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S1 CME definition

In the current section, we work through the definition of the CME encoding the reactions in
Equation 1 and convert it to the generating function PDE. For the most part, this amounts to rote
application of definitions.

S1.1 Converting a reaction network to a CME

The CME is a continuity equation defined with respect to total probability density. For any set of
states, we can write down the following relation tracking their total probability mass:

accumulation = influx− efflux (S1)

Probability mass can be neither created nor destroyed, because the total probability mass must
add to unity. We can encode the Markovian property by ensuring that accumulation at time t
depends only upon the state of the system at t. To compute the likelihood of state m with mi

molecules of mRNA species Ti, we need to evaluate P (m, t). This microstate m is the most natural
and conventional mathematical object to track using Equation S1. This yields the general form of
the CME:

dP (m, t)

dt
=
∑
rxn

influx(m, t, rxn)−
∑
rxn

efflux(m, t, rxn) (S2)

We can explicitly write down the influx and efflux terms by splitting the reactions into three
separate pools of channels: the transcription reactions, the degradation reactions, and the splicing
reactions. It is easiest to start with the first-order efflux reactions, as they are only involve a single
species i and can be decomposed into an additive form:

efflux(m, t,deg) =

n∑
i=1

efflux(mi, t,deg) =

n∑
i=1

ci0miP (mi, t)

efflux(m, t, splic) =

n∑
i=1

efflux(mi, t, splic) =

n∑
i=1

n∑
j=1

cijmiP (mi, t),

(S3)

a simple form that results immediately from the propensities defined in Equation 1. Since each term
in the sums only involves a single i, we use a shorthand with respect to the microstate m, such that
P (mi) is a multivariate PMF defined as P (m1, ...,mi, ...,mn, t), and implies that all dimensions
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j ̸= i are in the state mj . With this shorthand, we can write down the equations for the influx due
to the first-order reactions:

influx(m, t,deg) =

n∑
i=1

influx(mi, t,deg) =

n∑
i=1

ci0(mi + 1)P (mi + 1, t)

influx(m, t, splic) =

n∑
i=1

influx(mi, t, splic) =

n∑
i=1

n∑
j=1

cij(mi + 1)P (mi + 1,mj − 1, t),

(S4)

which extends the shorthand to describe two species: P (mi + 1,mj − 1, t) := P (m1, ...,mi +
1, ...,mj − 1, ...,mn, t). Equation S4 encodes the fact that the degradation influx channel removes
Ti and receives probability density from states with mi + 1 counts of Ti, whereas the the splicing
influx channel converts Ti to Tj and receives probability density from states with mi + 1 counts of
Ti and mj − 1 counts of Tj . We sum over all pairs of indices to encode all possible splicing reaction
channels.
Finally, we need to write down the equations that define the transcriptional dynamics. To start, we
assume that no co-expression occurs. This implies a simple zeroth-order form for the efflux term:

efflux(m, t, tx) =

n∑
i=1

efflux(mi, t, tx) =

n∑
i=1

k1,iP (mi, t), (S5)

where k1,i is the burst frequency corresponding to the reaction channel producing the one transcript
Ti. The influx is slightly more complicated, as burst sizes are defined as random variables on N0,
so the state m can be reached from any state with mz ∈ [0, 1, ...,mi − 1,mi].

influx(m, t, tx) =
n∑

i=1

influx(mi, t, tx) =
n∑

i=1

k1,i

mi∑
z=0

pi,zP (mi − z, t), (S6)

where z is the burst size and pi,z is the PMF of the burst size random variable Bi corresponding
to the reaction channel producing Ti.
This formulation is sufficient if are content to model independent transcriptional dynamics. How-
ever, it is not sufficient to recapitulate the gene–gene correlations observed in real datasets. Several
avenues are available to model them: for example, it is possible to explicitly describe regulatory
interactions [1]. Unfortunately, such detailed schema are not analytically tractable. Instead, we
propose that some sets of genes fire simultaneously; physiologically, this can be effected by expo-
sure of neighboring loci on DNA, regulation by a common promoter, or activation by a common
inducer [2, 3]. We discuss particular mechanisms that can yield these dynamics in Section S1.3.
This formulation lends itself to tractable analytical solutions.
Anywhere between 1 and n species can be simultaneously transcribed in synchronized bursts.
Further, for a co-expression module size of ℓ transcripts, there are

(
n
ℓ

)
possible combinations of

specific co-expression modules, indexed by q. For a particular module, defined by the tuple ℓ, q,
we can define a function Qℓ,q(j), with j ∈ {1, ..., ℓ}, which returns the ℓ indices of co-transcribed
species. For example, if a system has n transcripts, with species indexed 1 and n transcribed
simultaneously, we yield ℓ = 2, Q2,1(1) = 1, and Q2,1(2) = n. This function permits us to do the
“bookkeeping” for the general multivariate form of burst distributions:

efflux(m, t, tx) =

n∑
ℓ=1

(nℓ)∑
q=1

efflux({mQℓ,q
}, t, tx) =

n∑
ℓ=1

(nℓ)∑
q=1

kℓ,qP ({mQℓ,q
}, t), (S7)
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where {mQℓ,q
} reports the species indices mQℓ,q(1), ..., .mQℓ,q(ℓ) involved in a particular reaction.

Finally, we need to write down the conservation equations for the influx reactions. These depend
on the multivariate burst probability mass pℓ,q,z, where z is a vector defining burst size microstates:

influx(m, t, tx) =
n∑

ℓ=1

(nℓ)∑
q=1

influx({mQℓ,q
}, t, tx)

=
n∑

ℓ=1

(nℓ)∑
q=1

kℓ,q
∑
{z}

pℓ,q,zP ({mQℓ,q
− zQℓ,q

}, t)

=
n∑

ℓ=1

(nℓ)∑
q=1

kℓ,q
∑
{z}

pℓ,q,zP (m− z, t)

(S8)

where the summation over {z} includes all joint burst sizes with marginal zQℓ,q
up to mQℓ,q

. All zj
where j /∈ {Qℓ,q} are set to zero for consistency. This equation is exact, but somewhat formal. We
can illustrate its specific form by returning to the specific case of a system with n transcripts, with
co-expressed species T1 and Tn:

influx(m, t, tx) = influx(m1,mn, t, tx)

= k2,1
∑
{z}

p2,1,zP (m1 − z1,mn − zn, t)

= k2,1

m1∑
z1=0

mn∑
zn=0

p2,1,z1,znP (m1 − z1,mn − zn, t)

(S9)

Therefore, the most general CME we consider takes the following form:

dP (m, t)

dt
=

n∑
ℓ=1

(nℓ)∑
q=1

kℓ,q

∑
{z}

pℓ,q,zP (m− z, t)− P (m, t)


+

n∑
i=1

ci0 [(mi + 1)P (mi + 1, t)−miP (mi, t)]

+
n∑

i=1

n∑
j=1

cij [(mi + 1)P (mi + 1,mj − 1, t)−miP (mi, t)]

(S10)

S1.2 Converting a CME to a PDE

With the CME in hand, we can write down the probability-generating function. The multivariate
PGF is defined as follows:

G(x, t) =
∞∑

m1=0

...
∞∑

mn=0

P (m1, ...,mn, t)
n∏

i=1

xmi
i :=

∑
m1,...,mn

P (m, t)

n∏
i=1

xmi
i (S11)
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We can sum over the left-hand side of Equation S10:

∞∑
m1=0

...

∞∑
mn=0

dP (m1, ...,mn, t)

dt

n∏
i=1

xmi
i =

d

dt

∞∑
m1=0

...

∞∑
mn=0

P (m1, ...,mn, t)

n∏
i=1

xmi
i =

∂G(x, t)

∂t
(S12)

As Equation S11 is linear with respect to P , we can treat the interior terms of the summations
separately. For a particular combination of ℓ, q, we yield:∑

m1,...,mn

kℓ,qP (m, t)

n∏
i=1

xmi
i = kℓ,qG(x, t), (S13)

i.e., the efflux term of a particular bursting reaction.
Now, taking the PGF and differentiating it with respect to xi:

∂G(x, t)

∂xi
=

∂

∂xi

∞∑
m1=0

...

∞∑
mn=0

P (m1, ...,mn, t)
n∏

k=1

xmk
k

=

∞∑
m1=0

...

∞∑
mn=0

P (m1, ...,mn, t)mix
mi−1
i

n∏
k=1,k ̸=i

xmk
k

(S14)

This implies three useful identities. First, the probability of any state with a negative number of
molecules is zero. Therefore, we can reindex the summation over mi:

∂G(x, t)

∂xi
=

∞∑
m1=0

...
∞∑

mi=1

...
∞∑

mn=0

miP (m1, ...,mn, t)x
mi−1
i

n∏
k=1,k ̸=i

xmk
k

=
∞∑

m1=0

...
∞∑

mi=0

...
∞∑

mn=0

(mi + 1)P (m1, ...,mi + 1, ...,mn, t)x
mi
i

n∏
k=1,k ̸=i

xmk
k

=

∞∑
m1=0

...

∞∑
mi=0

...

∞∑
mn=0

(mi + 1)P (m1, ...,mi + 1, ...,mn, t)

n∏
k=1

xmk
k ,

(S15)

i.e., the PGF of (mi + 1)P (mi + 1, t) is ∂G(x,t)
∂xi

. This gives us the influx terms of all degradation
reactions:

∞∑
m1=0

...

∞∑
mn=0

ci0(mi + 1)P (m1, ...,mi + 1, ...,mn, t)

n∏
i=1

xmi
i = ci0

∂G(x, t)

∂xi
. (S16)

Second, we can multiply xi through the second line of Equation S14:

xi
∂G(x, t)

∂xi
= xi

∞∑
m1=0

...

∞∑
mn=0

miP (m1, ...,mn, t)x
mi−1
i

n∏
k=1,k ̸=i

xmk
k

=
∞∑

m1=0

...
∞∑

mn=0

miP (m1, ...,mn, t)x
mi
i

n∏
k=1,k ̸=i

xmk
k

=

∞∑
m1=0

...

∞∑
mn=0

miP (m1, ...,mn, t)

n∏
k=1

xmk
k ,

(S17)
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i.e., the PGF of miP (m) is xi
∂G(x,t)
∂xi

. This gives us the efflux terms of all degradation and splicing
reactions:

∞∑
m1=0

...
∞∑

mn=0

cijmiP (m1, ...,mn, t)
n∏

i=1

xmi
i = cijxi

∂G(x, t)

∂xi
. (S18)

Third, we can multiply xj through the relation from the third line of Equation S15:

xj
∂G(x, t)

∂xi
= xj

∞∑
m1=0

...
∞∑

mj=0

...
∞∑

mn=0

(mi + 1)P (m1, ...,mi + 1, ...,mn, t)
n∏

k=1

xmk
k

=
∞∑

m1=0

...
∞∑

mj=0

...
∞∑

mn=0

(mi + 1)P (m1, ...,mi + 1, ...,mj , ...,mn, t)x
mj+1
j

n∏
k=1,k ̸=j

xmk
k

=
∞∑

m1=0

...
∞∑

mj=1

...
∞∑

mn=0

(mi + 1)P (m1, ...,mi + 1, ...,mj − 1, ...,mn, t)x
mj

j

n∏
k=1,k ̸=j

xmk
k

=
∞∑

m1=0

...
∞∑

mn=0

(mi + 1)P (m1, ...,mi + 1, ...,mj − 1, ...,mn, t)
n∏

k=1

xmk
k ,

(S19)

where the last step exploits the physical constraint that probabilities of microstates with negative
counts are strictly zero, just as in Equation S15. Therefore, the PGF of (mi+1)P (mi+1,mj−1, t)

is xj
∂G(x,t)
∂xi

. This gives us the influx terms of all splicing reactions:

∞∑
m1=0

...
∞∑

mn=0

cij(mi + 1)P (m1, ...,mi + 1, ...,mj − 1, ...,mn, t)
n∏

i=1

xmi
i = cijxj

∂G(x, t)

∂xi
. (S20)

S1.3 Joint burst distributions can emerge from a model of synchronized gene
regulation

The specific form of the burst distribution is governed by the underlying physics. It is conventional
[4] to assume that a promoter indexed by i can exist in one of two states, Gi,on or Gi,off , where
only Gi,on can transcribe. This premise yields the following reactions for each promoter:

Gi,off
ki,on
⇄

ki,off

Gi,on

Gi,on
ki,init−−−−→ Gi,on + Ti

(S21)

The transcriptional strength of the promoter is described by the telegraph process [5], which we
denote as Kt. This process is the simplest nontrivial continuous-time, discrete-space Markov chain,
which simply switches between two states. If ki,off , ki,init → ∞, the dynamics become bursty,
producing multiple transcripts at burst arrival times. The distribution of the number of transcripts
is geometric. This result is well-known [5], and has been derived using a variety of mathematical
tools [6, 7]. For our purposes, it is easiest to use the Poisson formulation. The following SDE
governs the Poisson intensity of Ti:

dΛi = −riΛidt+Ktdt. (S22)
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In the bursty limit, Kt is zero almost everywhere, because the off state does not transcribe. It
has point masses distributed throughout the time coordinate, with an Exp(ki,on) waiting time
distribution between their arrivals. The point masses have weights ki,init × T , where T is the
duration of the on period, a random variable with an Exp(ki,off ) distribution. Therefore, the
weights are distributed per Exp(ki,off/ki,init), i.e., an average of ki,init/ki,off . This is precisely the
jump size of the burst subordinator associated with promoter i. Kt thus takes the following form:

Kt =

N(t)∑
q=0

δ(t− τq)Jq, (S23)

where N(t) is a Poisson counting process with rate ki,on, τq are the arrival times, and Jq ∼
Exp(ki,init/ki,off ) is the random variable giving the jump sizes or point mass weights. Finally,

we note that Lt :=
∫ t
0 Ksds is a compound Poisson process and thus a legitimate subordinator [8].

Therefore, we can redefine this (somewhat uninformative) form of Ktdt as dLt, with k1,i ← ki,on
and bi ← ki,init/ki,off .
More sophisticated models of transcription can be encoded analogously. First, we can suppose that
more than two promoter states exist. One state yields no transcription, while the two other states
lie in the bursty limit. This is analogous to Figure SN9a of [9] with kINI,1 = 0, k23 = k32 = 0, and
k21, k31, kINI,2, kINI,3 → ∞, with no submolecular details of elongation. In this case, the overall
subordinator is a mixture of the individual states’ subordinators, weighted by their relative on
rates.
To explain synchronization between burst sizes, we can invoke a slightly more complex model,
analogous to Figure SN9b of [9]. Specifically, we can write down equations for a single global
regulator and each of the promoters:

GG,off

kG,on

⇄
kG,off

GG,on

Gi,on
KG(t)ki,on

⇄
?

Gi,off ,
(S24)

where KG(t) is the telegraph process representing the global regulator. If kG,off , ki,on → ∞, the
global “on” periods become infinitesimally short, and the activation of the global regulator leads
immediately to the activation of the individual promoters.
It remains to specify how the individual promoters turn off. If we suppose that the promoter
dynamics are independent, and each promoter shuts off after a delay ∼ Exp(ki,off ), the jump
sizes associated with the promoter-specific subordinators are independent and distributed per
Exp(ki,off/ki,init). This leads to the model described in the section “Example: Two-gene bursty
model, with burst time synchronization” of the main text.
On the other hand, if we suppose that the promoters are forced to shut off precisely when the global
regulator shuts off, the jump sizes associated with the promoter-specific subordinators are perfectly
correlated and distributed per Exp(kG,off/ki,init). These are simply copies of the single random
variable governing the global regulator “on” time, rescaled by promoter-specific initiation rates to
yields the jump sizes. This leads to the model described in the section “Example: Two-gene bursty
model, with partial burst time and size synchronization” of the main text.
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S1.4 Joint burst distributions are tractable using Cauchy products

It remains to compute the generating function of the bursting influx term in Equation S10. To
start, we can treat the simplest case, where kℓ,q = 0 for all ℓ > 1, i.e., no synchronized bursting
occurs. First, we define the burst PGF (based on the PMF with weights p1,i,z for species i) and
recall the Cauchy product formula [10]:

Fi(x) =
∞∑

zi=0

p1,i,zx
zi

∞∑
n=0

anx
n

∞∑
n=0

bnx
n =

∞∑
n=0

cnx
n s.t. cn =

n∑
k=0

akbn−k

=⇒
∞∑
n=0

an

∞∑
n=0

bn =
∞∑
n=0

n∑
k=0

akbn−k,

(S25)

Then, we write down the summation over the influx term and rearrange terms:

∞∑
m1=0

...
∞∑

mn=0

mi∑
zi=0

p1,i,ziP (m1, ...,mi − zi, ...,mn, t)
n∏

k=1

xmk
k

=
∞∑

m1=0

...
∞∑

mn=0

n∏
k=1,k ̸=i

xmk
k

∞∑
mi=0

mi∑
zi=0

[pℓ,q,zix
zi
i ]P (m1, ...,mi − zi, ...,mn, t)x

mi−zi
i

=
∞∑

m1=0

...
∞∑

mn=0

n∏
k=1,k ̸=i

xmk
k

∞∑
mi=0

P (m1, ...,mi, ...,mn, t)x
mi
i

∞∑
zi=0

[pℓ,q,zix
zi
i ]

=

∞∑
zi=0

[pℓ,q,zix
zi
i ]×

∞∑
m1=0

...

∞∑
mn=0

P (m1, ...,mn, t)

n∏
k=1

xmk
k

= Fi(xi)G(x)

(S26)

This expression gives us the influx terms for all burst processes with ℓ = 1. Extending this solution
to ℓ > 1 requires iteratively applying the Cauchy product formula. For simplicity, we demonstrate
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this for ℓ = n.
∞∑

m1,...,mn

∑
z

pℓ,1,zP (m− z, t)

n∏
k=1

xmk
k =

∞∑
m1,...,mn

m1∑
z1=0

...

mn∑
zn=0

pℓ,1,zP (m− z, t)
n∏

k=1

xmk
k

=

∞∑
m1=0

m1∑
z1=0

...

∞∑
mn=0

mn∑
zn=0

pℓ,1,zP (m− z, t)

n∏
k=1

xzkk

n∏
k=1

xmk−zk
k

=
∞∑

m1=0

m1∑
z1=0

xz11 x
m1−z1
1 ...

∞∑
mn=0

mn∑
zn=0

xznn pℓ,1,zP (m− z)xmn−zn
n

=
∞∑

m1=0

m1∑
z1=0

xz11 x
m1−z1
1 ...

∞∑
mn=0

P (m1 − z1, ...,mn−1 − zn−1,mn, t)x
mn
n

∞∑
zn=0

[pn,1,zx
zn
n ]

=

∞∑
zn=0

xznn

∞∑
mn=0

xmn
n

∞∑
m1=0

m1∑
z1=0

xz11 x
m1−z1
1 ...

×
∞∑

mn−1=0

mn−1∑
zn−1=0

pn,1,zx
zn−1

n−1 P (m1 − z1, ...,mn−1 − zn−1,mn, t)x
mn−1−zn−1

n−1

(S27)

We can repeat this process n times, using induction with Equation S26 as the base case and
Equation S27 as the inductive step. This finally yields:

∞∑
m1,...,mn

∑
z

pℓ,1,zP (m− z)
n∏

k=1

xmk
k =

n∏
i=1

( ∞∑
zi=0

xzii

∞∑
mi=0

xmi
i

)
pn,1,zP (m, t)

=

( ∑
z1,...,zn

pn,1,zx
zi
i

)( ∑
m1,...,mn

P (m, t)

n∏
i=1

xmi
i

)
= Fn,1(x)G(x, t).

(S28)

This relatively involved derivation confirms that the result in S26 generalizes to multivariate burst
distributions. For completeness, all cases with ℓ ∈ [2, ..., n − 1] can be derived as special cases of
Equation S27 by defining burst sizes of species not involved in the reaction as zero. Therefore, the
full PGF of the CME in Equation S10 takes the following form:

dG(x, t)

dt
=

n∑
ℓ=1

(nℓ)∑
q=1

kℓ,q(Fℓ,q(x)− 1)G+

n∑
i=1

ci0(1− xi)
∂G

∂xi
+

n∑
i,j=1

cij(xj − xi)
∂G

∂xi
(S29)

Finally, defining ui := xi − 1, ϕ := lnG, and Mℓ,q(u) = Fℓ,q(u+ 1), we can simplify the PDE:

dϕ(u, t)

dt
=

n∑
ℓ=1

(nℓ)∑
q=1

kℓ,q(Mℓ,q(u)− 1)−
n∑

i=1

uici0
∂ϕ

∂ui
+

n∑
i,j=1

(uj − ui)cij
∂ϕ

∂ui
. (S30)

S2 CME solution

It remains to construct a function ϕ(u, t) that solves Equation S30. In the current section, we
discuss the solution procedure at length, motivating the spectral expression reported in the body
of the text.
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The integral can be written down in terms of characteristics. This amounts to introducing a vector
of auxiliary functions U1(u, s), ..., Un(u, s) := U(u, s) that parametrize the solution and taking
a total derivative [11, 12]. The characteristics are governed by the following series of n coupled
differential equations:

dUi(u, s)

ds
=

n∑
j=1

(Uj − Ui)cij − Uici0 s.t. Ui(u, s = 0) = ui, (S31)

with the ϕ term taking the following form [13]:

ϕ(u, t) =

∫ t

0

n∑
ℓ=1

(nℓ)∑
q=1

kℓ,q(Mℓ,q(U(u, s))− 1)ds (S32)

General, closed-form solutions do not exist, as the integral in Equation S32 is typically intractable.
Several special cases have been solved. For example, if we set kℓ,q = 0 for all ℓ > 1, and F1,i(x) = xi,
we recover the case of constitutive expression discussed by Jahnke and Huisinga [14]. The ensemble
of Ornstein-Uhlenbeck models induced by background driving Lévy processes (BDLP) emerges
from setting n = 1 and modulating M1,1, the jump size distribution; the usual negative binomial
bursty model corresponds to exponential Lévy jump sizes, but generalizations have been studied in
the financial context by Barndorff-Nielsen and others [15–17]. Unfortunately, systems with more
than one species and bursty transcription are intractable; even the case of n = 2 and geometric
bursts requires quadrature [13], although some approximation methods are available [18]. Instead
of unduly restricting analysis to systems that are fully tractable, we seek to reduce the PDE to the
single integral in Equation S32, then use numerical quadrature.
We start by computing the characteristics U. As we have assumed the splicing graph is a DAG,
there must be at least one vertex with out-degree zero [19]. Therefore, at least one transcript
(arbitrarily indexed by n) undergoes degradation only, with no splicing products. This transcript
has the following characteristic:

dUn

ds
= −Uncn0 =⇒ Un = une

−cn0s. (S33)

We can iterate backwards and write down an equation for each Ui(u, s). This amounts to iterating
over S31 for different i, checking whether all j corresponding to nonzero cij have already been
visited, and solving the ODE if this is the case. Since DAGs have a partial order, it is always
possible to apply this algorithm and proceed from “downstream” to “upstream” species in a well-
defined way.
The following equality emerges from solving a simple linear ODE with arbitrary parameters ai, bi,
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and r:

dy

dx
=
∑
i

aie
−bix − ry =⇒ y =

∑
i

ai
r − bi

e−bix +Ke−rx

dy

dx
=

d

dx

∑
i

ai
r − bi

e−bix +
d

dx
Ke−rx

= −
∑
i

aibi
r − bi

e−bix −Kre−rx

∑
i

aie
−bix − ry =

∑
i

aie
−bix −

∑
i

air

r − bi
e−bix −Kre−rx

ai −
air

r − bi
=
air − aibi − air

r − bi
= − aibi

r − bi
,

(S34)

which confirms that the expression for y solves the ODE. Therefore, we can write down Equation
S31 in an analogous form:

dUi

ds
=

n∑
j=1

Ujcij − Ui

ci0 + n∑
j=1

cij

 . (S35)

Since the terminal characteristics, as derived in Equation S33, are exponential, and iterating back-
wards maintains the functional form, each characteristic must be expressible as a weighted sum of
exponentials Ui =

∑
j Aije

−rjs, with exponents defined as ri =
∑n

j=1 cij + ci0, the total efflux rate.
Therefore,

Ui =

n∑
j=1

aj
ri − rj

e−rjt +Ke−rit (S36)

The initial condition is Ui(u, 0) = ui implies K = ui −
∑

j
aj

ri−rj
. Care must be taken when the

downstream paths converge. Duplicate terms in product characteristics Uj need to be aggregated:

∑
j

Ujcij =
∑
j

cij
∑
k

Ajke
−rks =

∑
k

∑
j

cijAjk

 e−rks (S37)

Although the derivation is somewhat technical, it lends itself to automation. In a n-species system
with as many distinct efflux rates, each characteristic can be defined with respect to n basis functions
e−ris. Therefore, we iterate over the splicing graph from “downstream” to “upstream”, and re-
weight the coefficients of the bases for each characteristic.

S2.1 Example: path graph splicing

In this and the two following subsections, we solve the ODEs in Equation S31 by hand for several
small systems.
Consider the system consisting of a bursting gene coupled to a n-step birth-death process, char-
acterized by the path graph in Figure S1, where B ∼ Geom(b), and all reactions occur after
exponentially-distributed waiting times. The bursts occur with rate k1, the conversion of adjacent

11



Figure S1: Graph representation of the generic path graph model. The source transcript T1 is syn-
thesized at the gene locus in random geometrically distributed bursts (according to a distribution
B with burst frequency k1). Each molecule proceeds to isomerize in a chain of splicing reactions
governed by successive rates β1, β2, . . . , βn−1, until reaching the form Tn, which is ultimately de-
graded at rate βn.

transcripts Ti to Ti+1 occurs with rate βi, and the degradation of Tn occurs with rate βn. We
assume the rates of conversion and degradation are all distinct. The amount of species Ti can be
described by the non-negative discrete random variable mi. We assume no molecules are present
at t = 0.
Analysis yields the following PDE governing the generating function:

∂ϕ

∂t
= k1(M(u1)− 1) +

n−1∑
i=1

βi(ui+1 − ui)
∂ϕ

∂ui
− βnun

∂ϕ

∂un
, (S38)

where M(u) := F (1 + u). This equation can be solved using the method of characteristics, with
formal solution ϕ = k1

∫ t
0 [M(U1(s))−1]ds. The characteristics Ui, i < n satisfy dUi

ds = βi(Ui+1−Ui),
with Un(u, s) = une

−βns.
The functional form of dUi

ds , combined with Equation S36, implies that U1(s) is the weighted sum of
exponentials

∑n
i=1A1ie

−βis. The weights A1i can be computed through a simple iterative procedure,
which proceeds from the terminal species and successively incorporates dependence on upstream
rates:

A1i ← 0 ∀ i < n
A1n ← un
i← n− 1
while i > 0 do

for j > i do
A1j ← A1j × βi

βi−βj

end for
A1i ← ui −

∑
j>iA1j

i← i− 1
end while

This algorithm iteratively applies the solution from Equation S34 and its particular form in Equa-
tion S36 to explicitly compute the basis coefficients.

S2.2 Example: alternative splicing

Suppose the downstream dynamics are given by a directed rooted tree. The solution procedure is
analogous to that used for the path graph. First, starting at the leaves, the path subgraph solutions
are produced by the procedure above, yielding a sum of exponentials. Then, at a node of out-degree
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Figure S2: Graph representations of simple directed acyclic graph models. (a) Tree splicing graph
with two terminal isoforms. (b) Convergent splicing graph with a single terminal isoform and two
intermediate transcripts.

> 1 (i.e., molecular species with several potential products), the associated ODE has a functional
form identical to that of a path graph. Therefore, the solutions are analogous.
As an illustration, consider the simplest tree graph, shown in Figure S2a, where the splicing reac-
tions occur at rates α1 and α2 and degradation reactions occur at rates β1 and β2. Physically, this
graph can be interpreted as a single source mRNA being directly and stochastically converted to
one of two terminal isoforms by removal of intron 1 or intron 2. Clearly, Ui = uie

−βis for i ∈ {1, 2}.
The ODE governing the source species is:

dU0

ds
= α1(U1 − U0) + α2(U2 − U0) = α1U1 + α2U2 − (α1 + α2)U0

=⇒ U0 =
α1

α1 + α2 − β1
u1e

−β1s +
α2

α1 + α2 − β2
u2e

−β2s +Ke−(β1+β2)s

s.t. K = u0 −
α1

α1 + α2 − β1
u1 −

α2

α1 + α2 − β2

(S39)

Finally, the expression for U0 can be directly plugged into the burst generating function and inte-
grated.

S2.3 Example: two-intron splicing with non-deterministic order

Consider the same tree graph as in the example above, and suppose T1 and T2 are converted
to product T12 at rates β1 and β2, as shown in Figure S2b. Afterward, T12 is degraded at rate
γ. Physically, this graph can be interpreted as a single source mRNA being converted to one of
two intermediate isoforms by the removal of one of two introns, then to a single terminal isoform
by the removal of the other intron. Clearly, U12 = u12e

−γs. Setting fi := βi

βi−γ , we find Ui =

(ui − fiu12)e−βis + fiu12e
−γs. Finally, the dynamics of the source molecule T0 are governed by the

following ODE:

dU0

ds
= α1(u1 − f1u12)e−β1s + α2(u2 − f2u12)e−β2s + (α1f1 + α2f2)u12e

−γs − (α1 + α2)U0

Yet again, the functional form affords a straightforward analytical solution:

U0 = Ke−cs +
C1

c− β1
e−β1s +

C2

c− β2
e−β2s +

C3

c− γ
e−γs,

where c := α1 + α2, C1 := α1(u1 − f1u12), C2 := α2(u2 − f2u12), and C3 := α1f1 + α2f2. From the
initial condition U0(s = 0) = u0, we yield K = u0− C1

c−β1
− C2

c−β2
− C3

c−γ . The computation procedure
is demonstrated in Figure S3.
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Figure S3: Illustration of the solution algorithm. The differential equation structure requires the
backward propagation of downstream species’ solutions, weighted by ratios of rates.

S2.4 General spectral solution

The solutions described above, although exact, are cumbersome to compute by hand. Ultimately,
we seek to evaluate the characteristics of an arbitrary graph at an arbitrary set of u for the Fourier
transformation and an arbitrary set of t for the quadrature.
In principle, we can exploit previous results. For example, the case of constitutive expression
is known to have a multivariate Poisson distribution with intensities given by the reaction rate
equations [14]. Therefore, to obtain the functions U, we need to write down the generating function
G∗ of the solution to the constitutive case, differentiate the log-PGF ϕ∗ =

∫ t
0

∑n
i=1 k1,iUi(u, s)ds,

and obtain the characteristics. The solution to this system has been well-characterized for sixty
years, with cornerstone work by Gans [20] and McQuarrie [21], as well as recent extensions by
Gadgil [22] and Reis [23], and can be obtained using the eigenvalues of the transition rate matrix
with entries cij . Equivalently, we know that the constitutive solution consists of independent Poisson

distributions [14]; therefore, it it must be possible to write down each ∂ϕ∗

∂t as a sum of independent
species-specific functions

∑n
i=1 uiψi(s), where ψi is the derivative of the species average obtained

by solving the reaction rate equations.
Ultimately, it is easiest to apply spectral methods directly to the characteristic relations. We can
write down Equation S40 as a matrix equation:

dU

ds
= CU s.t. U(s = 0) = u, (S40)

where C is a matrix containing Cij = cij for all i ̸= j and Cii = −
∑n

j=1 cij−ci0. We can decompose

it as C = V ΛV −1, where Λ is a matrix containing the eigenvalues λ1, ..., λn on the diagonal. The
general solution to this system takes the following form:

U(s) =
n∑

i=1

aie
λisvi, (S41)
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where vi are the eigenvectors contained in V . To compute the coefficients ai, we need to plug in
the initial condition:

u = U(0) = [v1, ...,v1][a1, ..., an]
T = V [a1, ..., an]

T

=⇒ [a1, ..., an]
T = V −1u.

(S42)

Plugging these coefficients into the solution:

U = [eλ1sv1, ..., e
λnsvn]V

−1u (S43)

Inspecting each individual characteristic Ui:

Ui =
n∑

j=1

n∑
k=1

Vije
λjsV −1

jk uk =
n∑

j=1

n∑
k=1

VijV
−1
jk uke

λjs (S44)

To actually compute the integral in Equation S32, we need to know U as a function of time. This is
easiest to represent by writing the characteristics as weighted sums of the time-dependent spectral
terms:

U = A[eλ1s, ..., eλns]

Aij =
n∑

k=1

VijV
−1
jk uk

w := V −1u =⇒ A = V ·Diag(w).

(S45)

Therefore, for each reaction system we investigate, we need only compute V , V −1, and Λ once,
by a single spectral decomposition and a single inversion. Thereafter, we can compute w for each
value of u of interest, by two matrix multiplications per u.
Finally, if we are interested in a single characteristic, we simply extract the corresponding coef-
ficients. For example, if only a single transcript with index i is being produced in bursts, the
following equation gives its characteristic:

Ui(u, s) =
n∑

j=1

eλjs(V ·Diag(V −1u))ij . (S46)

By construction, the diagonal elements of C give the eigenvalues λi. Therefore, ri = −λi. If
multiple eigenvalues coincide, it is necessary to use a version of the spectral solution with mixed
exponential-polynomial terms [13,24].

S3 Bursty systems have well-behaved moments

In the current section, we use the standard geometric burst distribution and demonstrate qualitative
properties of the solutions: all solutions exist, have all moments, and are unimodal. For convenience,
we adopt the assumptions and notation of the section ”Moments of the splicing graph solutions are
tractable by matrix operations” in the main text.
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S3.1 The exponential sum is always positive

First, we demonstrate that the downstream processes yield a strictly positive functional form of
time dependence. Noting that the marginal of species i (with uj = 0 for all j ̸= i) yields the
functional form U1(ui, s) = ui

∑n
k=1 ai,ke

−rks := uiψi(s), this condition translates to ψi(s) > 0 for
all s > 0.
Consider F (x) = x, corresponding to constitutive production of the source species (i.e. a Poisson
birth process), with no molecules present at t = 0. Focusing on the marginal of species i, this
assumption yields ϕ(ui, t) = k1

∫ t
0 U1(ui, s)ds = k1

∫ t
0 unψn(s)ds. Evaluating eϕ at xi = 0, i.e.

ui = −1, marginalizes over all j ̸= i and yields the probability of observing zero counts of species
i: G(ui, t) = P (mi = 0, t) = P0(t) = exp(−k1

∫ t
0 ψi(s)ds). The corresponding time derivative is

dP0
dt = −k1ψn(t) exp(−k1

∫ t
0 ψi(s)ds). Simultaneously, we know that P0(t) = e−λi(t), where λi(t)

is the solution of the reaction rate equation for species i [14]. Clearly, dP0
dt = −P0(t)

dλi(t)
dt . The

reaction rate dλi(t)
dt > 0 at t = 0 under the given initial conditions. Furthermore, dλi(t)

dt is strictly
positive. This follows from the reaction rate equations. By the continuous formulation, λi is a
weighted moving average of some set of processes {λk}. λ1 is a strictly increasing function governed
by k1

r1
(1 − e−r1s). The property of being strictly increasing is retained under moving average and

rescaling. Therefore, each successive moving average must be strictly increasing.
Finally, P0 ∈ (0, 1) > 0, because the Poisson distribution has support on all of N0. Therefore,

dP0
dt is

strictly negative. As the exponential term and k1 are positive, this implies ψi(s) is strictly positive
for all s > 0.

S3.2 All generating functions and marginals exist

Next, we show that G(ui, t), the generating function of the ith marginal, is finite for the geomet-
ric burst system. This follows from the construction of the original PGF: the marginal PGF is
guaranteed to be finite if 1 − buiψi is never zero. But for the relevant domain ℜ(un) ≤ 0, on the
shifted complex unit circle, ℜ(1−buiψi) ≥ 1, except at the degenerate initial case. The existence of
the marginal moments of Xi is implied by the existence of the generating function. The existence
of all cross moments follows from the Cauchy-Schwartz inequality. Per standard properties, this
existence property holds for both Xi and Λi.
The tails of the stationary discrete marginals decay no slower than the geometric distribution. This
follows immediately from the lower bound on ℜ(1− buiψi), which in turn gives an upper bound on
xi [13]. Equivalently, this follows from the existence of all moments [25]. An analytical radius of
convergence has been given previously for n = 2 [13], but numerical optimization is necessary to
establish rates of tail decay for n > 2.

S3.3 All marginals are infinitely divisible

An infinitely divisible distribution of a random variable X can be represented as the sum of q
independent random variables Xq1, ..., Xqq for every integer q [26]. This follows from the functional
form of the PGF in Equation 14 (setting kj = 0 when j ̸= 1 for consistency): the system can be
decomposed into q independent systems with burst frequencies k1/q.
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S3.4 Only the first marginal is self-decomposable

The law of a self-decomposable (sd) random variable X is equal in distribution to the random
variable cX + Xc, where Xc is independent of X [26]. By definition, a random variable is sd if
such a representation can be found for any c ∈ (0, 1). Distributions in this class are frequently
invoked in the stochastic process literature, as they are amenable to analysis through the Lévy-
Khinchine representation and guarantee useful properties, chief among them unimodality [17, 27].
Unfortunately, we cannot rely on self-decomposability to prove unimodality in our case, because
all of the downstream processes are non-sd.
A random variable has a self-decomposable law if and only if it also offers a representation of the
form Y =

∫∞
0 e−tdXt, with Lévy Xt [26]. By considering Equation 8, we find that downstream pro-

cesses can be represented as moving averages of upstream processes. However, only L1,t, the jump
driver of the transcriptional process, is Lévy. All downstream intensity processes have nontrivial,
almost-everywhere C∞ trajectories, which implies they cannot be represented by a Lévy triplet:
the only permitted continuous Lévy processes are linear combinations of the (non-differentiable)
Brownian motion Wt and the trivial process t. Therefore, Λi is sd for i = 1 and non-sd for all i > 1.

S3.5 All stationary marginals are unimodal

Even though we cannot rely on the sd property, we can still invoke the properties of the transcrip-
tional process to prove that all marginals are unimodal.
First, we consider a single trajectory of the intensity process Λi governed by Equation 8. The tra-
jectory of Λ1 is a realization of the gamma Ornstein-Uhlenbeck process, a deterministically trans-
formed version of a realization of L1,t [28]. The trajectories of all other species are deterministically

transformed versions of Λ1. For example, if the transcript processing reactions T1
r1−→ T2

r2−→ ... take
place, applying variation of parameters to the Poisson representation yields:

Λ1(t) =

N(t)∑
q=0

e−r1(t−τq)Jq

Λ2(t) =

∫ t

0
r2Λ1(s)e

−r2(t−s)ds.

(S47)

Therefore, the trajectory of every Ti is an iterated and rescaled moving average of the underlying
process L1,t, with exponential jumps Jq at times τq generated by the Poisson process N(t).
Multimodality in the distribution of a trajectory can result from the definition of the moving
average or from multimodality of the underlying process’s trajectory (e.g., Λ1 in Equation S47).
The one-parameter exponential moving average cannot induce multimodality. The stationary law
of many realizations of Λ1 is gamma; by ergodicity, a single realization of its trajectory over a
long enough period of time converges to this law. Therefore, the stationary distributions of all
downstream species are unimodal in the continuous worldview. By standard properties of Poisson
mixtures [29], the CME marginals are likewise unimodal.

S4 Simulation

To compare the analytical solutions with simulation, we generated a random directed acyclic graph,
shown in Figure S4a. The numbers of species (7) and isomerization reactions (11) were chosen
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arbitrarily. We enforced the existence of a single unique source node (a) and the weakly connected
property to ensure only a single source mRNA would be present and all isoforms would be reachable
from it, but did not impose any other conditions. The number of degraded species (3) was chosen
arbitrarily; we assigned degradation reactions to the two sink species (c, e) and randomly chose a
degraded intermediate (b) from a uniform distribution over the molecular species.
All reaction rates were drawn from a log-uniform distribution on [10−0.5, 100.5]; we chose to sample
them from a single order of magnitude to avoid the trivial degenerate cases that occur in cases
of very slow or very fast export [13]. This process produced the parameter values ka = 0.44,
β = [0.48, 2.12, 1.31, 2.21, 1.16, 2.41, 0.4, 1.19, 0.37, 1.19, 0.53], and γ = [0.94, 2.38, 0.72], with the
indices corresponding to those in Figure S4a. Finally, we chose the geometric burst model with
b = 10.

Figure S4: Validation of the solution algorithm using stochastic simulations. a. Graph represen-
tation of the randomly generated transcription, splicing, and degradation model. A single source
isoform Ta is converted to a variety of downstream isoforms Tb, ..., Tg, which isomerize according to
a randomly generated directed acyclic graph. b. The simulated marginal distributions and lower
moments match the analytical solutions (gray bars: histograms obtained from simulations; red
lines: analytical solutions; black points: covariance matrix entries from simulated data).

We applied the algorithm to compute the exponents and coefficients, and computed the stationary
distributions of all species. Further, we simulated 1000 cells up to T = 5r−1

min, where rmin was the
minimum rate of ka, all β, and all γ. The simulated distributions matched the quantitative results
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for the marginals, as shown in Figure S4b. Furthermore, the 49 entries of the covariance matrix
were effectively predicted by the procedure for moment calculation.

S4.1 Benchmarking

To benchmark the performance of the algorithm and identify bottlenecks, we generated 100 splicing
networks with the same number of nodes, edges, and degradation channels as above, and with rates
and graphs drawn from the same distribution. Log-burst sizes log10 b were drawn from a normal
distribution with mean and variance of 1, clipped at [−1, 2]. For each graph, we simulated 1000
cells and timed each step of the procedure. The results are shown in Figure S5. As evident
from Figure S5a, all marginal PMF computation runtimes (including computation of coefficients,
numerical integration, and inverse Fourier transformation) were below 100 ms, and demonstrated
time complexity of O(N 0.414) in the relevant domain (up to approximately 1000 counts).
We can use this benchmark to demonstrate the impracticality of matrix methods for computing
the marginals of highly multimodal systems. If we are interested in the marginal i, this semi-
analytical solution requires an array of size N = maxmi, with the maximum taken over all cells.
However, matrix methods involve a state space size of N =

∏
imaxmi: for example, if we wish

to find the marginal of species e in Figure S4a, we need to compute the entire joint distribution
of species a, b, d, f, g, and e and sum over the dimensions corresponding to a, b, d, f, and g.
To understand how feasible this is, we can examine the “latent” dimension of the systems by
computing N =

∏
i(maxmi + 6), the state space size used throughout the benchmarking to limit

ringing artifacts. The distribution of overall system sizes is shown in Figure S5b, and ranges from
106 to 1016. The upper range of this size requires 281 petabytes to define each state in 8-byte
floating point format, making it impossible to even store an array of size N , much less process it
in the conventional matrix time of O(N 3).
Inspecting the predictive performance of all 100 systems is challenging. However, we can at least
visualize the covariances, in the vein of the last panel of Figure S4b. The results are shown, without
axes, in Figure S5c: overall, the theory agrees with the simulations, although some negative sample
covariances are observed in simulations when the entries are close to zero.
Finally, in Table S1, we report the computation times necessary to generate the marginals for
the 100 systems benchmarked in Figure S5. The simulation is by far the most computationally
intensive part of the process, followed by numerical integration. The spectral decomposition requires
approximately 0.1 ms per system (rather than per marginal). The computation of coefficients
(matrix multiplication) takes on the order of 1 ms per marginal, whereas the Fourier inversion takes
on the order of 0.1 ms per marginal. Therefore, the computational cost of the forward problem is
dominated by the numerical integration, which takes on the order of tens of ms for each PMF. The
runtime can be halved by exploiting the Hermitian property of the Fourier transform of a probability
mass function [30]. Some further speed improvements can be obtained by approximation; we
have reported gains by using Gaussian rather than adaptive quadrature [31] and by using special
functions for certain narrow sets of splicing networks [18], but the performance reported here
appears to be sufficient for most practical use.
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Figure S5: Benchmarking of the solution algorithm using stochastic simulations. a. The runtime
varies between 3 and 150 ms for all marginals, with sub-linear state space size scaling in the low-
copy number regime. b. Although the marginals are tractable, the full joint distributions are
not: the latent space sizes range from 106 to 1016. c. The simulated lower moments match the
analytical solutions for all 100 simulated graphs (x-axis: analytical solution; y-axis: black points:
covariance matrix entries from simulated data; red lines: identity; magenta points: negative of
sample covariance with incorrect sign).

S5 Inference

The current framework provides quadrature-based solutions to the forward problem of PMF pre-
diction for a broad set of transcriptional processes. More broadly, we would like to treat the inverse
problem of identifying parameters from sequencing data. A wide range of statistical approaches are
available; however, in practice, even the simplest, ergodic version of the inverse problem depends
on the following prerequisites:

1. Single-cell, single-molecule data for a set of cells in local equilibrium. This information permits
the application of the ergodic model.

2. Full annotation of intermediate transcripts, including causal relationships, such as the splicing
graph and the identities of degraded molecules. This information permits mapping between
experimental data and theoretical quantities.

3. Transcriptome-wide quantification of all transcripts, ideally unbiased and fully saturated – or,
at the very least, imperfect quantification combined with a statistical model of sequencing.
This information permits the inclusion of technical noise.

No perfect experimental solution exists. The collection of single-cell, single-molecule data is enabled
by barcoding [32]. Characterization of splicing graphs has been treated in experimental [33,34] and
computational [35] contexts. However, these necessarily rely on comprehensive single-molecule an-
notations – which distinct intron/exon combinations occur? – which have only become feasible

20



Process Time

Graph construction 607 ms
Simulation 14.1 min

Spectral decomposition 89 ms
Covariance computation 475 ms

Coefficient computation 1038 ms
Numerical integration 7272 ms

Inverse fast Fourier transform 113 ms
Total PMF computation 8482 ms

Table S1: Timing of computation steps for the 700-marginal computation needed to generate Figure
S5.

on a genome-wide scale since the introduction of molecular barcoding. Fully saturated sequencing
is infeasible due to cost, and potentially due to thermodynamic constraints. Finally, standard se-
quencing capture protocols are, by design, biased toward polyadenylated regions [32]. This effect
has been exploited to capture natural intronic sequences [36] and synthetic antibody-conjugated
oligonucleotides [37, 38], but the quantitative effects of these biases are as of yet unclear; we hy-
pothesize that they can lead to systematic false negatives and false positives in the sequencing
process [31]. Naturally, these data quality challenges are compounded with standard statistical
challenges, such as the often considerable computational expense of determining confidence regions.
Formally, we can use a sequencing protocol, count the number of molecular barcodes assigned to
a particular transcript, and produce a data matrix, which we then treat as a set of realizations of
a random variable. However, we do not know the exact form of this random variable. Even if we
assume that we can describe the physics of the system by a Markov model, the system may contain
contributions from the following phenomena:

1. Intrinsic stochasticity due to factors incorporated in the model.

2. Intrinsic stochasticity due to factors outside the model scope.

3. Various regulatory effects that counteract stochasticity.

4. Extrinsic stochasticity due to random variability in biological parameters.

5. Extrinsic effects due to multiple cell types or trajectories.

6. Technical effects due to imperfect sequencing.

7. Ambiguities or bioinformatic uncertainties in identifying transcripts.

We can counteract some of these sources of uncertainty by choosing our data appropriately. The
challenges of point 7 can be mitigated by choosing technologies that perform long-read sequencing.
This essentially restricts us to two candidates with long-read sequencing, cell barcodes, and molecu-
lar barcodes: FLT-seq (full-length transcript sequencing by sampling) [39] and Smart-seq3 [40,41].
We chose the former due to the ready availability of processed, isoform-resolved data. In brief,
FLT-seq synthesizes a cDNA library using 10X gel beads and primers, amplifies it, then applies
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nanopore sequencing to generate long reads with associated cell and molecule barcodes. The accom-
panying bioinformatic pipeline FLAMES (full-length analysis of mutations and splicing) produces
novel annotations characterizing the exons present in each molecule.
The challenges of point 5 can be mitigated by analyzing experimental conditions where the cells can
be plausibly assumed stationary and homogeneous, up to stochasticity. We used a cultured mouse
stem cell dataset and filtered for a subset of activated cells. Summary visualizations reported by
the authors suggest that this subset is fairly internally homogeneous [39].
We analyzed the transcripts of the top 500 genes (based on total expression) observed in the data
to constrain causal relationships between them. We used gffutils 0.10.1 to construct a database of
identified intermediate and terminal isoforms, based on the accompanying annotations generated by
the FLAMES pipeline. We used the intervaltree 2.1.0 Python package to split the transcript-specific
exons into elementary intervals, defined as the set of largest contiguous stretches that are either
present or absent in each isoform. The distributions of isoforms and introns (elementary intervals)
per gene are shown in Figure S6. With these annotations in hand, we used graph tools from
the NetworkX 2.5.1 Python package to generate directed acyclic graphs induced by accessibility
relations between transcripts: if transcript Tj is accessible from transcript Ti by removing some
portions of sequence, a path must lead from Ti to Tj . By filtering for transcripts with in-degree
zero, we identified “root” transcripts that cannot be obtained by removing regions of any other
transcript.

Figure S6: Isoform diversity of the FLT-seq dataset. a. The top 500 highest-expressed genes
demonstrate a high diversity of transcript forms, with most genes having up to 20, but a significant
tail having 20-90. b. By definition, the isoform diversity stems from presence and absence of
variable regions. An average gene has approximately 20 such regions.

The hypothetical source transcript covering the entire locus was not observed for any of the genes.
As their exonic patterns are mutually exclusive, we model each gene’s root transcripts as products of
a single rapidly processed source species. The theoretical results given in Equation 29 immediately
imply that the root transcripts must be distributed according to a negative binomial law. Therefore,
by fitting the transcript distributions, we can estimate effective burst sizes bwi and normalized efflux
rates ri. These marginal parameters can be plugged into the formula for Pearson correlation in
Equation 31, and compared to the empirical correlation coefficients.
The procedure assumes that all of the root transcripts are rapidly, and stochastically, produced
from a single parent transcript, and attempts to use this model to predict their sample correlation
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structure without foreknowledge of anything but the marginal distributions. As outlined in the
“Results” section, the theoretical correlations are to be understood as upper limits. The noise
sources outlined in points 2, 4, and 6 – and potential residual contributions from 5 and 7 – inevitably
reduce transcript–transcript correlations. By treating correlations as upper limits in the absence
of all noise outside the intrinsic stochasticity in point 1, we side-step the error sources outside the
model: their specific form can be omitted; we are only concerned with the fact that they decrease
mutual information.
To facilitate the fitting process, we performed several steps of filtering. After identifying the root
transcripts, we filtered out “sparse” transcripts with fewer than five molecules in the entire dataset,
as their fits are unlikely to be informative. To account for point 3 in an ad hoc way, we removed all
transcripts with variance lower than the mean: they cannot be effectively fit to a negative binomial
model, and underdispersion is a known to be a hallmark of feedback regulation [42]. We fit the
remaining root transcript marginal distributions using the statsmodels 0.10.2 Python package, and
filtered out all genes that were not successfully fit.
542 transcripts were rejected due to sparsity. 302 transcripts were rejected due to underdispersion.
100 transcripts were rejected due to failure to converge to a satisfactory fit; all of these had average
expression below 1 mRNA per cell, with the distribution of average transcript counts for this
subset shown in Figure S7. The quality of fits is demonstrated for a sample gene in Figure 1c.
The interactive Python notebook used to perform the analysis can be used to investigate the exon
structure, elementary intervals, putative splicing DAGs, and fits for any gene in the dataset.

Figure S7: Distribution of average copy numbers of transcripts rejected by the fitting procedure.

This analysis produced 4885 nontrivial correlations for pairs among 1978 transcripts. The sample
correlations are visualized against the theoretical correlations in Figure 1d. The points are aggre-
gated in the lower right corner of the plot, as we expect: if the theoretical correlations are computed
in the absence of noise, any additional stochasticity will degrade the correlations actually observed
in the data. Some points lie above the line of identity, possibly reflecting tight regulation. A cluster
of points (evident as the sharp peak on the histogram in Figure S8) has small negative correlations,
possibly indicating mutually exclusive splicing of certain isoforms. However, it is not yet clear that
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either of these deviations results from meaningful model differences rather than the relatively small
sample size of the FLT-seq datasets, filtered for a single cell cluster.

Figure S8: Histograms of sample correlations between root transcript counts in the FLT-seq dataset,
computed for isoforms that passed filtering and were fit according to the procedure described
in Section S5. a. The distribution of intra-gene correlations demonstrate a peak near -0.05.
This visualization can be obtained by marginalizing Figure 1d. b. The distribution of inter-gene
correlations demonstrate a peak near 0.7 and a shoulder near 0.2. This visualization can be obtained
by marginalizing Figure 1g.

We can use the same procedure to try and predict inter-gene correlations: in the simplest model
of co-expression, all genes fire simultaneously, with correlated burst sizes given by the model in
Equation 28. Thus, their root transcripts are generated at the same time. To analyze the data,
we need to select a single isoform for each gene. We cannot simply aggregate all isoforms, or
even all root transcripts, as the distribution of sum of these random variables is not necessarily
negative binomial. Therefore, we choose a single “dominant” isoform for every gene, based on
highest expression. In the vast majority of cases, this isoform predominates and accounts for most
of the expression among the root isoforms (Figure S9).
After processing the same set of 500 genes, 490 root transcripts remained after filtering and fit-
ting. The analysis produced 119805 nontrivial correlations for pairs of transcripts. The sample
correlations are visualized against the theoretical correlations in Figure 1g. As before, the points
are aggregated in the lower right corner of the plot, suggesting that the upper limit on correlation
obtained from the intrinsic-only noise model holds. Some points lie above the line of identity, but
there does not appear to be a distinctive population of genes with negative correlations (Figure
S8b).

S5.1 Quantifying uncertainty in correlation coefficients

To understand whether the model constraints hold, we have compared predicted “theoretical” corre-
lations to sample correlations. However, with the relatively small sample sizes available by FLT-seq,
both the predictions and the sample correlations themselves have non-negligible uncertainty. To
understand whether violations of the constraints are systematic or artifactual, we need at least a
qualitative understanding of the uncertainty involved. The prediction procedure is intended to be
ad hoc: it sacrifices statistical power by predicting rather than fitting joint distributions. There-
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Figure S9: Histogram of the relative prevalence of the dominant root isoform. In the vast majority
of cases, a single isoform predominates.

fore, we do not treat uncertainty in ρtheo: its interpretation and computation are rather obscure.
However, we can analyze the distributions of the sample correlations and attempt to quantify their
stability.
The distribution of correlations can be computed analytically, through the bootstrap, or through
approximations. Unfortunately, it appears that analytical solutions are only available for a very
narrow set of distributions, such as the multivariate normal [43]. For a rough estimate, we use an
approximation and adapt the Fisher z-transformation 1

2 ln
1+ρ
1−ρ . If the number of observed cells is

N , the 95% confidence interval for the z-transformed correlation has the half-width 1.96/
√
N − 3.

If the true correlation ρ = 0, the confidence interval (CI) for the sample correlation takes the
following form [44]: [

tanh(−1.96/
√
N − 3), tanh(1.96/

√
N − 3)

]
(S48)

For the sample size of 137 cells we use, the 95% CI is 0 ± 0.168. Although this estimate is very
approximate, it appropriately conveys the high uncertainty in the observed correlations.
We can compute 95% CIs for the sample correlation directly, using the bootstrap. We demonstrate
these confidence intervals for the intra-gene correlations in Figure S10a. Compared with the 750
correlations in the “negative” regime obtained by point estimation, only 144 entries have a CI that
lies entirely below the zero-correlation line (2.9% of all correlations). Further, compared with the
279 “inconsistent” entries, only 29 have a CI that lies entirely above the line predicted by Equation
31 (0.59% of all correlations). Therefore, the qualitative picture of the data as broadly consistent
with the proposed model constraints appears to be supported by the analysis of uncertainty. We
visualize the dependence of the uncertainty on the sample correlation in Figure S10. The CIs are
in line with the approximation obtained from Equation S48: the correlations can be estimated up
to an error of 0.1-0.2.
We perform an analogous analysis of inter-gene correlations in Figure S11a. Compared with the
1961 correlations in the “negative” regime, only 262 entries have a CI that lies entirely below the
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Figure S10: Bootstrap 95% confidence intervals for the intra-gene sample correlations. a. A variant
of Figure 1d with uncertainty in the sample correlations (points: sample correlations; error bars:
confidence intervals for the sample correlations; horizontal line: zero correlation; diagonal line:
identity). b. Confidence intervals visualized as a function of the sample correlation (error bars:
confidence intervals corresponding to a particular correlation matrix entry; red line: identity).

zero-correlation line (0.0022% of all correlations). Further, compared with the 302 “inconsistent”
entries, only 5 have a CI that lies entirely above the line predicted by Equation 31 (0.0042% of all
correlations). Therefore, data appear to be broadly consistent with proposed model constraints,
potentially to a greater extent than in the foregoing investigation of intra-gene correlations. We
visualize the dependence of the uncertainty on the sample correlation in Figure S11; as before, the
CIs are in line with the Fisher approximation.

Figure S11: Bootstrap 95% confidence intervals for the inter-gene sample correlations. a. A variant
of Figure 1g with uncertainty in the sample correlations (points: sample correlations; error bars:
confidence intervals for the sample correlations; horizontal line: zero correlation; diagonal line:
identity). b. Confidence intervals visualized as a function of the sample correlation (error bars:
confidence intervals corresponding to a particular correlation matrix entry; red line: identity).
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S6 Delay chemical master equations

In the current supplement, we detour from the Markovian framework to consider delay systems,
which have deterministic, rather than stochastic, state transitions. Certain degenerate cases – for
example, the problem of incremental, linear movement with identical transition rates – directly
bear upon the class of delay chemical master equations (DCMEs).

S6.1 Example: constitutive production, one species

To begin, we can model the simple linear chain of reactions with constitutive production:

∅ k1−→ T1
β/n−−→ ...

β/n−−→ Tn
β/n−−→ ∅, (S49)

where the total delay between production of T1 and degradation of Tn is Erlang-distributed, with
shape n and rate β. As n → ∞, the Erlang distribution reduces to a point mass at β−1 := τ .
This implies that we can treat an aggregated species T , produced at rate k and degraded after a
deterministic delay τ :

∅ k1−→ T τ
=⇒ ∅ (S50)

This is precisely the “linear chain trick” introduced by MacDonald in 1978 [45]. The study of delayed
dynamical systems, such as delay differential equations, dates back to the eighteenth century [46],
with cornerstone biological models by Lotka and Volterra [45,46]. Recent work has focused on de-
veloping exact solutions [47–49] and simulation methods [50,51]. In particular, studies by Lafuerza
and Toral [52,53] report full analytical solutions for constitutive systems with isomerization, while
a contemporary study by Jia and Kulkarni [54] reports lower moments for a system with bursty
mRNA production and catalysis. The distribution of T is Poisson(k1τ), as this is the number of
transcriptional events in a window of length τ .

S6.2 Example: constitutive production, two species

As a secondary illustration, we consider the constitutive two-stage system described by Lafuerza
and Toral [52]. If we assume that no stochastic degradation reactions occur, the reaction equations
and generating function relations take the following form:

∅ k1−→ T1
β−→ T2

τ
=⇒ ∅

∂G

∂t
= k1(F (x1)− 1)G+ β(x2 − x1)

∂G

∂x1
+ β(1− x2)

∞∑
m1=0

G∗(x1, x2, τ)m1P (m1, t− τ),

where G∗ is a conditional generating function for an auxiliary non-degrading system, initialized at
m1 − 1 molecules of the parent transcript T1. This auxiliary system has no degradation reactions,
and allows us to incorporate the non-Markovian effects of delays. Assuming constitutive production,
and using the shifted variables ui for convenience, we find:

∂G

∂t
= k1u1G+ β(u2 − u1)

∂G

∂u1
− βu2

∞∑
m1=0

G∗(u1, u2, τ)m1P (m1, t− τ) (S51)
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The final term is not proportional to G, so no convenient exponential ansatz is available. However,
the sum affords an alternative representation, which exploits the separability of the initial condition
and the dynamics on [0, τ ]:

G∗(u1, u2, τ) = [1 + U1(τ)]
m1−1eϕ

∗(τ)

∞∑
m1=0

G∗(u1, u2, τ)m1P (m1, t− τ) = eϕ
∗(τ)

∞∑
m1=0

[1 + U1(τ)]
m1−1m1P (m1, t− τ),

(S52)

where ϕ∗ is the factorial-cumulant generating function of the auxiliary system, started at zero
molecules. This sum may be treated as the first derivative of the stationary T1 PGF, evaluated at
1 + U1, where U1 is a function computed by solving the non-degrading system with the method of
characteristics.
We start by computing the auxiliary U1 by using the method of characteristics and enforcing
U2(0) = u2 and U1(0) = u1.

∅ k−→ T1
β−→ T2

∂U2

∂s
= 0 =⇒ U2 = u2

∂U1

∂s
= β(U2 − U1) =⇒ U1 = u2 + (u1 − u2)e−βs

(S53)

Now, we compute the generating function of the subsystem:

ϕ∗(t) = k1

∫ t

0
U1(s)ds = k1

∫ τ

0

[
u2 + (u1 − u2)e−βs

]
ds

= k1u2τ +
k1
β
(u1 − u2)

[
1− e−βτ

] (S54)

We compute the derivative of the T1 Poisson PGF:

H(x1) = ek1(x1−1)/β

H(u1) = ek1u1/β

H ′(U1) =
k1
β
ek1U1/β

(S55)

This construction is slightly simpler than in the original: we do not use the full time-dependent
Poisson distribution, but presuppose that the system starts with T1 in equilibrium. Since it ap-
proaches this distribution exponentially fast regardless of initial conditions, the error is minimal,
and the simplification eliminates the time dependence in the degradation term.
Plugging in and evaluating the non-Markovian term:

eϕ
∗(τ)H ′(U1(τ)) =

k1
β

exp(k1u2τ + k1u1/β) (S56)

Finally, considering the full generating function expression:

∂G

∂t
= k1u1G+ β(u2 − u1)

∂G

∂u1
− k1u2eu1

k
β
+u2k1τ (S57)
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Lafuerza and Toral report a solution [52], though computed through an ansatz rather than directly
– this PDE is not quite as simple as that of the Markovian system. We restrict ourselves to the
stationary solution, which can be solved with a rather mechanical application of the integrating
factor method, or by noticing that the uncorrelated Poisson PMF solves the equation:

G = e
u1

k1
β
+u2k1τ

∂G

∂u1
=
k1
β
G

∂G

∂t
= k1u1G+ β(u2 − u1)

k1
β
G− k1u2G = 0

(S58)

Of course, this result can be derived just as well without writing down anything at all – by using
the standard results for constitutive production [14], the linear chain trick, and the fact that sums
of Poisson random variables are Poisson.

S6.3 Example: bursty production, one species

We can use such an approach to treat the simplest bursty delay reaction system:

∅ k1−→ B × T τ
=⇒ ∅ (S59)

Instead of writing down a DCME, we can notice that the system at time t has no memory beyond
the last period of length τ . Therefore, we can immediately write down the distribution of T :
there are Poisson(k1τ) burst events in each interval of length τ , and each burst event gives rise to
Geom(b) molecules. Therefore, the stationary distribution of molecules remaining in the system is
a Poisson-geometric mixture. This approach has recently been used in a more general treatment
of DCMEs [55].

S6.4 Example: bursty production, two species

Unfortunately, more general systems with a combination of bursting and downstream processing
are not amenable to either the ad hoc or the rigorous approach.
In particular, we attempt to solve the delayed analog of the two-stage bursty system [13]:

∅ k1−→ B × T1
β−→ T2

τ
=⇒ ∅

∂G

∂t
= k1

[
1

1− bu1
− 1

]
G+ β(u2 − u1)

∂G

∂u1
− βu2eϕ

∗(τ)H ′(U1(τ)),
(S60)

where the auxiliary system is now bursty.
First, we compute the factors of the non-Markovian term. The PGF derivative is found by evalu-
ating the T1 marginal:

k1

∫ T

0

[
1

1− bu1e−βs
− 1

]
ds =

k1
β

ln

(
bu1e

−βT − 1

bu1 − 1

)
, (S61)

which coincides with the relevant result for the gamma Ornstein–Uhlenbeck SDE [28]. However,
this form is needlessly challenging to work with, and it is more straightforward to assume T ≫ 0,
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or the system starts in the equilibrium distribution of T1. Again, due to exponential convergence,
the error is minimal. Differentiating with respect to x1 = u1 + 1:

H ′(x1) =
d

dx1

(
1

1− b(x1 − 1)

)k1/β

=
k1b

β

(
1

1− b(x1 − 1)

)k1/β+1

(S62)

H ′(u1) =
µ1H(u1)

1− bu1
, (S63)

where we define µ1 := k1b/β for simplicity. This yields a straightforward expression for the sum-
mation:

∞∑
m1=0

[1 + U1]
m1−1m1P (m1, t− τ) =

µH(U1)

1− bU1
(S64)

We reuse U1 and U2 from the derivation of the constitutive system, as the downstream components
of the auxiliary systems match:

∅ k1−→ B × T1
β−→ T2

ϕ∗(τ) = k1

∫ τ

0
(M(U1)− 1)ds = k1

∫ τ

0

[
1

1− bU1
− 1

]
ds

= k1

∫ τ

0

[
1

1− bu2 − b(u1 − u2)e−βs
− 1

]
ds

θ :=
b(u1 − u2)
1− bu2

ϕ∗ = k1

∫ τ

0

[
(1− bu2)−1

1− θe−βs
− 1

]
ds

= k1τ

(
bu2

1− bu2

)
+

k1
β(1− bu2)

ln

(
θe−βτ − 1

θ − 1

)
= k1τ

(
bu2

1− bu2

)
+

k1
β(1− bu2)

ln

(
bU1(τ)− 1

bu1 − 1

)

(S65)

which follows from the derivation of the PGF of the nascent marginal.
Now, considering the full generating function relation:

∂G

∂t
= k1

[
1

1− bu1

]
G+ β(u2 − u1)

∂G

∂u1

− βu2e−k1τ exp

(
k1τ

1− bu2

)(
bU1(τ)− 1

bu1 − 1

)k1β−1(1−bu2)−1

× k1b

β

(
1

1− bU1(τ)

)k1/β+1
(S66)

This PDE is not easily tractable by standard analytical or numerical methods. The form of the
equation is rather complicated and not amenable to analysis by characteristics. In principle, a
numerical PDE or ODE solver can be used: we may fix u2 and solve for G(u1, u2) over a mesh of
u1. By repeating this for many values of u2, we can compute the Fourier transform of the joint
distribution. However, this requires solvers that can integrate over the complex plane, as well
as initial conditions G(0, u2) for each u2. These are the very values we seek, so even numerical
approaches require some ingenuity.
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In short, the stochastically delayed systems reduce to deterministically delayed systems in some
well-studied regimes. However, in spite of the formal connection between the CME and the DCME,
the former is far simpler to analyze: the DCME is non-Markovian, and generally resistant to exact
analysis. Although much recent progress has been made, regulated transcriptional systems do not
yet have full probabilistic solutions.
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