 
8. I also highly recommend the authors to test the method on a separate, ideally public dataset. 
 
Some minor comments: 
1. The description of VAE models in Method B should be substantially improved. Notations are non 
standard. Variables are often not defined or not referenced. Equations are unlabeled, and which loss 
function is for which model is not mentioned. Equation of L_e seems to use terms T_i^{-1}. 
 
2. The ELBO of VAE contains a reconstruction term and a KL-divergence term encouraging 
smoothness of the latent space. The KL term seems to be missing from the loss functions. 
 
3. Since the vanilla VAE uses isotropic Multivariate Gaussian for prior, the KL term will facilitate 
different dimensions of latent z to be independent with each other. Later proposed disentanglement 
methods would further facilitate this independence to ensure that traversal along each dimension 
means interpretable data generation. This seems to be controversial to analysis in Fig. 4, where 
different latent features show strong correlations to each other. 
Is there an automatic/systematic way of inferring metric for better separation of populations? 
 
 
4. Line 331 “All models were trained for 10 epochs on the NVIDIA P100 with 100GB of memory”. 
Please justify 10 epochs. 100GB GPU mem is clearly incorrect. 
 
Reviewer #2 (Remarks to the Author: Reproducibility): 
 
The main idea behind the method is straightforward. However, the code/implementation cannot be 
evaluated without sufficient details. 
 
Github link https://github.com/GelatinFrogs/ME-350VAE_Architecture is broken. 
 
Reviewer #3 (Remarks to the Author: Overall significance): 
 
Ternes et al. present multi-encoder variational autoencoder (ME-VAE) architecture for learning 
informative features from single-cell multi-channel image data. The goal is extremely significant in 
the field of bioimage analysis. Various approaches have been suggested during recent years to learn 
unbiased features instead of classical handcrafted features. These approaches enable more 
automated analysis solutions and importantly even robust models that can be applied to different 
datasets. The problem is still unsolved and the manuscript presents one possible solution. The 



 

benefit of the ME-VAE architecture presented is that it does not need any labeled data to learn the 
features such as in supervised learning approaches. However, ME-VAE is dependent on the 
knowledge of the uninformative transformations present in the data so that these can be ruled out 
in different encoding blocks to extract biologically informative representation in single-cell image 
data. Some transformations, such as rotation, are obvious, but often the challenging transformation 
in the data is unknown. As an example, in large datasets, experimental batch effects cause many 
problems for representation learning tasks (and when using classical features as well), and typically 
cannot be well modelled. Thus, the significance to the field is lowered in the current version of ME-
VAE methodology as the users need to know these uninformative transformations present in the 
data. These limitations are taken into account by the authors in the discussion. I still do think this is 
an interesting study and could lead to more practical solutions in the future. Authors also mention in 
discussion that "Future applications of this architecture will allow complex features such as texture, 
patterns, and distribution to be extracted from single cell images without the hassle of disentangling 
dominant uninteresting transform features", so maybe this problem is already being studied by 
them. 
 
Reviewer #3 (Remarks to the Author: Impact): 
 
In its current form, the most appropriate journal could be Communications Biology. Solving the 
limitations listed would improve the impact. 
The manuscript presents one approach to tackle the problem of extracting biologically meaningful 
unbiased features. This is an important topic in the field of bioimage analysis, especially how to learn 
meaningful representation without annotated data. The manuscript presents one approach to solve 
the problem but does not introduce novel ways of thinking in the field. 
 
Reviewer #3 (Remarks to the Author: Strength of the claims): 
 
The major experiments missing from the manuscript are: 
1. The authors compare their ME-VAE method to standard variational autoencoder and also to 
variational autoencoder with corrected output. These comparisons are important to show that ME-
VAE performs better than simpler VAE approaches, however, the main question should be whether 
ME-VAE performs better than currently used approaches. Fig 2a) includes an example of comparing 
two features between two ligands. Later in Fig 2d) the authors present additional feature that is 
inferred from visually going through the data. This single feature presented in Fig 2d gives much 
better separation than standard VAE approach. These classical features should be compared to 
standard and multi-encoder VAE to see how well existing solutions enable separation of clusters. 
 
2. As only two ligands are compared in results presented in Fig 2, I would expect the above 
mentioned classical feature comparison to be included also in Fig 3. 
 
3. In addition to the point made in 2. regarding Figure 3, this experiment including all 6 ligands could 
benefit from quantitative measurements instead of only UMAP visualization. The data could be 
clustered and compared using some clustering performance metric. This evaluation would 
quantitatively show whether the ME-VAE improves currently available methods. 
 
Here are minor corrections suggested to improve the quality of the manuscript: 
4. 
L38: immunofluorence -> immunofluorescence 
L120: clusterizability and serperability: I am not sure if these are proper words 
L170: nucleous -> nucleus 
L176: unformative? 



 

L331: NVIDIA P100 with 100GB memory? Did the P100 really had 100GB GPU memory or the 
computer had 100GB RAM? 
Ref 17 is missing volume and issue information, Ref 18 is missing a title. 
L581: recocnstruction -> reconstruction 
Fig 2.d) The cluster purity pie charts could include labels (Cluster1 left? and Cluster2 right?) 
Suppl. Fig. 3 title: "UMAP clusters" -> should replace clusters with visualization etc. as UMAP does 
not provide clusters, only dimensionality reduction. 
L617: EFGR -> EGFR 
 
Reviewer #3 (Remarks to the Author: Reproducibility): 
 
1. The authors share the code to train ME-VAE model, however, they do not share models trained 
and used to produce results in the manuscript. Or at least I was not able to find these. In addition, 
their code includes only an example version of ME-VAE including two parallel encoding blocks and 
no image data generators to prepare data for these blocks. The authors make a point that these 
global uninformative features are data specific which is true, but it would make reproducibility much 
easier by including the encoding blocks and generators used in the manuscript as an example. 
 

Author rebuttal, first version: 
 
Comments from Reviewer #1 
Summary 
The paper titled " ME-VAE: Multi-Encoder Variational AutoEncoder for Controlling Multiple 
Transformational Features in Single Cell Image Analysis" by Luke Ternes and colleagues describes a 
novel computational model called Multi-encoder VAE (ME-VAE) for single cell image feature 
extraction that removes specified uninformative features by making them uniform and invariant 
across the reconstructions, using modified pairs of transformed input and output images by self-
supervised transformation, and utilizing multiple encoding blocks. Using the ME-VAE to control for 
these multiple transformational features, the authors are able to extract biologically meaningful and 
transform-invariant single cell information and better separate heterogeneous cell types. The 
approach is novel, aims to address an important problem, and results in improved downstream 
results compared to the Standard VAE using no informed transformations. The authors also illustrate 
the ability of ME-VAE for multi-modal integration and comparison.  
 
I do think this is an important paper but it needs major revisions (as I detail below) and seems more 
appropriate for Nature Comp Sci or Comms Biology. However, if the authors make the changes 
suggested and do a great job it could be appropriate for Nature Comms.  
 
There are key limitations to this work, first the lack of details pertaining to generalizability and 
scalability, and the reduced clarity in presentation of the data, along with incomplete explanation of 
figures and equations. The manuscript feels rushed and not quite ready for submission, adding to 
the lack or clarity and readability.  
 
Specific Comments  
Comment 1.1, 1.2, 1.3: 

- The first limitation is the lack of generalizability to other emerging multiplexed technologies 
such as CODEX, or MIBI.  

- As mentioned in the introduction, there are upcoming multiplexed imaging technologies. In 
the current work, the authors only show ME-VAE on CYCIF data. For generalizability of such 
novel methods, it is essential to demonstrate ME-VAE on one other imaging technology. 
There is public data available for both CODEX and MIBI.  



 

For example see:  
• https://portal.hubmapconsortium.org/docs/assays/codex  
• https://www.angelolab.com/mibi-data  

- In the last section of Results (A), the authors mention about generalizability and scalability. 
To address generalizability, please refer to comment #1 

Response: 1.1, 1.2, 1.3: 
- We would like to thank the reviewer for their suggestion for improvement and their 

recommendation of possible datasets. We conducted the additional experimental testing of 
Standard VAE and ME-VAE in a CODEX tissue dataset to demonstrate generalizability to 
other emerging multiplexed technologies. This included normalization, segmentation, tiling, 
and image processing to prepare single cell image tiles for encoding as well as the actual 
analysis with the proposed deep learning architectures. We have added a figure to the 
supplemental showing the ME-VAE’s application compared to Standard VAE in the CODEX 
tissue dataset (Supp Figure 8). The improved clusterability compared to Standard VAE 
illustrates that the architecture has the ability to generalize to other multiplexed 
technologies. The other notable thing about the CODEX dataset is that it is tissue imaging 
data instead of the cell line data used in the main paper, further showing the architecture’s 
ability to generalize for multiplexed tissue imaging dataset. 

 
Comment 1.4: 

- To address scalability, please show runtime benchmarks of ME-VAE against Standard VAE for 
one of the experiments (e.g. between Figure 1c-e) 

Response 1.4: 
- We acknowledge that we did not sufficiently describe scalability and we have addressed this 

in the revised text. Runtimes for all tested architectures including standard VAE, VAE with 
corrected output, additional deep learning models including β-VAE, Invariant C-VAE which 
reviewers suggested for comparison of downstream analysis have been added to Figure 1. 
The results of the time analysis shows that although the ME-VAE is slower than other 
architectures, the amount is negligible, which is expected since the architecture size isn’t 
much bigger than the standard VAE model. 

 
Comment 1.5: 

- Regarding known controllable transformations: The results are shown for features that are 
known controllable transformations. These are then used as self-supervision to extract 
invariant features during model training. What about the case of noise-induced 
transformations that are unknown? Further, some of the known uninformative 
transformations such as rotation and polar orientation are not independent features. How 
do we know that these uninformative features are not getting mixed across encoders? 

Response 1.5: 
- We focus on identifying transform-invariant biologically meaningful features as we know 

that there are uninformative features that drive the observed difference between 
biologically similar images, skewing the results in undesired ways. As stated in the 
discussion, the limitation of the model is that the uninformative feature of interest and its 
transformation must be known. We show that our model is able to remove the 
uninformative features (as shown in Supp Figure 1). Potentially, if there are unknown noise-
induced transformations, they will drive difference and skew the result so we could evaluate 
them and consider them as uninformative features by identifying transformations 
iteratively. For instance, rotation and polar orientation were first observed in Standard VAE 
so that we devise transformed images as a self-supervised signal to remove these 
uninformative features, which is our motivation and key contribution of the proposed work.  

- There are likely countless artifacts and uninformative biological features that will crop up 

https://www.angelolab.com/mibi-data


 

throughout every researcher’s experiments. Designing a model that can correct for all of 
them without prior knowledge would be a monumental if not impossible task, because as 
discussed, the model will not know what is of biological interest or not. As an example, for 
our MCF10A experiments, size/shape were not of biological interest, while for others they 
might be. With the proposed methods it is necessary that the transformations of these 
features are known, but it is an unfortunate truth that if something cannot be calculated, it 
can’t be corrected.  

- To answer non-orthogonal transformation such as rotation and polar orientation, we 
actually evaluate them in Supplemental Figure 1. We observed that controlling for one 
feature does not significantly impact the other dominate transformation features (i.e. polar 
orientation). The VAE with transformed output is shown to work on simple transforms such 
as rotation, but pairs of complex transformations like rotation combined with polar 
orientation prove too difficult. Both the β-VAE and invariant C-VAE also show strong 
correlations as well between the uninformative features we wanted to ignore and the latent 
space (Fig. 1 e/f and Supplemental Figure 1d/e). Finally, when both uninformative features 
are controlled for using the proposed ME-VAE with transformed image pairs, we see a 
decorrelation in both uninformative features, indicating that the VAE reconstructions 
learned to overcome them and focus on underlying features that better separate cell 
populations. As the proposed architecture allows for image pairs (i.e., transformed image 
and the original image) to be randomly and each feature is retained in parallel encoders in a 
self-supervised fashion, artifacts within a polarity correction encoder will not be present in a 
rotation correction encoder and vice versa. 

 
Comment 1.6: 

- Size and shape of a cell are important and informative features. For example, depending on 
the tissue being imaged and the context, certain cell types are larger than others (e.g. 
macrophages), or they might have a certain shape (spindle-like). This information is essential 
to be able to segregate them. Is it then justifiable to convert these features to being uniform 
and invariant across transformations?  

Response 1.6: 
- It is justifiable depending on the context of the analysis being performed. In the cell line 

MCF10A data we were analyzing, shape was not a feature of interest. Moreover, size is an 
easily extractable shape feature that can be captured during cell segmentation and added 
back into analysis later if desired. To address this point, when analyzing the additional 
CODEX dataset, we did not control for size and shape (only controlling for polar orientation 
and rotation). We see good performance of identifying cell phenotypes and are able to 
extract macrophage population (see supplemental figure 8 with high CD68 expression in 
single cluster). The decision to include or exclude uninformative/informative features such 
as size/shape control is for the justification of the user of the ME-VAE to their specific task 
and biological questions. The ME-VAE just enables them to make that choice for a general 
use case. 

 
Comment 1.7: 

- The crux of this work relies on transformed image pairs. What are these image pairs – an 
input image and its transformed output? Or are these the two transformed images, one for 
rotation and one for polar orientation?  

Response 1.7: 
- The proposed ME-VAE takes in a number of transformed input images equal to the number 

of features you are looking to control for. The input to each encoder is transformed such 
that one of the features (rotation/polar orientation/other feature) is randomly changed 
across all images. The output serves as the starting point for all random transformations. It is 



 

transformed such that the features are controlled for prior to random alteration. By doing 
this, we extract meaningful latent representation by removing uninformative features in a 
self-supervised way (i.e., we do not need to teach our deep learning model to correct these 
uninformative features). As we use these known transformations (i.e., rotation and polar) as 
self-supervised signal, ME-VAE can remove these features and extract biologically 
meaningful features.   

 
Comment 1.8: 

- Figure 2: Legend says ‘Rotation angle of cells are shown in UMAP embedding to show the 
influence of unimportant features on downstream analysis’. Where is this shown in the 
figure?  

Response 1.8: 
-  Figure 2 shows the regional cell images throughout the UMAP space, and it 
can be observed that cells within the UMAP space are organized by their rotation angle. Below the 
regional cell images, we’ve also included a plot of the UMAP space colored by the rotation angle to 
illustrate how the effect governs the UMAP embedding. 
 
Comment 1.9: 

- Figure 2b: What is the input to k-means? Also mention what each dot is in the UMAP or k-
means plot. How many dots are shown in the figure?  

Response 1.9: 
- As described in the methods of the paper, k-means clustering was performed on the VAE 

encoding spaces, so the input to k-means was the encodings for each cell. Each dot in UMAP 
and k-means plot is a single cell. The number of dots shown in the figure are the number of 
cells used in the experiment (Sample size of 15,898 for 2 ligand dataset in Figure 2 and 
73,134 for 6 ligand dataset as described in Figure 3). 

 
Comment 1.10 

- What are regional cell images (e.g. in Figure 2b-c)? The blue square seems to have many 
dots whereas the zoomed in regional cell image shows 25 cells. Please also provide one 
higher resolution color image, with an explanation of biologically relevant features (stain 
localization, intensity, and subcellular pattern) within this zoomed-in regional cell image  

Response 1.10: 
- We acknowledge that we did not sufficiently describe this. Regional cell images are 

representative images of cells sampled from various regions of the umap embedding space 
to give visual context to the features that are being separated. The region that is being 
sampled is the blue square, which does contain many cells; however, for display, cells are 
snapped to a grid of 5x5 (with many cells inhabiting the same space) and then one 
representative cell is shown for each point in that grid. More information about the regional 
umap visualization can be found here: https://doi.org/10.1117/12.2512660 

 
Comment 1.11: 

- What are the radial slopes for Figure 2c? Since this is computed by fitting a regression line, 
how can a same/similar slope distinguish similar distributions for different cell types?  

Response 1.11: 
- We believe that the reviewer referred Figure 2d in the original draft (in the revised version 

Figure 2g). Looking at the clusters and cell types extracted from the ME-VAE, we 
qualitatively inferred that a potentially distinguishing feature between the two populations 
is the radial distribution of the stain. So, we handcrafted a feature that was not obvious from 
prior knowledge to attempt to capture what the ME-VAE was encoding. To do this, we 
calculated the slope of the distribution (see Methods C and Supplemental Figure 2) using the 



 

mean intensity at each radial distance and taking the slope. This metric tells us the general 
trend of the stain, i.e. where it is located in the cell and how it changes as it goes from the 
nucleus to the membrane. PBS has a higher radial slope, which indicates that the intensity of 
the stain increases more rapidly toward the membrane, while TGFB has a lower radial slope, 
indicating that it decreases toward the membrane. This can be re-affirmed by looking at the 
sampled images of each populations of figure 2f (previously 2c). The cells show distinct 
localization at different radial locations within the cell. Note that this subcellular feature was 
not captured by simple mean intensity profile and thus we do not observe separation 
between PBS and TGFB (Figure 2a).  

 
Comment 1.12: 

- Figure 2c: The cluster purities from radial slope metrics, however, are still lower than the full 
ME-VAE cluster purity, indicating more features beyond the radial slope are being extracted 
from ME-VAE’: Is this really a case of more features or is this a case of ME-VAE being overfit 
to the ‘noise’ that got extracted?  

Response 1.12: 
- Classification of labels was not included in the loss function of the models; therefore, 

overfitting would not work to separate the ligand conditions. Improvement in classification 
indicates the presence of learned features which the model captured agnostic to the ground 
truth labels of the data. Also, we demonstrated that ME-VAE results inform us hand-crafting 
a new metric to separate two populations better (i.e., initial naïve metrics vs inferred radial 
slope metrics). This confirms and validates the ME-VAE’s encodings in real world biology and 
demonstrates that more than just noise is being extracted. 

 
Comment 1.13: 

- Figure 3: ‘Size does show some distribution in the UMAP’: Please highlight this in Figure 3, 
Supplementary 3b  

Response 1.13: 
- Size intensity profile/distribution in UMAP space is prominently shown in figure 3 (being the 

second listed in the subplots). The size distribution can already be observed in Supplemental 
Figure 3 from the sampled cell images from varying places in UMAP space. 

 
Comment 1.14: 

- In Figure 4a (bottom), each column is a cluster and is identified by a set of differentially 
expressed markers. Why is then each row showing a different set of differentially expressed 
markers per column? Same comment for Supplementary Figure 4  

Response 1.14: 
- With visualization, we are limited to showing a few markers in a single image of a cell. To 

capture as much variation, we showed the same cell with different sets of three markers in 
each row. The columns are the representative cell for each cluster. The choice of markers is 
the same across the columns, but the differences in expression illustrate that each cluster is 
capture differences in expression. 

 
Comment 1.15: 

- Please give an example of ‘morpho-spatial profiles’ (mentioned in Results D)  
Response 1.15: 

- An example of this is given earlier in the same paragraph where we describe ratios of cell 
and nuclear size. Some of the aggregated features exhibit a larger relative nuclear to cell size 
ratio, whereas others exhibit small nuclear to cell size ratio. Also, in Figure 4 b), we reported 
that ME-VAE aggregated features extracted subcellular or compartmental intensity profiles 
to demonstrate an example of ‘morpho-spatial profiles’. 



 

 
Comment 1.16: 

- Supplemental Figure 4b: Please highlight or mention in the legend the row/column number 
where the following is observed: a ‘single aggregated feature that shows significant 
correlations shows correlates to every RPPA pathway activity profile (Supplemental Figure 
4b). Second, there is a single RPPA pathway that correlates to every standard VAE 
aggregated feature.’  

Response 1.16: 
- We would like to thank the reviewer for this suggestion to improve the interpretability of 

our figure. We have pointed this out in the figure description, referring directly to the 
relevant rows and columns. 

 
Comment 1.17: 

- In Results D, please add citations for ‘known biology’, ‘known literature’.  
Response 1.17: 

- All examples of known biology and known literature in this section are followed with a 
citation (see Stat3, cyclinD1, and p21 examples in text). The only one that does not is where 
we state DAPI is correlated to DNA pathway. Since DAPI is a marker for DNA, we found this 
correlation self-explanatory. We have rephrased this sentence to better illustrate what we 
were attempting to convey. 

 
Comment 1.18: 

- In the Discussion, there is mention of ‘augmenting’ the model. What would an example for 
an augmented feature be and how would this be transformed for the ME-VAE  

Response 1.18: 
- What we are describing here is not augmenting a cell feature. What we are describing is 

augmentations that can be added to the model itself in future iterations of the ME-VAE to 
improve its efficacy with new developments in the computer vision community. In the text 
we give the example of augmenting it with a discriminator, which is an adversarial network 
occasionally added onto the standard VAE used to improve reconstruction quality. The point 
we are trying to make here is that the concept of the ME-VAE is versatile not only is it easily 
amenable to future improvements with new discoveries such as novel loss functions, but it 
can also be worked into new or existing deep learning architectures fairly easily. Since it is a 
simple to implement concept using existing pieces architecture blocks, other forms of Deep 
Learning can implement the concept into their architectures as well. 

 
Comment 1.19: 

-  How reliable was the EGFR channel for segmentation? For cells where the EGFR signal is not 
clear, would it not help to identify such cells by using additional nuclear markers for 
segmentation? For the extended dataset, was the segmentation again done using only the 
EGFR channel? If only EGFR was used, why was this the case?  

Response 1.19: 
- Segmentation was done simultaneously for the entire dataset, and it was done only once. 

For whole cell segmentation, CellPose utilizes two channels (one of which is always nuclear), 
so the segmentation used EGFR and DAPI. The manuscript has been updated to better 
convey this. EGFR was chosen because it produced the highest quality segmentations of the 
manually annotated test segmentation set. This data and justification were not included as 
the purpose of this paper is not in the segmentation approach. For an additional experiment 
with CODEX dataset, Mesmer segmentation pipeline on the Hoechst and CD71 markers 
because this qualitatively produced the best results. 

 



 

Comment 1.20: 
- Figure 5: ‘ME-VAE features used for comparison were the features with largest correlation 

to the respective CYCIF marker’. Why not compare CYCIF with the ME-VAE clustered 
(aggregate) features? The authors already point out that they do hierarchical clustering on 
the ME-VAE feature ‘to reduce the feature dimensionality and reduce spurious correlations 
in the biological findings. This comparison would also give an idea of how the clustered 
features look like.  

Response 1.20: 
- We acknowledge that we did not fully support this claim. To address this concern, a similar 

figure to figure 5 but using the Aggregated features has been added to the Supplemental 
Figure 8. We are not as worried about spurious correlations in the figure since the purpose is 
to show larger statistical separation of cell populations and not the correlation to CYCIF 
markers. Looking at the aggregated features, we do see slightly less significance compared 
to the single features (which is expected since aggregated features will average out some of 
the signal), but the overall separations are still shown to be greater consistently than the 
CYCIF markers. 

 
Comment 1.21: 

- Figure 5: Further, how many ME-VAE and Standard VAE features were there? Is there any 
close correspondence between the z-scores in either column per row?  

Response 1.21 
- There were 512 features for each; however, Standard VAE is not shown in figure 5, only the 

ME-VAE. Due to other comments a new figure showing the same results with the set of 10 
ME-VAE aggregated features (Supplemental Figure 7). The features that were selected were 
those with the largest single cell correlation in z-score expression between CYCIF intensity 
and VAE Encoding. 

 
Comment 1.22: 

- ME-VAE encoding features were restricted to 18 single features for each’. Does this mean 
that 1 ME-VAE feature = 18 single features? If this is the case, how were 18 single features 
assigned to one ME-VAE feature?  

Response 1.22 
- No.  For more interpretable and visualizable analysis, the 512 features were restricted to 18 

chosen features for each analysis. As detailed in the methods, the features were chosen to 
optimize a cluster variability function (also shown in methods). 

 
Comment 1.23: 

- Equations in Methods B: Please explain all the variables and what the equations do.  
Response 1.23: 

- We acknowledge that we did not sufficiently describe this. The loss equations for each VAE 
architecture have been re-written and all variables are properly defined. As described in the 
methods, these equations are the loss function used for training the models (it is the 
function the model is trying to optimize). For reproducibility, we have also added the code 
with precise implementation, further details describing variables and equations, as well as 
shared trained models with parameters in Github.   

 
Comment 1.24: 

- Figure 1: Mention the data used, number of cells etc. in the Figure legend 
Response 1.24: 

- The relevant information has been added to the figure legend. 
 



 

Comment 1.25: 
- What are the data dimensions for the RPPA dataset?  

Response 1.25: 
- The RPPA dataset consisted of 295 original protein markers which were aggregated to 9 key 

pathways. The dataset was done in bulk on 6 ligand populations with 3 replicates for each, 
totaling 18 datapoints. (Exact plotting and analysis of these datapoints is detailed and shown 
in supplemental figure 10). 

 
Comment 1.26: 

- There are two cell numbers reported – 71314 and 73,134. Is the former after pre-processing 
the images?  

Response 1.26: 
- We apologize for the typo error. There are 6 instances of 73,134 being used and only one 

instance of 71314 be used. This was a typo and has been fixed. 
 
Comment 1.27: 

- C. Evaluation metrics: Explicitly state how the slope was calculated: was it using the \beta 
from the regression equation?  

Response 1.27: 
- We apologize that this was left unclear and thank the reviewer for the opportunity to clarify. 

As is described in Methods C and Supplemental Figure 2, the scipy linregress terminology for 
function outputs is slope and intercept. Here we used the slope as the metric and ignored 
the intercept. We have clarified this in the revised manuscript. 

 
Comment 1.28: 

- Which clustering method was used from the seaborn clustermap function? 
Response 1.28: 

- We apologize that this was left unclear and thank the reviewer for the opportunity to clarify. 
The default hierarchical clustering method (Euclidean) was used. This has been clarified in 
the revised manuscript. 

 
Comment 1.29: 

- Please spell check the document. There are typographical errors relating to words e.g. 
decrease, separability, reconstruction, hierarchical, python, spearman, as well as word 
repeats.  

Response 1.29: 
- We apologize for typographical errors. We have addressed this in the revised text. 

 
Comment 1.30: 

- Supplemental Fig 4: correct the text to reflect Standard VAE.  
Response 1.30: 

- This has been fixed in the revised text. 
 
Comment 1.31: 

- Figure 5: Specify which type of ANOVA was used, and what was the p-value or F-statistic and 
depict this in a figure.  

Response 1.31: 
- The Anova was performed through python statsmodels package using type 2 anova 

calculating the F-statistic. This has been clarified in the text. We have added Anova F-statistic 
scores to the figure. 

 



 

Comments from Reviewer #2 
Summary 
 
Ternes et al. propose an extension of the classical VAE (variational autoencoder) for single cell image 
analysis for the purpose to extract biologically more meaningful latent representation of the input 
images. The main motivation is that the vanilla VAE tends to identify non-biological images features 
present in the dataset, such as rotation, scale etc, which can be viewed as confounding factors/ 
biases in the training dataset. The authors propose a method, called ME-VAE, to remove these non-
informative features from the latent representation, hoping that the resulting new latent 
representation can lead to a better clustering or characterization of cell types/states.  
 
The main idea behind ME-VAE is data normalization plus data augmentation. It generates a new set 
of target images that have been properly normalized, corrected based on a given set of predefined 
transformations. It then trains the model with random transformations of the input images, forcing 
the model to learn to ignore these transformations and focus on biological more meaningful 
features. The authors demonstrated that ME-VAE was able to yield biologically more meaningful 
representations than VAE through clustering and correlation analysis.  
 
Specific Comments  
 
Comment 2.1: 

- It seems to me a more focused, specialized journal is more appropriate for this manuscript.  
Response 2.1 

- We propose a novel deep learning approach for single cell image analysis and demonstrate 
that the proposed method improves analysis by making distinct cell populations more 
separable compared to traditional and current VAE architectures. We also observe that the 
proposed method improves correlation to other analytic modalities by enhancing 
phenotypic differences between cells. As there are many naïve applications of standard VAE 
in bioimaging dataset and single cell multiplexed imaging analysis currently relies solely on 
mean intensity profiles, we believe that our manuscript of significant interest is appropriate 
and timely important topic for this journal. 

 
Major Comments  
 
Comment 2.2: 

- The authors focus on comparing ME-VAE to vanilla VAE. However, this is highly biased for 
several reasons. First, there are several other recent works on single cell image analysis that 
have not been properly discussed, and certainly not experimentally compared. I highly 
recommend the authors take a close look at the methods described in the following paper 
and carry out a thorough comparison analysis against these existing methods.  

• MCMICRO: A scalable, modular image-processing pipeline for multiplexed tissue imaging by 
Schapiro et al.  
Response 2.2: 

- We have added several comparison methods to our analysis (see updated Figure 2, Results 
A/B and Methods A/C). Included among these are two modified VAE architectures and more 
classically extracted features. MCMICRO allows modular and sequential steps to perform 
analysis on multi-channel images, but it generates image segmentation and cellular features 
(mainly mean pixel intensity, i.e., protein expression) primarily. Note that the proposed 
approach in this paper focuses on identifying suitable representations that capture complex 
imaging features instead of using classical cellular features. We also compare classical 
cellular features one could extract from MCMICRO pipeline with VAE features in both Figure 



 

2 and Figure 5 by demonstrating separability of ligands condition. 
 
Comment 2.3, 2.8: 

- Second, going back to the VAE method itself, it is well known that VAE does not handle 
confounding factors well. There are many existing works on how to correct confounding 
factors on VAE. Some of these methods have also been proposed for single cell genomic 
data analysis. A few references include:  

• Moyer, D. et al. (2018) Invariant representations without adversarial training. Advances in Neural 
Information Processing Systems, 31, 9084–9093.  
(github: https://github.com/dcmoyer/invariance-tutorial/blob/master/tutorial.ipynb) 
• Deep Generative Modeling for Single-cell Transcriptomics, Romain Lopez et al, Nature  
Although they are applied to different types of datasets, the methods themselves can be applied to 
single cell image analysis as well. Instead of comparing with vanilla VAE, the author should compare 
with these more recent extensions of VAEs.  

- Regarding the method itself, the authors should compare with the vanilla VAE using 
normalized/corrected images, that is, applying VAEs on normalized images instead of raw 
images.  

Response 2.3, 2.8: 
- We have received many comments asking for comparisons to many different methods from 

each author. This response seeks to addresses all those comments at once since they are 
asking the same thing.  From the reviewers’ recommendations and from the list of other 
architectures we describe among the prior works, we have selected a few additional 
comparisons to add to our analysis. We adapted and implemented them to fit the design 
constraints of this experiment, including matching the architecture depth/size. The 
comparison is done in Figure 1 and 2 to perform the task of removing uninformative 
features from the encoding space and of separating 2 ligand populations with a single 
channel image.  

- We see that most do not perform much better than a Standard VAE in this context, and 
although the invariant C-VAE by Moyer, D. et al. recommended by the reviewer performs 
somewhat better, it does not as perform as well as the ME-VAE. This demonstrates that the 
proposed method outperformed the existing methods reported in references and suggested 
by the reviewers. For subsequent analysis beyond this figure, we decided it was unnecessary 
to perform the other methods in the larger dataset since they already performed worse than 
the ME-VAE in the restricted dataset. In total, the ME-VAE is now compared to 5 other 
methods/arrangements of VAE and is tested in 3 datasets (MCF10A with 2 ligand/1 channel, 
MCF10A with 6 ligand/23 channel, and CODEX tissue image with 20 channels to demonstrate 
generalizability of the proposed method by another reviewer).  

 
Comment 2.4: 

- It’s also unclear to me why VAE is a good method for single cell image analysis. VAE is a 
generative model. The Gaussian prior applied on the latent variable tends to pull all 
representations toward the origin, and consequently reduces the separation between 
different cell types. The authors should provide a justification on why VAE is a good model 
for single cell analysis, and why it is better than a simpler denoise auto-encoder, the non-
generative model.  

Response 2.4: 
- Many recent studies demonstrate that VAE approaches produced encouraging results by 

finding previously unappreciated cellular structures, allowing for accurate predictions across 
a variety of areas and outperformed classical methods for analyses of hand-crafted features 
(https://doi.org/10.1101/227645). The main difference between autoencoders and 
variational autoencoders is that the latter impose a prior on the latent space. A VAE is an 



 

autoencoder whose encodings distribution is regularized during the training in order to 
ensure that its latent space has good properties allowing us to generate some new data. 
Moreover, the term “variational” comes from the close relation there is between the 
regularization and the variational inference method in statistics. In fact, the high degree of 
freedom of the autoencoder that makes possible to encode and decode with no information 
loss (despite the low dimensionality of the latent space) leads to a severe overfitting 
implying that some points of the latent space will give meaningless content once decoded. A 
VAE can be defined as being an autoencoder whose training is regularized to avoid 
overfitting and ensure that the latent space has good properties that enable generative 
process. 

 
Comment 2.5: 

- The approach works for pre-defined, well-known confounding factors such as rotation, scale. 
But what about latent features not associated with a well-defined transformation? It is well 
known that deep learning models tend to pick up correlated features that are not 
biologically meaningful. How do you plan to handle these features, which are a) not known 
beforehand, and b) may not be associated with a rigid simple transformation  

Response 2.5: 
- As laid out in the discussion, these are the limitations of the proposed method. From our 

experience, using VAEs can be an iterative process, and often time the failure of the first 
attempt will illustrate which features in the dataset present confounding factors. After initial 
rounds of training and observation, we found features such as rotation were skewing results, 
followed by orientation and size features on subsequent iterations. This can be done if the 
features are expected prior to training, but likely for most researchers, the process will 
require exploration of their dataset. Simple and rigid are not necessarily prerequisites for 
the transformation. As described in the methods, in order to correct shape, we performed a 
non-rigid registration of the cell to a circle. Complex shape is not a feature that is easily 
described, but none-the-less can be overcome using a non-rigid transformation to a set 
standard. There are certainly complex features that go beyond the limitations of what the 
ME-VAE can handle and we are in no way selling this as a method that can fix any 
confounding feature. The ME-VAE, however, does allow a method that outperform many of 
the other VAE methods and is able to correct for several factors simultaneously. Moreover, 
even the current comparable methods come with similar limitations. The invariant C-VAE 
that was recommended for comparison still requires quantified/classified information to be 
input into the model and suffers from the limitation of being able to quantify the feature 
(such as shape) which might be a non-trivial task.  

 
Comment 2.6: 

- Because the current model doesn’t address batch effect, the better clustering shown in 
Figure 2 can potentially be associated with the batch effect. I would recommend testing the 
model on biological replicates of the same cell types to show that cells of the same type 
from different batches are mixed.  

Response 2.6 
- We would like to thank the reviewer for pointing this out so that we can better clarify how 

this is addressed in our dataset. In fact, the dataset was comprised of 3 replicates of each 
ligand on different plates, wherein each plate had an additional 3 replicates of each ligand in 
different wells, and each well had 9 different fields of view taken. The manuscript has been 
updated to include this information. The fact that the ligands cluster well with themselves 
despite the number of replicates indicates that the clustering is not due to simple batch 
effects. 

 



 

Comment 2.7: 
- I would also like to see the results from the samples not in the training dataset. If the 

features are truly biologically meaningful, I would expect to see similar results on these 
samples as well.  

Response 2.7: 
- In a typical supervised learning setting, it makes sense to test model with unseen dataset. 

However, we are not training our ME-VAE model in a supervised setting and we 
demonstrate performance of unsupervised clustering result using extracted latent space 
with known labeled information. The results for clustering, umap distributions, regional 
cells, integration, and separability are all taken from using the entirety of the dataset. We 
see cells clustering based on the phenotype and ligand across the entire dataset and see no 
population of isolated cell images that would convey an overfitting of the model. Also, to 
demonstrate the features are truly biologically meaningful, we demonstrate correlations to 
other analytic modalities (Reverse Phase Protein Arrays pathway activity) as validation.  

 
Comment 2.9: 

- Please use standard metrics such as ARI, NMI to evaluate clustering qualities. 
Response 2.9: 

- We would like to thank the reviewer for their suggestion of supplemental clustering metrics. 
We have added NMI to the relevant quantifications and figures. 

 
Comment 2.10: 

- I also highly recommend the authors to test the method on a separate, ideally public 
dataset.  

Response 2.10: 
- We would like to thank the reviewer for their suggestion for improvement. We have added a 

figure to the supplemental showing the ME-VAE’s application in a publicly available CODEX 
tissue dataset to demonstrate generalizability to other emerging multiplexed technologies 
(Supp Figure 8). The improved clusterability compared to Standard VAE illustrates the 
architecture’s ability to generalize to other multiplexed technologies. The other notable 
thing about the CODEX dataset is that it is tissue data instead of the cell line data used in the 
main paper, further showing the architecture’s ability to generalize for multiplexed tissue 
imaging dataset. 

 
Minor Comments 
 
Comment 2.11, 2.12: 

- The description of VAE models in Method B should be substantially improved. Notations are 
non-standard. Variables are often not defined or not referenced. Equations are unlabeled, 
and which loss function is for which model is not mentioned.  

o Equation of Le seems to use terms Ti^{-1}.  
- The ELBO of VAE contains a reconstruction term and a KL-divergence term encouraging 

smoothness of the latent space. The KL term seems to be missing from the loss functions.  
Response 2.11, 2.12: 

- We apologize that this was left unclear. The equations describing the loss functions of the 
VAE architectures have been re-written in the revised manuscript. 

 
Comment 2.13: 

- Since the vanilla VAE uses isotropic Multivariate Gaussian for prior, the KL term will facilitate 
different dimensions of latent z to be independent with each other. Later proposed 
disentanglement methods would further facilitate this independence to ensure that 



 

traversal along each dimension means interpretable data generation. This seems to be 
controversial to analysis in Fig. 4, where different latent features show strong correlations to 
each other.  

Is there an automatic/systematic way of inferring metric for better separation of populations?   
Response 2.13: 

- We would like to thank the reviewer for bringing up this question. As the reviewer pointed 
out, VAEs assume each data point is i.i.d. generated, which means we do not consider any 
correlations between the data points. Due to the i.i.d. assumption, VAEs only optimize the 
singleton variational distributions and often fail to account for the correlations between data 
points, which might be crucial for learning latent representations from datasets where a 
priori we know correlations exist. For instance, we know marker-wise correlation in our 
multiplexed imaging dataset and there exists correlation between data points across 
different ligand treatments. In fact, we observed standard VAE shows less correlation across 
features but fails to extract biological meaningful information as shown in Supplemental 
Figure 4. On the other hand, when learning latent representations with the proposed 
approach, ME-VAE shows correlation structure across latent representation (Figure 4) and 
feature aggregations show high correlation to almost all RPPA pathway compared to 
standard VAE features.   

- In addition, although each dimension means interpretable data generation, it is almost 
impossible to interpret 512 latent space as meaningful biological features so we simply 
consider dimension reduction by aggregating correlated features into low dimension space 
and correlate with RPPA pathway activity. Although standard VAEs push for independence, 
many architectures have been developed attempting to address the fact that this does not 
guarantee interpretability or non-noisy content being encoded. Even among these, there is 
no agreed upon standard and in many applications we see only minutely better performance 
(https://doi.org/10.1101/2021.09.02.458673), and interpretability is even with further 
methods such as latent space arithmetic is limited. Our own results of these methods re-
iterate this, and many of these methods come with limitations of their own, including 
extensive hyperparameter tuning. Specifically, we observed a tradeoff between the 
Standard VAE’s ability to reconstruct samples and disentangle features, as indicated by the 
inverse relation of reconstruction and latent space correlation in β-VAE compared to 
Standard VAE. We use standard metrics such as NMI, ANOVA and the post-hoc pairwise 
Tukey p-test to measure separation of populations.  

 
[There is no Comment 2.14 on the assessment, it skips from 2.13 to 2.15] 

 
 
Comment 2.15: 

- Line 331: “All models were trained for 10 epochs on the NVIDIA P100 with 100GB of 
memory”.  

Please justify 10 epochs. 100GB GPU mem is clearly incorrect.  
Response 2.15: 

- The 10 epochs was chosen because after 10 was the amount of training needed before there 



 

was an observed plateau in loss. The number of epochs was kept consistent for accurate 
comparison. This has been better explained in the manuscript. The exact resources used for 
training are an NVIDIA P100 GPU with 100GB of disc space and 100GB of RAM. This has been 
better specified in the revised manuscript. 

 
Comment 2.16:   

- The main idea behind the method is straightforward. However, the code/implementation 
cannot be evaluated without sufficient details.  

Github link https://github.com/GelatinFrogs/ME- 350VAE_Architecture is broken.  
Response 2.16: 

- The link is not broken. From the link you provided, the “ 350” is not included in the paper. I 
am going to assume the “ 350” is the line number of the pdf or whatever document you are 
working in accidentally getting copied. Github link: https://github.com/GelatinFrogs/ME-
VAE_Architecture 

 
 
Comments from Reviewer #3 
Summary 
 
Ternes et al. present multi-encoder variational autoencoder (ME-VAE) architecture for learning 
informative features from single-cell multi-channel image data. The goal is extremely significant in 
the field of bioimage analysis. Various approaches have been suggested during recent years to learn 
unbiased features instead of classical handcrafted features. These approaches enable more 
automated analysis solutions and importantly even robust models that can be applied to different 
datasets. The problem is still unsolved and the manuscript presents one possible solution. The 
benefit of the ME-VAE architecture presented is that it does not need any labeled data to learn the 
features such as in supervised learning approaches. However, ME-VAE is dependent on the 
knowledge of the uninformative transformations present in the data so that these can be ruled out 
in different encoding blocks to extract biologically informative representation in single-cell image 
data. Some transformations, such as rotation, are obvious, but often the challenging transformation 
in the data is unknown. As an example, in large datasets, experimental batch effects cause many 
problems for representation learning tasks (and when using classical features as well), and typically 
cannot be well modelled.  
Thus, the significance to the field is lowered in the current version of ME-VAE methodology as the 
users need to know these uninformative transformations present in the data. These limitations are 
taken into account by the authors in the discussion. I still do think this is an interesting study and 
could lead to more practical solutions in the future. Authors also mention in discussion that "Future 
applications of this architecture will allow complex features such as texture, patterns, and 
distribution to be extracted from single cell images without the hassle of disentangling dominant 
uninteresting transform features", so maybe this problem is already being studied by them.  
 
In its current form, the most appropriate journal could be Communications Biology. Solving the 
limitations listed would improve the impact. The manuscript presents one approach to tackle the 
problem of extracting biologically meaningful unbiased features. This is an important topic in the 
field of bioimage analysis, especially how to learn meaningful representation without annotated 
data. The manuscript presents one approach to solve the problem but does not introduce novel 
ways of thinking in the field.  
 
Response: Many of the recent extensions of the VAE that seek to improve the interpretability of the 
latent space simply modify the loss function used during training to encourage a result instead of 
forcing it. Two examples of recent architectures that use modifications to the objective function are 



 

the β-VAE21 and the invariant C-VAE22, which attempt to apply pressure to model such that it will 
prioritize a more regularized encoding space and be more interpretable and invariable to specific 
features.  
Unlike these previous attempts, the ME-VAE changes the actual deep learning architecture by 
adding multiple encoding blocks each for the purpose of removing a specific feature in a self-
supervised setting, which we observe to has an increased performance. By doing this, we extract 
meaningful latent representation by removing uninformative features in a self-supervised way (i.e., 
we do not need to teach our deep learning model to correct these uninformative features). As we 
use these known transformations (i.e., rotation and polar) as self-supervised signal, ME-VAE can 
remove these features and extract biologically meaningful features.  Thus we believe that we 
introduce novel ways of thinking in the fields. 
 
Major Comments  
 
Comment 3.1, 3.2:  

- The authors compare their ME-VAE method to standard variational autoencoder and also to 
variational autoencoder with corrected output. These comparisons are important to show 
that ME-VAE performs better than simpler VAE approaches, however, the main question 
should be whether ME-VAE performs better than currently used approaches. Fig 2a) includes 
an example of comparing two features between two ligands. Later in Fig 2d) the authors 
present additional feature that is inferred from visually going through the data. This single 
feature presented in Fig 2d gives much better separation than standard VAE approach. 
These classical features should be compared to standard and multi-encoder VAE to see how 
well existing solutions enable separation of clusters.  

- As only two ligands are compared in results presented in Fig 2, I would expect the above 
mentioned classical feature comparison to be included also in Fig 3.  

Response 3.1, 3.2: 
- We have received many comments asking for comparisons to many different methods from 

each author. This response seeks to addresses all those comments at once since they are 
asking the same thing.  From the reviewers’ recommendations and from the list of other 
architectures we describe among the prior works, we have selected a few additional 
comparisons to add to our analysis. We adapted and implemented them to fit the design 
constraints of this experiment, including matching the architecture depth/size. The 
comparison is done in Figure 1 and 2 to perform the task of removing uninformative 
features from the encoding space and of separating 2 ligand populations with a single 
channel image. We see that most do not perform much better than a Standard VAE in this 
context, and although the invariant C-VAE by Moyer, D. et al. recommended by the reviewer 
performs somewhat better, it does not as perform as well as the ME-VAE. This demonstrates 
that the proposed method outperformed the existing methods reported in references and 
suggested by the reviewers. For subsequent analysis beyond this figure, we decided it was 
unnecessary to perform the other methods in the larger dataset since they already 
performed worse than the ME-VAE in the restricted dataset. In total, the ME-VAE is now 
compared to 5 other methods/arrangements of VAE and is tested in 3 datasets (MCF10A 
with 2 ligand/1 channel, MCF10A with 6 ligand/23 channel, and CODEX tissue with 20 
channels.) 

 
Comment 3.3: 

- In addition to the point made in 2. regarding Figure 3, this experiment including all 6 ligands 
could benefit from quantitative measurements instead of only UMAP visualization. The data 
could be clustered and compared using some clustering performance metric. This evaluation 
would quantitatively show whether the ME-VAE improves currently available methods.  



 

Response 3.3: 
- We would like to thank the reviewer for the suggestion on how we can better describe the 

improved performance. The same clustering performance metrics that were performed in 
the restricted dataset (cluster purity and NMI) have been added to this figure as well. The 
quantitative measurements confirm what is shown in the UMAP visualization, that the ME-
VAE performs better than the Standard VAE. 

 
Minor Comments  
 
Comment 3.4, 3.6, 3.7, 3.9, 3.10, 3.13: 

- Line 38: immunofluorence -> immunofluorescence  
- Line 170: nucleous -> nucleus  
- Line 176: unformative?  
- Ref 17 is missing volume and issue information, Ref 18 is missing a title.  
- Line 581: recocnstruction -> reconstruction  
- Line 617: EFGR -> EGFR 

Response 3.4, 3.6, 3.7, 3.9, 3.10, 3.13: 
- We would like to thank the reviewer for taking the time to point out some of the 

typographic mistakes in the manuscript. These errors have been fixed. 
 
Comment 3.5: 

- Line 120: clusterizability and serperability: I am not sure if these are proper words  
Response 3.5: 

- We apologize for any typographical errors.  “clusterability” and “separability” are the proper 
terms; however, both were spelled incorrectly. This has been fixed in the manuscript. 

 
Comment 3.8: 

- Line 331: NVIDIA P100 with 100GB memory? Did the P100 really had 100GB GPU memory or 
the computer had 100GB RAM?  

Response 3.8: 
- The exact resources used for training are an NVIDIA P100 GPU with 100GB of disc space and 

100GB of RAM. This has been better specified in the revised manuscript. 
 
Comment 3.11: 

- Fig 2d: The cluster purity pie charts could include labels (Cluster1 left? and Cluster2 right?) 
Response 3.11: 

- We have added labels to the figures (now figure 2g) to improve interpretability, and have 
added a legend labeling the ligands to that subfigure as well to improve understanding of 
the cluster pie charts. 

 
Comment 3.12 

- Suppl. Fig. 3 title: "UMAP clusters" -> should replace clusters with visualization etc. as UMAP 
does not provide clusters, only dimensionality reduction.  

Response 3.12: 
- We agree. This was improper and confusing terminology. This has been fixed. 

 
Comment 3.14: 

- Regarding Reproducibility: The authors share the code to train ME-VAE model, however, 
they do not share models trained and used to produce results in the manuscript. Or at least I 
was not able to find these. In addition, their code includes only an example version of ME-
VAE including two parallel encoding blocks and no image data generators to prepare data for 



 

these blocks. The authors make a point that these global uninformative features are data 
specific which is true, but it would make reproducibility much easier by including the 
encoding blocks and generators used in the manuscript as an example.  

Response 3.14: 
- We apologize that we did not sufficiently share our models. We have addressed this and 

shared trained models for the model comparison with parameters in our Github, including a 
small sample images that go with them. We did not have the original models that were 
presented, so we re-trained and reconducted the experiments for the comparison, and have 
uploaded the newest versions of the models. The results of the newly trained models 
performed similarly to the first and convey the same improvement compared to alternative 
methods. For this experiment we did not develop generators that can be shared for this 
implementation, nor do we claim in the paper to use them. For the sake of easy 
experimentation on our part, we pre-generated all the epochs’ worth of augmented image 
pairs so we could try different architectures with more ease. 

 
 

Reviewer comments, second version: 
 
 Reviewer #1 (Remarks to the Author: Overall significance): 
 
The authors present ME-VAE, a DL architecture that removes known uninformative features by 
making them uniform and invariant across reconstructions, to improve downstream analysis of 
single cell imaging data. Using CYCIF images from MCF10A cells containing various biomarkers, the 
authors demonstrate that ME-VAE can clearly separate a TGFβ+EGF population from controls, and 
outperforms standard VAE. The authors also show that there is a clear pattern of self-correlations 
between ME-VAE features, and identify representative clusters from these. 
 
In the updated manuscript, the authors have incorporated changes to reflect most of the 
suggestions provided by the reviewers, especially the benchmarking to CODEX and other tools, and 
clarify comments for better understanding. 
 
There still exists lack of clarity in the text and there are additional typos, wrong references 
introduced in the text which makes the rebuttal look quite unprofessional. 
 
Below we state our comments for further clarification. 
 
 
Reviewer #1 (Remarks to the Author: Impact): 
 
Revision required. Manuscript is more suitable for Communications Biology 
 
Reviewer #1 (Remarks to the Author: Strength of the claims): 
 
In Response 1.5, authors explain that ‘With the proposed methods it is necessary that the 
transformations of these features are known, but it is an unfortunate truth that if something cannot 
be calculated, it can’t be corrected’. I would defer from this argument in that if something cannot be 
calculated, then attempts should be made to infer these so that they can be corrected. This is very 
true in biology as it is a mixed bag of many unknown and confounding features with very little that is 
known and the authors agree to this by stating the presence of ‘countless artifacts and 
uninformative biological features’. If a model heavily relies on only the limited set of known features 
then this severely handicaps the model to generate new biological discoveries. 



 

 
Is Response 1.10 added to the main text? This will enable understanding as to what is shown in the 
regional cell images. Following up on regional cell images, do these images snap the same subset of 
cells across the different architectures, as was done in Figure 4. If not, would this not make for a 
stronger comparison to showcase model performance on same cells across architectures. 
 
Line above Equation 6: ‘…. varying values of c’. What is c and where is c (or how is it encoded) in 
Equation 6? Either explain what is in quotes or cite the paper after ‘penalty’. 
 
Figure 5: (and related to comment 1.21): lower row says VAE expression. Is this now the ME-VAE 
expression? Similarly, the legend says ‘individual VAE features’. Are these ME-VAE features? 
 
Response 1.13: ‘The size distribution can already be observed in Supplemental Figure 3 from the 
sampled cell images from varying places in UMAP space’. Supplemental Figure 3 does not match 
with author description. 
 
Response 1.20: Supplemental figure 8 is not at all like Figure 5, as the authors claim. 
 
 
Example of typos (this is just a partial list): devided, noticible, what’s, observe to has, downstrean, 
Fig 5 legend, a maker of DNA expression…. 
 
 
 
Reviewer #2 (Remarks to the Author: Overall significance): 
 
I would like to thank the authors for their efforts in addressing some of my previous comments. The 
manuscript is improved with additional experiments and clarifications. 
 
However, some of previous comments remain unaddressed. The following are two examples of my 
previous comments that have not been addressed: 
 
1. Response 2.4: Instead of arguing for the benefit of the VAE, I would suggest the authors conduct 
an experiment to support their claim, i.e, replacing VAE by a denoise auto-encoder, but with the 
same data argumentation/normalization. This would be a much cleaner way to justify the benefit of 
VAE. 
 
2. Response 2.7: if the learned features cannot be generalized to new data, I would more likely 
question the utility/meaningfulness of the learned features from VAE. To me, it is essential to 
demonstrate the learned features are meaningful in a test dataset. 
 
 
 
Reviewer #3 (Remarks to the Author: Overall significance): 
 
The authors have responded to the concerns I raised previously. I only have minor comments 
regarding Fig 3. 
 
Reviewer #3 (Remarks to the Author: Strength of the claims): 
 
1. Fig3: The overall results should also include standard deviation in addition to the mean. I would 



 

also suggest to include cluster purity and NMI separately for each cluster. 
 
Minor issues in the text: 
2. Page 9: "shows significant correlations shows correlates" -> "shows significant correlations"? 
3. Page 13: "Rotation is corrected" -> "Rotation was corrected" 
4. Page 18: "Clustermaps using hieracrchical clusters were calculated using the function’s default 
method (Euclidean)." -> "Clustermaps using hierarchical clustering were calculated using the 
method’s default distance metric (Euclidean)." 
5. Github -> GitHub 
6. CellPose -> Cellpose 
 
Reviewer #3 (Remarks to the Author: Reproducibility): 
 
The authors have shared the code, pre-trained models and a small test dataset. I was able to run the 
code with the test dataset after quick check through the code (self.data_dir + 'train/*' caused 
problems, does not work if self.data_dir does not end in '/'. Also might not work in Win. Better to 
use pathlib or os.path.join method.). 
 
For future, might be useful for users if the authors would include one line example of calling the 
main.py script in README and also check the requirements (such as graphviz, Python libraries and 
their versions). Otherwise using the code was very straightforward. 
 

Author rebuttal, second version: 
 
 Comments from Reviewer #1 
Summary 
The authors present ME-VAE, a DL architecture that removes known uninformative features by 
making them uniform and invariant across reconstructions, to improve downstream analysis of 
single cell imaging data. Using CYCIF images from MCF10A cells containing various biomarkers, the 
authors demonstrate that ME-VAE can clearly separate a TGFβ+EGF population from controls, and 
outperforms standard VAE. The authors also show that there is a clear pattern of self-correlations 
between ME-VAE features, and identify representative clusters from these.  
In the updated manuscript, the authors have incorporated changes to reflect most of the 
suggestions provided by the reviewers, especially the benchmarking to CODEX and other tools, and 
clarify comments for better understanding.  
There still exists lack of clarity in the text and there are additional typos, wrong references 
introduced in the text which makes the rebuttal look quite unprofessional. 
 
Specific Comments  
Comment 1.1:  

- In Response 1.5, authors explain that ‘With the proposed methods it is necessary that the 
transformations of these features are known, but it is an unfortunate truth that if something 
cannot be calculated, it can’t be corrected’. I would defer from this argument in that if 
something cannot be calculated, then attempts should be made to infer these so that they 
can be corrected. This is very true in biology as it is a mixed bag of many unknown and 
confounding features with very little that is known and the authors agree to this by stating 
the presence of ‘countless artifacts and uninformative biological features’. If a model heavily 
relies on only the limited set of known features then this severely handicaps the model to 
generate new biological discoveries. 

 
Response: 1.1: 



 

- First, we would like to clarify that the statement “if something cannot be calculated, it can’t 
be corrected” does not mean we should not work to infer metrics for features that are not 
currently known. Take for example our shape correction method (Cells2Circles, which is 
described in the Methods). To our knowledge there was no known way to calculate and 
normalize shape, so we used registration to calculate a normalization for each cell. We 
encourage anyone who uses our method to experiment and infer new methods for 
quantifying and normalizing noise/features in images. By our statement, we are simply 
saying that for the ME-VAE to operate, a calculated transformation specific to each image 
must be applied as the transformation will not be applied by the architecture itself. 

- Second, we would like to argue that current multiplex tissue imaging analyses heavily rely on 
only the limited set of known features such as mean intensity features computed across 
markers. On the other hand, the proposed method yields biologically meaningful 
representations (stain co-localization and subcellular pattern) by removing uninformative 
biological features, which often skew representation learning of VAE in undesired ways. 

- Finally, as we mentioned in the previous rebuttal, potentially, if there are unknown noise-
induced transformations, they will drive difference and skew the result so we could evaluate 
them and consider them as uninformative features by identifying transformations 
iteratively. For instance, rotation and polar orientation were first observed in Standard VAE 
so that we devise transformed images as a self-supervised signal to remove these 
uninformative features, which is our motivation and key contribution of the proposed work. 
These iterative processes will remove confounding features and refine biologically 
meaningful features, thus generating new biological discoveries. 

 
Comment 1.2: 

- Is Response 1.10 added to the main text? This will enable understanding as to what is shown 
in the regional cell images. Following up on regional cell images, do these images snap the 
same subset of cells across the different architectures, as was done in Figure 4. If not, would 
this not make for a stronger comparison to showcase model performance on same cells 
across architectures. 

 
Response 1.2: 

- The clarifications and reference made in previous response 1.10 have been added to the 
methods.  

- Revised manuscript (Page 18): “Regional cell images within UMAP (Figure 2 and 
Supplemental Figure 4) were created by sampling cells from various regions of the UMAP 
embedding space to give visual context to the features that are being separated. Cells were 
placed into regions by snapping their embeddings to a grid and taking one representative 
image from each point on the grid as described by Schau et al23.” 

 
Comment 1.3: 

- Line above Equation 6: ‘…. varying values of c’. What is c and where is c (or how is it 
encoded) in Equation 6? Either explain what is in quotes or cite the paper after ‘penalty’. 

 
Response 1.3: 

- Clarification for the c term and the quoted section have been added. 
- Revised manuscript (Page 17): “In our application this means that the resulting latent space 

will ideally be independent of the undesired values injected into the architecture through 
the c vector:” 

 
 
Comment 1.4: 



 

- Figure 5: (and related to comment 1.21): lower row says VAE expression. Is this now the ME-
VAE expression? Similarly, the legend says ‘individual VAE features’. Are these ME-VAE 
features?  

 
Response 1.4: 

- We would like to thank the reviewer for pointing this out. Labeling this as ME-VAE 
expression would be more accurate and would help to avoid confusion with the VAE 
expression of the Standard VAE. We have updated the figures and legends accordingly. 

 
Comment 1.5: 

- Response 1.13: ‘The size distribution can already be observed in Supplemental Figure 3 from 
the sampled cell images from varying places in UMAP space’. Supplemental Figure 3 does 
not match with author description. 

 
Response 1.5: 

- We apologize for the confusion. The size distributions are observed in Figure 3 and 
Supplemental Figure 4. No change to the manuscript is necessary to address this. All 
references to this figure in the text are correct. 

 
Comment 1.6: 

- Response 1.20: Supplemental figure 8 is not at all like Figure 5, as the authors claim. 
 
Response 1.6: 
-  We apologize for the confusion. The added figure (which is highly visually 
similar to figure 5) is Supplemental Figure 7. No change to the manuscript is necessary to address 
this. All references to this figure in the text are correct.  
 
Comment 1.7: 

- Example of typos (this is just a partial list): devided, noticible, what’s, observe to has, 
downstrean, Fig 5 legend, a maker of DNA expression…. 

 
Response 1.7: 

- We apologize for any typographical errors. These have been fixed in the text. 
 
 
Comments from Reviewer #2 
Summary 
 
I would like to thank the authors for their efforts in addressing some of my previous comments. The 
manuscript is improved with additional experiments and clarifications.  
However, some of previous comments remain unaddressed. The following are two examples of my 
previous comments that have not been addressed: 
 
Specific Comments  
 
Comment 2.1: 

- Response 2.4: Instead of arguing for the benefit of the VAE, I would suggest the authors 
conduct an experiment to support their claim, i.e, replacing VAE by a denoise auto-encoder, 
but with the same data argumentation/normalization. This would be a much cleaner way to 
justify the benefit of VAE. 

 



 

Response 2.1 
- First, as requested by the reviewer, we implemented a denoising autoencoder using the 

same set of augmentations (rotation, polar orientation, size/shape – see Supplemental 
Figure 9). As we did with other architecture comparisons, we kept the encoder and decoder 
blocks the same and used the same latent dimensions for fair comparison. When we applied 
denoising autoencoder with the same set of augmented images, we observed that the 
denoising autoencoder is unable to separate the labeled perturbations (PBS and TGFb). 
While denoising autoencoders are very good at reconstructing corrupted images by 
removing noise, the lack of a regularization term on the latent space makes it less useful 
when being used to interpret embedded features. We also would like to argue that 
uninformative biological features described in the current manuscript are not simple noise 
or corrupted images. This interpretability of a continuous latent space is the main purpose of 
variational autoencoders and why they are used as the standard for embedding and 
extracting imaging features in the computer vision and biomedical imaging domain. Both of 
the methods that Reviewer 2 suggested for state-of-the-art comparison in the original 
revision utilize a variational distribution of latent spaces (Moyer et al for images and Romain 
Lopez et al for sc-transcriptomics).  

- Second, our main purpose of this paper focuses on VAEs for single cell image analysis as 
many recent studies demonstrated that VAE approaches produced encouraging results by 
finding previously unappreciated cellular structures, allowing for accurate predictions across 
a variety of areas and outperformed classical methods for analyses of hand-crafted features. 
Thus, we do not believe this additional experiment to be pertinent to the main purpose of 
the paper and believe it would not be interesting to the majority of readers. We have 
therefore not added it to the main text but only included for rebuttal as the reviewer 
requested that we conduct an experiment to support our claim.  

 
 
Comment 2.2: 

- Response 2.7: if the learned features cannot be generalized to new data, I would more likely 
question the utility/meaningfulness of the learned features from VAE. To me, it is essential 
to demonstrate the learned features are meaningful in a test dataset. 

 
Response 2.2: 

- We would like to thank the reviewer for suggestion. As the reviewer requested, we have 
applied the trained model of the previous ME-VAE to another set of data (see figure below). 
Using a new replicate (unseen dataset) of PBS and TGFβ+EGF, we segmented, normalized, 
and augmented the images following the methods described in the manuscript. The results 
are consistent with those shown in the main text, demonstrating the learned features are 
meaningful and further indicating good generalizability on top of the generalizability already 
illustrated with the additional multiplex imaging modality such as CODEX dataset. We do not 
believe this experiment to be pertinent to the main purpose of the paper and believe it 
would not be interesting to the majority of readers. We have therefore not added it to the 
main text. 



 

 
 
 
Comments from Reviewer #3 
Summary 
 
The authors have responded to the concerns I raised previously. I only have minor comments 
regarding Fig 3. 
 
Specific Comments  
 
Comment 3.1:  

- Fig3: The overall results should also include standard deviation in addition to the mean. I 
would also suggest to include cluster purity and NMI separately for each cluster. 

 
Response 3.1:  

- We have split the mean cluster purity to show individual cluster purities in a table format 
(Fig. 3). However, NMI is not an averaged metric the same way mean cluster purity is. NMI is 
used to compare collections of clusters/labels with a single metric, and it would not make 
sense to compute it separately for each cluster. The figure and caption have been updated 
to detail the results. 

 
Comment 3.2: 
- Page 9: "shows significant correlations shows correlates" -> "shows significant correlations"? 
- Page 13: "Rotation is corrected" -> "Rotation was corrected" 
- Page 18: "Clustermaps using hieracrchical clusters were calculated using the function’s default 
method (Euclidean)." -> "Clustermaps using hierarchical clustering were calculated using the 
method’s default distance metric (Euclidean)." 
- Github -> GitHub 
- CellPose -> Cellpose 
 
Response 3.2: 

- We apologize for any typographical errors. These have been fixed in the text. 
 
Comment 3.3: 

- The authors have shared the code, pre-trained models and a small test dataset. I was able to 
run the code with the test dataset after quick check through the code (self.data_dir + 
'train/*' caused problems, does not work if self.data_dir does not end in '/'. Also might not 
work in Win. Better to use pathlib or os.path.join method.). 

- For future, might be useful for users if the authors would include one line example of calling 
the main.py script in README and also check the requirements (such as graphviz, Python 
libraries and their versions). Otherwise using the code was very straightforward. 

 
Response 3.3: 



 

- We appreciate the reviewer’s feedback regarding the usability of our code. GitHub code was 
updated with minor edits to make directories more straightforward for both windows, mac, 
and linux. We have also updated the README with an example of calling the main.py script. 

 
 

Reviewer comments, Third version: 
 
 Reviewer #1 (Remarks to the Author: Overall significance): 
 
I would like to thank the authors for their time and effort in addressing my previous comments. The 
manuscript reads well with the improved experiments and clarifications. 
I recommend acceptance. 
 
Reviewer #2 (Remarks to the Author: Overall significance): 
 
The authors have taken efforts to address my previous comments. 
 
In the latest round of revisions, the authors presented results showing that: 
1). denoising autoencoder (a vanilla version of VAE, their model) is substantially worse than VAE. 
2). test results of their model on previously unseen data are as good as the results on the training 
data. 
 
Based on our experience on VAE models, we usually would not expect to make such conclusions. For 
1), I would expect denoising autoencoders might be slightly worse than VAE, but not substantially. 
For 2), I would expect the test results will not be as good. I feel the authors were either presenting 
partial results or having the experiments done incorrectly. 
 
I have the following a few minor comments: 
 
1. Put the two results, namely comparing with denoising autoencoder to justify the value of VAE, 
and generalization on previously unseen data to Suppl Material. 
 
2. Instead of providing incomplete information as in the rebuttal letter, I recommend the authors to 
include full information, as in Figure 3a, for both points addressed in the response letter. 
 
3. The authors should improve the writing of the Methods section. The description of ME-VAE is 
unclear and not presented with clarity. Notations in Equations 2,3,4 are simply confusing. 
 

Author rebuttal, Third version: 
 
Comments from Reviewer #1 
I would like to thank the authors for their time and effort in addressing my previous comments. The 
manuscript reads well with the improved experiments and clarifications. I recommend acceptance. 
 
Response: Thanks for your review.  
 
 
Comments from Reviewer #2 
The authors have taken efforts to address my previous comments.  
 
In the latest round of revisions, the authors presented results showing that: 



 

1). denoising autoencoder (a vanilla version of VAE, their model) is substantially worse than VAE. 
2). test results of their model on previously unseen data are as good as the results on the training 
data. 
 
Based on our experience on VAE models, we usually would not expect to make such conclusions. For 
1), I would expect denoising autoencoders might be slightly worse than VAE, but not substantially. 
For 2), I would expect the test results will not be as good. I feel the authors were either presenting 
partial results or having the experiments done incorrectly. 
 
Response: We would like to clarify these comments which we also discussed them with the editor 
separately.  
1) our results actually show slightly worse performance for the standard VAE (0.53 vs 0.54 and 0.72 
vs 0.66 – one cluster showed slightly better and the other cluster showed slightly worse). As we 
mentioned in the cover letter (previous revision), we showed that the Denoising Autoencoder 
performs similarly to the VAE despite being given additional information in the form of augmented 
images, which is somewhat expected result since Denoising Autoencoders do not have a regularized 
latent space and are primarily used for removing pixel level noise from reconstructed images, not 
creating a meaningful and interpretable latent space. 
2) In fact, we reported the quantitative values of the test set are approximately 10% worse than the 
training (0.89 vs 0.80 and 0.88 vs 0.76). Reviewer 2’s claims that the denoising autoencoder 
performed substantially worse than the standard and that our results on an unseen dataset are just 
as good as training are not consistent with the data and figures we produced for them. 
 
Specific Comments  
Comment 2.1:  

- Put the two results, namely comparing with denoising autoencoder to justify the value 
of VAE, and generalization on previously unseen data to Suppl Material.  
 

Response 2.1: 
- The basic denoising autoencoder used with the same transformed images (as suggested 

by reviewer) have been included in Figure 2. This allows for the comparison of the 
standard variational autoencoder results with the denoising autoencoder results. 
Additionally, we have conducted an additional comparison between a multi-encoder 
using regularization in the loss function (ME-VAE) and a multi-encoder using just the 
reconstruction loss (ME-denoising AE). These results were added to the supplemental. 
The results of both sets of figures is consistent with prior findings. Both the VAE and DAE 
see a vast improvement when using multiple encoders for feature correction. Note that 
a key contribution of our paper is proposing “multi-encoder” architecture in conjunction 
with VAE (not VAE itself). To demonstrate generalizability or multi-encoder blocks, we 
tested ME-DAE and it showed improvement compared to the result of naïve DAE. 

- The generalization results of the ME-VAE applied to an unseen replicate (previous 
comment from the Reviewer #2) have been added to the Supplemental Figures. 

 
Comment 2.2:  

-  Instead of providing incomplete information as in the rebuttal letter, I recommend the 
authors to include full information, as in Figure 3a, for both points addressed in the 
response letter.  

 
Response 2.2: 

- The results include the full information with the same graphics and quantifications in 
Figure 2 as the other methods the DAE was compared to. 



 

 
Comment 2.3:  

-  The authors should improve the writing of the Methods section. The description of ME-
VAE is unclear and not presented with clarity. Notations in Equations 2,3,4 are simply 
confusing. 

 
Response 2.3: 

- This comment was raised in the first review, and thus we have addressed it in our first 
revision. As it did not raise again in the second revision, we thought that it was clearly 
addressed (also confirmed with other reviewers). We have made additional minor 
revisions to improve readability of the equations. Although we have made attempts to 
make the equations more interpretable, we do not know exactly what the reviewer finds 
confusing about them. They are fairly standard and commonly occurring equations 
within the field and the notation used here are similar to those used in other papers, 
including the paper reviewer 2 shared for the invariant C-VAE by Moyer et al. Moreover, 
the paper does not propose significant changes to the standard VAE loss functions. The 
only changes shown here are: 1) reflecting the transformed input in the loss function 
instead of the raw image and 2) averaging the KL-terms for the multiple encoders in the 
ME-VAE, both of which are described in the text. We would also like to add that the 
implementation of the ME-VAE is available on github (linked in the paper) with exact 
loss functions available using standard toolkits. 

 
 
Comments from Reviewer #3 
N/A 
 


