BIO 1402 Research Project: Decreasing Bacteria in Food

Purpose: The purpose of this assignment is to give you experience in scientific investigation, both experimental and non-experimental, and an opportunity to discover new knowledge.

Importance: In this project, you will address the question: "**How can I safely decrease the number of bacteria on the food that I eat?**" You will use a four-step process (from McLaughlin et al., 2017) to design and execute an authentic research project. This experimental framework is consistent with the manner in which professional research scientists devise, design, execute, interpret, and communicate their experimental results. Use this opportunity to discover something that impacts your life and those around you!

Bacteria are everywhere around you and inside you. Most are neutral and harmless, but some are harmful. If you have had 'food poisoning,' illness due to ingesting bacteria or their toxins, then you understand the importance of decreasing harmful bacteria. Understanding what reduces bacteria will help you make decisions to avoid illness, sometimes with wide-reaching consequences. For example, published guidelines from the U.S. Food and Drug Administration (FDA) mandate that food workers are required to bring meats up to 68°C for 17 seconds, because experiments have determined this to be conditions that kill bacteria.

Below are the steps that you will follow in this course to conduct your own investigations.

Step 1: Learn Essential Techniques

1. Build literature research skills and background knowledge: Laboratory 1

To address your question, "How can I safely decrease the number of bacteria on the food that I eat?," you will use previous knowledge to come up with an idea, test your idea, analyze the results of the test to determine if your idea worked and is feasible in daily life, and then decide what to do with this knowledge. This process is a form of the scientific method.

What is the scientific method, and how is it used to address questions and solve problems? This is the focus of Laboratory 1, in which you will:

- Review the steps of scientific investigation
- Practice finding and navigating reliable sources (especially peer-reviewed journal articles)
- Find and read background literature related to food microbiology

** Lab 1 is due at the beginning of lab, week 3.

2. Identify a problem, question, and hypothesis; gather background information

First, you will **identify a problem** here in Côte d'Ivoire caused by bacteria in food. Using what you found in your background research (step 1), you will **ask a question** about what might be done to decrease bacteria and **hypothesize** a method by which you may be able to decrease bacteria.

Next, you will **search for background knowledge related to your hypothesis**. This is similar to step 1, but now you have a focused hypothesis to investigate. Prepare a data table with the information you find and your sources.

For the hypothesis:

• Define your problem, question, and hypothesis

For the **background research**:

- Find what is already known about your problem and hypothesis, and organize the data in a table
- Write an introduction for your project: Using this information, you will write the "**Introduction**" section for your project report. This gives the readers the background information they need to understand your project as well as what the problem, question, and hypothesis are.

** The hypothesis and background research are due at the end of week 6, in your notebook.

** A draft of the "Introduction" section is due at the end of week 7.

Step 2: Design an experiment to test your hypothesis

The "protocol" is the step-by-step plan for the experiment in the form of a numbered list. This will be done with the instructor.

Before the discussion: Complete the "Protocol Brainstorm." Before discussing with the instructor, try to come up with a way to test your hypothesis. Identify your experimental and control groups.

After the discussion: Write the final protocol. Revise the protocol wording so that it is easy for you to read and understand.

** The "Protocol Brainstorm" should be written in the notebooks prior to the start of week 7 lab.

** The "Protocol" is due at the end of week 8.

Step 3: Carry out experiment

Following the steps outlined in the protocol, you will carry out your experiment to address your hypothesis. You will have a few laboratory sessions in which to do this. Some work may need to be done outside of class; in this case, plan accordingly, and communicate with your instructor.

Note that you may need to deviate from the protocol; record any changes. Additionally, you will have details to record such as exact weights and times, and any descriptive observations such as colony colors or food scents. The methods you use will become your "Materials and Methods" section, while the data you gather will become the "Results" section of your paper.

** A draft of the "Materials and Methods" section is due by the end of week 11.

Step 4: Interpret data and communicate results

Science has no benefit if it is not correctly interpreted and communicated so that the knowledge can be applied. You will first determine what your data means and then make conclusions and recommendations. Finally, you will compile what you did, why you did it, what you found, what it means, and how it can be applied in a written report, and then present your research to others during a scientific poster session open to the campus and local communities.

** A draft of the whole paper is due at the start of lab week 12.

** The presentation date will be determined later in the semester.

Project component	Time	Assignment (Due date)	Points			
Step 1: Learn Essential Techniques						
Build literature research skills and background knowledge	Week 2	Lab 1 (Start of Lab, Week 3)	Lab grade			
Identify a problem, question, and testable		Hypothesis and Background Research (Friday, Week 5)	15 pts.*			
Gather background information	Weeks 3 – 6	Introduction Draft (Friday, Week 6)	5 pts.*			
Practice working with bacteria	Week 6	Microbiology Lab (Start of Lab, Week 7)	Lab grade			
Step 2: Design an Experi	nent					
Create a protocol (with instructor assistance)	Weeks 6 – 8	Protocol Brainstorm (Start of Lab, Week 7)	3 pts. for completion*			
		Protocol (Friday, Week 8)	3 pts. for completion*			
Step 3: Carry Out Experir	nent					
Carry out experiment	Weeks 9 – 11	Draft of "Materials and Methods" (Friday, Week 11)	4 pts. for completion*			

Timetable

Step 4: Interpret Data and Communicate Results					
Analyze your results	Weeks 8 – 12	Draft of Written Report (Friday, Week 12)	10 pts.*		
Communicate your research	Weeks 12 & 13	Poster Presentations (TBA) * Written Report * Report Presentation	40 pts.* 20 pts.*		
		*Total:	100		

References

- 1. McLaughlin JS, Favre DE, Weinstein SE, Goedhart CM. The impact of a four-step laboratory pedagogical framework on biology students' perceptions of laboratory skills, knowledge, and interest in research. *J Coll Sci Teach.* 2017;47(1):83-91.
- 2. U.S. Food & Drug Administration. *Food code: U.S. Public Health Service*. Retrieved August 2, 2021, from https://www.fda.gov/downloads/food/guidanceregulation/retailfoodprotection/foodcode/ucm595140.pdf

** For specific course materials, please contact Dr. Marie Smith at masmith10@utep.edu. **

Appendix 2. End-of-semester poster evaluation rubric.

	Above Average (3 pts.)	Average (2 pts.)	Below Average (1 pt.)
Topic Selection	Identifies a focused and	Identifies a topic that, while	Identifies a topic that is far
	manageable topic that	manageable, is too narrowly	too general, inappropriate for
	addresses potentially	focused and leaves out	the structure of the CURE,
	significant, yet previously	relevant aspects of the topic	and/or is not feasible to
	less-explored, aspects of	(i.e., the topic is not	conduct given available
	the topic	appropriately addressed)	resources
Existing Knowledge,	Synthesizes in-depth	Presents information from	Presents information from
Research, and/or	information from relevant	relevant sources (rather than	irrelevant sources
Views	sources representing various	synthesizes), and the	representing limited points of
	points of view and/or	information presented is not	view and/or approaches (i.e.,
	approaches	comprehensive	incomprehensive info)
Design Process	All elements of the	Critical elements of the	Inquiry design demonstrates
	methodology are skillfully	methodology are missing,	a misunderstanding or lack
	developed and appropriate	incorrectly developed,	of methodology appropriate
	for the proposed	unfocused, and/or	for the proposed work
Analyzia	Organizas and synthesizes	Organizas avidance to	Lista avidance, but it is not
Analysis	organizes and synthesizes	organizes evidence to	Lists evidence, but it is not
		differences, or similarities	organized and/or is
	similarities related to the	related to the team's control	control question and
	team's control	question/bypothesis: little or	bypothesis
	questions/hypothesis	no synthesis is present	Typothesis
Conclusions	States a conclusion that is a	States a conclusion that is	States a conclusion that is
Conclusions	logical extrapolation from the	focused solely on the	ambiguous vague illogical
	inquiry findings	inquiry findings The	unsupported or (in general)
	Conclusions should be	conclusion arises specifically	poorly developed
	comprehensive.	from and responds	
	,	specifically to the inquiry	
		findings.	
Limitations and	Insightfully discusses in	Presents relevant and	May present limitations and
Implications	detail relevant and	supported limitations and	implications, but they are
-	supported limitations and	implications; <i>limited</i>	possibly irrelevant and/or are
	implications	discussion	unsupported
Context/Purpose for	Poster is appropriately	Poster is targeted to a	Poster demonstrates
Writing	targeted to a scientific	scientific audience but	minimal attention to
	audience	exhibits instances in which	audience, and, as such, is
		non-scientific conventions	not appropriate given the
		(e.g., language that is too	assigned task
		colloquial) are used	
Syntax/Mechanics	Demonstrates expert	Uses straightforward	Use of language is crude
	command of language that	language that generally	and/or sometimes impedes
	skillfully communicates	conveys meaning to readers	meaning because of a high
	meaning to readers with	Desument contains only i	number of syntax/mechanics
	cianty and iluency;	four ountou/mochanica	enors
	free	iew syntax/mechanics	
	l tree	errors.	

Comments: